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Abstract. In this paper, we propose Greyhound, the first concretely effi-
cient polynomial commitment scheme from standard lattice assumptions.
At the core of our construction lies a simple three-round protocol for
proving evaluations for polynomials of bounded degree N with verifier
time complexity Op

?
Nq. By composing it with the LaBRADOR proof

system (CRYPTO 2023), we obtain a succinct proof of polynomial evalu-
ation (i.e. polylogarithmic in N) that admits a sublinear verifier runtime.

To highlight practicality of Greyhound, we provide implementation details
including concrete sizes and runtimes. Notably, for large polynomials of
degree at most N “ 230, the scheme produces evaluation proofs of size
53KB, which is more than 104 times smaller than the recent lattice-based
framework, called SLAP (EUROCRYPT 2024), and around three orders
of magnitude smaller than Ligero (CCS 2017) and Brakedown (CRYPTO
2023).

Keywords: lattices, polynomial commitment scheme, SNARK, imple-
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1 Introduction

A polynomial commitment scheme [KZG10] is a cryptographic primitive that
allows one to commit to a degree-bounded polynomial f P RăN rXs over a ring
R, and later prove evaluation statements, such as fpxq “ y for public x, y P R.
It is crucial for real-world applications that the size of the evaluation proof is
succinct and can be efficiently verified (i.e. sublinear in N). Polynomial commit-
ments, and variations thereof, have found numerous applications in constructing
succinct non-interactive arguments of knowledge (SNARKs) [BFS20, BHR`21,
CHM`20, GWC19, MBKM19], look-up arguments [STW23], verifiable secret
sharing [BDK13], and multi-party computation [BHV`23].

Due to fast development in building quantum computers, there is currently
a strong need in designing quantum-safe polynomial commitments. This is ev-
idenced by the NIST Post-Quantum Competition for standardizing quantum-
safe key encapsulation mechanisms and digital signatures, where three out of
four schemes, that were recently selected for standardization, rely on lattice-
based assumptions. Not only does it imply that algebraic lattices are a suitable



candidate for building more advanced quantum-safe applications in general, but
also that lattice-based SNARKs are the most natural choice for upgrading the
newly-standardized encryption and signature schemes with privacy-preserving
properties, e.g. verifiable encryption or anonymous credentials.

Prior works on lattice-based polynomial commitments have been mainly of
theoretical interest. Starting with the construction by Libert et al. [LRY16], poly-
nomial commitments were treated as a direct application of (inner-product) func-
tional commitments from lattices [ACL`22, BCFL23, dCP23, FLV23, WW23b].
Even though the constructions offer succinct proofs, their verification runtime
is sublinear in the degree N of the committed polynomial (via preprocessing)
only if the evaluation point x is known in advance3. This is unfortunately not
the case in SNARK-related applications, where the evaluation points are chosen
uniformly at random. Moreover, only the works of [ACL`22, BCFL23, FLV23]
provide extractability, although under a knowledge assumption that has indepen-
dently been broken in both classical [WW23a] and quantum setting [DAFS24].

A different (yet still intuitive) approach for building polynomial commitments
can be described as simply combining a standard commitment scheme with an
interactive proof of polynomial evaluation. The latter can then be turned non-
interactive using Fiat-Shamir transformation [FS86]. For instance, Bootle et al.
[BCS23] recently proposed a “Bulletproofs-type” polynomial evaluation proof,
which achieves succinct verification via a delegation protocol [Lee21]. The result-
ing polynomial commitment relies only on a standard Module-SIS problem and
requires no trusted setup. Unfortunately, as inherited from the original lattice-
Bulletproofs [BLNS20], soundness error of the core evaluation protocol is non-
negligible. Even though parallel repetition can be used to amplify soundness in
the interactive setting [AF22], the Fiat-Shamir transformed protocol would suffer
a super-polynomial reduction loss in the random oracle model (ROM) [AFK22].
Similar limitation can be found in the polynomial commitment scheme by Cini
et al. [CLM23], whose security relies on a new Vanishing-SIS problem.

More recent constructions depart from the Bulletproofs paradigm and focus
on the “split-and-fold” approach used in FRI low-degree test [BBHR18]. Notably,
Fenzi et al. [FMN23] proposed a non-interactive polynomial commitment secure
in the ROM under a new assumption called Power-BASIS – a more structured
variant of the BASIS assumption introduced in [WW23b]. Unfortunately, the
scheme requires a trusted setup, and what is worse, both the common reference
string (CRS) size and committing runtime are quadratic in the degree bound
N . A follow-up work by Albrecht et al. [AFLN24], called SLAP, removed the
need of a new assumption, thus relying only on Module-SIS, while making the
prover runtime quasi-linear. However, the remaining requirement on a trusted
setup, together with concrete proof sizes reaching tens of megabytes make the
scheme very unlikely to be practical. Some issues have been circumvented by the
recent work by Cini et al. [CMNW24] who built an elegant SIS-based polynomial
commitment with transparent setup and polylogarithmic verifier runtime. The

3 It is worth noting that Orbweaver [FLV23] explicitly circumvents this issue.
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concrete instantiation of the scheme, however, provides proof sizes in the order
of single-digit megabytes for N ą 225.

Even though none of the currently state-of-the-art lattice-based polynomial
commitments have shown any significant sign of practicality, concretely efficient
proof of knowledge for NP can be constructed from standard lattice assumptions.
Notably, Beullens and Seiler [BS23] proposed a succinct proof system called
LaBRADOR that achieves impressive proofs of size « 50KB for large N . As a
drawback, the protocol suffers from having linear verifier runtime, which limits
the range of applications where the proof system could be used.

Based on the discussion above, we focus on the following research question:

Can we build a concretely efficient polynomial commitment scheme with
transparent setup, sublinear verification complexity, and secure under standard

lattice assumptions?

1.1 Our Contributions

Polynomial commitment scheme. In this work we propose Greyhound, the first
practical lattice-based polynomial commitment scheme in the random oracle
model. The construction requires no trusted setup and relies on the well-studied
Module-SIS assumption.

Asymptotically, our scheme produces evaluation proofs of size polylogpNq

which can be verified in time Op
?
Nq. As for concrete efficiency, we provide

more details, as well as comparison with prior (plausibly) post-quantum poly-
nomial commitments, in Tables 1 and 2. Notably, for large degrees N Grey-
hound provides 104 smaller evaluation proofs than SLAP [AFLN24], and around
three orders of magnitude smaller proofs than the hash-based constructions
[AHIV17, BBHR18, GLS`21]. Our construction also produces much smaller
proof sizes compared to the more recent lattice-based polynomial commitments
[CMNW24, HSS24] by a factor of at least 30. As for the commit and prover
running time, Greyhound performs around 5 ´ 10X faster than Brakedown and
Ligero. As a drawback, our verification time seems comparable with Brakedown
and two times slower than Ligero.

Library for fast ring operations. We have implemented an AVX-512 optimized
library for polynomial arithmetic over small-degree power-of-two cyclotomic ring
modulo multi-precision primes of the form q ” 5 pmod 8q. This library includes
functions for sampling polynomials from several standard distributions as well
as computing ring automorphisms directly in several different polynomial rep-
resentations such as coefficient representations and multi-modular NTT repre-
sentations. Moreover, our library contains a very fast implementation of the
Johnson-Lindenstrauss projection [GHL22] needed in recent lattice-based zero-
knowledge protocols [BS23, LNP22]. The implementation uses the Four Russian
algorithm and vector shuffle instructions for in-register lookups. See Section 6
for more details.
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Transparent Proof sizes for
Scheme Structure setup N “ 226 N “ 228 N “ 230

Brakedown-PC Hashes ✓ 49157 93767 181948
Ligero-PC Hashes ✓ 7256 14383 28631
FRI-PC Hashes ✓ 740 – –

FMN23-PC Lattices ✗ – – 8499
SLAP-PC Lattices ✗ – – 785408

CMNW24-PC Lattices ✓ 1546 – 5294
HSS24-PC Lattices ✓ 48640 – –

Greyhound Lattices ✓ 46 53 53

Table 1: Concrete evaluation proof sizes (in KB) of Greyhound and comparison with
prior plausibly post-quantum extractable polynomial commitments. Here, N is the
degree bound on the committed polynomial over a suitably chosen finite field Fq. Con-
crete sizes are set to reach λ-bit security level, where λ « 128. Sizes for Brakedown-PC
[GLS`21], Ligero-PC [AHIV17] (Reed-Solomon rate of ρ “ 1{4) and FRI-PC [BBHR18]
are taken directly from [GLS`21, Figure 8], where for simplicity we assume that sizes
for degree 225 and 226 are the same (and identically for N “ 228, 230). As stated in the
aforementioned figure, for N ą 225 no sizes are provided for FRI-PC since the prover
ran out of memory. Similarly for CMNW24-PC [CMNW24] and HSS24-PC [HSS24], the
reported sizes (taken from the respective works) correspond to the degree 225 instead of
226, where the instantiation of the latter scheme additionally provides zero-knowledge.
Proof sizes for SLAP-PC [AFLN24] and FMN23-PC [FMN23] are taken from the re-
spective works.

1.2 Technical Overview

Denote λ as a security parameter. Let d be a power-of-two and R :“ ZrXs{pXd`

1q be the ring of integers of the 2d-th cyclotomic field. Take an odd prime q and
define Rq :“ R{pqq and δ :“ tlog qu. For the sake of the overview, we consider
base-two gadget matrices Gn :“ Inb

“

1 2 4 ¨ ¨ ¨ 2δ
‰

P Rnˆnδ
q for n ě 1. We define

the standard inverse function G´1
n : Rn

q Ñ Rnδ
q , which decomposes each entry

w.r.t. base 2. In particular, for any t P Rn
q , G

´1
n ptq has binary coefficients and

GnG
´1
n ptq “ t.

Inner and outer commitments. The starting point of our construction is the
basic commitment scheme from LaBRADOR [BS23]. Let n,m, r P N and define
the commitment key as a pair of uniformly random matrices A P Rnˆmδ

q and

B P Rnˆrnδ
q . Suppose we want to commit to arbitrary r vectors f1, . . . , fr P Rm

q of
length m. The first step is to compute inner commitments ti :“ AG´1

m pfiq P Rn
q

and their binary decomposition t̂i :“ G´1
n ptiq for i P rrs. Then, the final outer

commitment is

u :“ B

»

—

–

t̂1
...

t̂r

fi

ffi

fl

P Rn
q . (1)
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N “ 226 N “ 228 N “ 230

Scheme Commit Prove Verify Commit Prove Verify Commit Prove Verify

Brakedown-PC 36 3.21 0.703 150 13 2.56 605 48.6 2.96
Ligero-PC 39.9 3.11 0.196 169 12.4 0.402 717 50 0.846
FRI-PC 168 185 0.041 – – – – – –

HSS24-PC 188 1.07 – – – – – –

Greyhound 4.37 2.03 0.492 21.2 8.21 1.15 132 41.2 2.80

Table 2: Concrete running time (in seconds) of the Greyhound polynomial commit-
ment scheme and comparison with Brakedown-PC [GLS`21], Ligero-PC [AHIV17]
(Reed-Solomon rate of ρ “ 1{2) and FRI-PC [BBHR18]. The Greyhound runtimes
were obtained by running the code on a single Intel Xeon Sapphire Rapids core at 3.2
GHz. The values for the related works are taken directly from [GLS`21, Figure 8] and
[HSS24, Table 3], where for simplicity we assume that running times for degree 225 and
226 are the same (and identically for N “ 228, 230).

Commitment opening for the message pfiqiPrrs consists of short vectors psi, t̂iqiPrrs

which satisfy (i) fi “ Gmsi, (ii) Asi “ Gnt̂i for i P rrs and (iii) Equation (1).
Computational binding property follows directly from the Module-SIS assump-
tion.

Simple proof of quadratic relations. Our base for constructing proofs of
polynomial evaluation is the following three-round proof of knowledge of a com-
mitment opening psi, t̂iqiPrrs for the message pfiqiPrrs which satisfies

a⊺
“

f1| ¨ ¨ ¨ |fr
‰

b “ y.

The protocol can be described as follows. The prover starts by sending

w⊺ :“ a⊺
“

f1| ¨ ¨ ¨ |fr
‰

“ a⊺Gm

“

s1| ¨ ¨ ¨ |sr
‰

P Rr
q

to the verifier. Then, given a short challenge vector c P Rr
q, the prover outputs

pt̂iqiPrrs and z :“
“

s1| ¨ ¨ ¨ |sr
‰

c.

Finally, verifier checks whether pt̂iqiPrrs, z are short and if the following hold:

w⊺b
?
“ y, w⊺c

?
“ a⊺Gmz, Az

?
“

r
ÿ

i“1

ciGnt̂i and u
?
“ B

»

—

–

t̂1
...

t̂r

fi

ffi

fl

. (2)

Communication complexity of the three-round protocol is Oprn ` mδq elements
over Rq, which is sublinear in the witness size N “ r ¨ m.
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Reducing the proof size. We propose two substantial changes to the protocol
above. The first one is that instead of sending w in the clear, we commit to it
by computing ŵ :“ G´1

r pwq and outputting v :“ Dŵ, where D P Rnˆr
q is

a uniformly random matrix. Then, in the final round, the prover reveals ŵ,

together with pt̂iqiPrrs, z. The verifer checks whether ŵ is short, Dŵ
?
“ v, and

if conditions in (2) hold for the reconstructed w :“ Grŵ. The modified three-
round protocol is summarized in Figure 1.

At a first sight, this modification gives no advantage, or even worse, makes
the protocol less efficient. Indeed, instead of sending w, the prover outputs the
commitment v, together with opening ŵ which has the same bit-length as w.
The key observation here is that the verification conditions can be described as
a standard lattice-type statement, i.e. checking whether ŵ, t̂ :“ pt̂iqiPrrs, z have
small norm and they satisfy the following linear relation over Rq:

»

—

—

—

—

–

D 0 0
0 B 0

b⊺Gr 0 0
c⊺Gr 0 ´a⊺Gm

0 c⊺ b Gn ´A

fi

ffi

ffi

ffi

ffi

fl

»

–

ŵ

t̂
z

fi

fl “

»

—

—

—

—

–

v
u
y
0
0

fi

ffi

ffi

ffi

ffi

fl

. (3)

Therefore, instead of sending ŵ, t̂, z in the clear, we apply the LaBRADOR
[BS23] proof system to prove knowledge of short ŵ, t̂, z which satisfy (3). This
results in succinct proof sizes comparable with LaBRADOR, i.e. asymptotically
polypλ, logNq bits. More importantly, we notice that by running the LaBRADOR
sub-protocol on an instance and witness of size Oλpr`mq “ Oλp

?
Nq for a suit-

able choice of r and m, our verifier for the polynomial evaluation protocol has
sublinear time complexity.

Polynomial evaluation proof. To transform the protocol above into a poly-
nomial evaluation proof4 over Rq we use the following (standard) observation.

Suppose N “ m ¨ r for some m, r ě 1. Then, for any f “
řN´1

i“0 fiX
i P RăN

q rXs,
and any evaluation point x P Rq we have:

fpxq “ a⊺
“

f1| ¨ ¨ ¨ |fr
‰

b where

a⊺ :“
“

1 x x2 ¨ ¨ ¨ xm´1
‰

b⊺ :“
“

1 xm pxmq2 ¨ ¨ ¨ pxmqr´1
‰

f⊺i :“
“

fpi´1qm fpi´1qm`1 ¨ ¨ ¨ fim´1

‰

for i P rrs

.

Hence, we can invoke the protocol described above to prove statements of the
form fpxq “ y over Rq. Finally, we apply the generic transformation from
[AFLN24] to convert our construction into a polynomial commitment scheme
over a finite field Fq.

4 In a similar fashion we can also construct bivariate polynomial commitments, which
are used in, e.g. Sonic [MBKM19].

6



2 Preliminaries

2.1 Notation

Let q be an odd prime. Denote Zq to be the ring of integers modulo q. For
n P N, we define rns :“ t1, 2, . . . , nu. Let λ to be the security parameter. We
write OλpT q to denote T ¨ polypλq. For a probability distribution X (resp. finite
set X ), x Ð X means that x is sampled from X (resp. x is chosen uniformly at
random from the set X ). We write neglpλq to denote an unspecified negligible
function.

For a power of two d and a positive integer q, denote R and Rq respectively
to be the rings ZrXs{pXd ` 1q and ZqrXs{pXd ` 1q. Lower-case letters denote
elements in R or Rq and bold lower-case (resp. upper-case) letters represent

column vectors (resp. matrices) with coefficients in R or Rq. For y “
řd´1

i“0 yi ¨

Xi P R, we write ctpyq :“ y0 P Z to denote the constant term of y.
We define r1 “ r mod˘ q to be the unique element r1 in the range ´

q´1
2 ď

r1 ď
q´1
2 such that r1 “ r mod q. We also denote r1 “ r mod`q to be the

unique element r1 in the range 0 ď r1 ă q such that r1 “ r mod q. When the
exact representation is not important, we simply write r mod q. For an element
w P Zq, we write }w}8 to mean |w mod˘ q|. Define the ℓ8 and ℓp norms for
w “ w0 ` w1X ` . . . ` wd´1X

d´1 P R as follows:

}w}8 “ max
j

}wj}8, }w}p “
p

b

}w0}
p
8 ` . . . ` }wd´1}

p
8.

If w “ pw1, . . . , wmq P Rk, then

}w}8 “ max
j

}wj}8, }w}p “
p
a

}w1}p ` . . . ` }wk}p.

By default, }w} :“ }w}2. Similarly, we define the norms for vectors over Zq.
We recall the main result by Lyubashevsky and Seiler [LS18] which says that

short polynomials over Rq are invertible.

Lemma 2.1 ([LS18]). Let q ” 5 pmod 8q be a prime. Then, any f P Rq which
satisfies either 0 ă }f}8 ă 1?

2
q1{2 or 0 ă }f} ă q1{2 has an inverse in Rq.

The set of invertible elements of Rq is denoted by Rˆ
q .

Let b, n P N. We define the gadget vector g⊺
b :“

“

1 b b2 ¨ ¨ ¨ bδ
‰

, where δ “

tlogb qu. Then, the matrix matrix Gb,n is defined as Gb,n :“ In bg⊺
b . Conversely,

we define G´1
b,n : Rnˆm

q Ñ Rδnˆm
q to be the inverse function which decomposes

each entry w.r.t. base b ě 2. Clearly, for any t P Rn
q , we have

GG´1
b,nptq “ t and }G´1

b,nptq}8 ď
b

2
.

Next, we recall the standard Module-SIS (MSIS) problem [LS15].
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Definition 2.2 (Module-SIS). Let q “ qpλq, n “ npλq, m “ mpλq, β “ βpλq

and d “ dpλq. We say that the MSISn,m,q,β assumption holds if for any PPT
adversary A, the following holds:

Pr

„

Az “ 0 ^ 0 ă ∥z∥ ď β

ˇ

ˇ

ˇ

ˇ

A Ð Rnˆm
q

z Ð ApAq

ȷ

“ neglpλq .

2.2 Interactive Proofs

Let R Ď t0, 1u˚ˆt0, 1u˚ˆt0, 1u˚ be a ternary relation. For a triple ppp,x,wq P R,
we call pp the public parameters, x is a statement and w is a witness for x w.r.t.
pp. We denote Rppp,xq “ tw : Rppp,x,wq “ 1u. In this work, we only consider
NP relations R for which a witness w can be verified in time polyp|pp|, |x|q for
all ppp,x,wq P R.

An interactive proof system Π “ pS,P,Vq for relation R consists of three
PPT algorithms: the setup algorithm S, prover P, and verifier V. The latter two
are interactive and stateful. We write ptr, bq Ð xPppp,x,wq,Vppp,xqy for running
P and V on inputs pp,x,w and pp,x respectively and getting communication
transcript tr and the verifier’s decision bit b. We use the convention that b “ 0
means reject and b “ 1 means accept the prover’s claim of knowing w such
that px,wq P R. Unless stated otherwise, we will assume that the first and
the last message are sent from a prover. Hence, the protocol between P and
V has an odd number of rounds. Further, we say a protocol is public coin if
the verifier’s challenges are chosen uniformly at random independently of the
prover’s messages.

Definition 2.3 (Completeness). A proof system Π “ pS,P,Vq for the rela-
tion R satisfies completeness with completeness error ϵp¨q if for all adversaries
A,

Pr

»

–b “ 0 ^ ppp,x,wq P R

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pp Ð Sp1λq

px,wq Ð Apppq

ptr, bq Ð xPppp,x,wq,Vppp,xqy

fi

fl “ ϵpλq ` neglpλq.

If ϵp¨q is a zero-function then we say Π satisfies perfect completeness.

Definition 2.4 (Knowledge Soundness). A proof system Π “ pS,P,Vq for
the relation R is knowledge sound with knowledge error εpλq if there exists an
expected PPT extractor E such that for any stateful PPT adversary P˚:

Pr

»

—

—

–

b “ 1 ^ ppp,x,wq R R

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pp Ð Sp1λq

px, st˚q Ð P˚pppq

ptr, bq Ð xP˚ppp,x, st˚q,Vppp,xqy

w Ð EP˚

ppp,xq

fi

ffi

ffi

fl

“ εpλq`neglpλq.

Here, the extractor E has a black-box oracle access to the (malicious) prover P˚

and can rewind it to any point in the interaction.
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To prove knowledge soundness, we will show that our protocols satisfy coordinate-
wise special soundness (CWSS) defined in [FMN23]. Namely, let C be a finite
set and ℓ P N. For any two vectors x⃗ :“ px1, . . . , xℓq, y⃗ :“ py1, . . . , yℓq P Cℓ, define
the following relation “”i” for fixed i P rℓs as:

x⃗ ”i y⃗ ðñ xi ‰ yi ^ @ j P rℓsztiu, xj “ yj .

That is, vectors x⃗ and y⃗ have the same values in all coordinates apart from the
i-th one. Next, we define the set

SSpC, ℓq :“
"

px⃗1, . . . , x⃗ℓ`1q P Cℓ`1 :
D k P rℓ ` 1s, @ i P rℓs,
D j P rℓ ` 1sztku, x⃗k ”i x⃗j

*

.

We are ready to define the notion of coordinate-wise special soundness for three-
round protocols (the general definition for multi-round protocols is not needed
here).

Definition 2.5 (CWSS for three-round protocols). Let Π “ pS,P,Vq be
a public-coin three-round interactive proof system for relation R, and suppose
the challenge space of V is Cℓ. We say that Π is ℓ-coordinate-wise special sound
if there exists a polynomial time algorithm that on input public parameters pp,
statement x and ℓ`1 accepting transcripts pa, c⃗i, ziqiPrℓ`1s, with tc⃗1, . . . , c⃗ℓ`1u P

SSpC, ℓq and common first message a, outputs a witness w P Rppp,xq.

It was shown in [FMN23] that coordinate-wise special sound protocols are knowl-
edge sound 5.

Lemma 2.6 (Lemma 2.31 of [FMN23]). Let Π “ pS,P,Vq be public-coin
three-round protocol for relation R with the challenge space of C. If Π is ℓ-
coordinate-wise special sound, then it is knowledge sound with knowledge error
ℓ{|C|.

2.3 Polynomial Commitment Scheme

Polynomial commitment schemes can be seen as standard commitments to poly-
nomials f (e.g. by committing to the coefficients of f) equipped with the ability
to prove evaluations of f . We define polynomial commitments in the interactive
setting. Due to the slack occurring in the lattice setting, we define the slack
space SL and fix a (public) identity element e P SL.

Definition 2.7. Let PCS “ pSetup,Commit,Open,Evalq be a tuple of algorithms.
PCS is a polynomial commitment scheme over a ring R with degree bound N if:
– Setupp1λq Ñ pp takes a security parameter λ (specified in unary) and outputs

public parameters pp.
– Commitppp, fq Ñ pC, stq takes public parameters pp a message f P RăN rXs

and outputs a commitment C and decommitment state st.

5 See [FMN23, Lemma 2.32] for the non-interactive version in the random oracle
model.
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– Openppp, C, f, st, cq Ñ 0{1 takes public parameters pp, a commitment C, a
message f P RăN rXs, a decommitment state st and a relaxation factor c P SL
and outputs a bit indicating whether C is a valid commitment to f under pp.
We implicitly assume that if c R SL then Open outputs 0.

– Eval :“ pEval.P,Eval.Vq is a pair of probabilistic polynomial-time algorithms.
Here Eval.Pppp, pC, x, yq, pf, stqq is the evaluation prover, Eval.Vppp, pC, x, yqq

is the evaluation verifier.

An interactive polynomial commitment scheme can be transformed into a non-
interactive one using the Fiat-Shamir transformation [FS86].

We require that the polynomial commitment scheme satisfies evaluation com-
pleteness, weak binding and knowledge soundness.

Definition 2.8 (Evaluation Completeness). We say that a polynomial com-
mitment scheme PCS “ pSetup,Commit,Open,Evalq satisfies evaluation com-
pleteness with completeness error ϵp¨q if for every polynomial f P RăN rXs and
any evaluation point x P R:

Pr

»

—

—

–

Openppp, C, f, st, eq “ 0
_b “ 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pp Ð Setupp1λq

C, st Ð Commitppp, fq

x :“ pC, x, fpxqq,w :“ pf, stq
ptr, bq Ð xEval.Pppp,x,wq,Eval.Vppp,xqy

fi

ffi

ffi

fl

“ ϵpλq ` neglpλq.

Definition 2.9 (Weak Binding). A polynomial commitment scheme PCS “

pSetup,Commit,Open,Evalq satisfies weak binding if for every PPT adversary A:

Pr

»

–

f ‰ f 1 ^ f, f 1 P RăN rXs^

Openppp, C, f, st, cq
“ Openppp, C, f 1, st1, c1q “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pp Ð Setupp1λq

pC, pf, st, cq, pf 1, st1, c1qq Ð Apppq

fi

fl “ neglpλq.

Definition 2.10 (Knowledge Soundness). We say that a polynomial com-
mitment scheme PCS “ pSetup,Commit,Open,Evalq is knowledge sound with
knowledge error ε if for all stateful PPT adversaries P˚, there exists an expected
PPT extractor E such that

Pr

»

—

—

–

pOpenppp, C, f, st, cq ‰ 1 _ fpxq ‰ yq

^b “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pp Ð Setupp1λq

x :“ pC, x, yq, st˚ Ð P˚pppq

ptr, bq Ð xP˚ppp,x, st˚q,Vppp,xqy

pf, st, cq Ð EP˚

ppp,xq

fi

ffi

ffi

fl

“ εpλq ` neglpλq.

Here, the extractor E has a black-box oracle access to the (malicious) prover P˚

and can rewind it to any point in the interaction.

2.4 Principal Relation

We recall the principal relation (alternatively called a dot-product relation) de-
fined in [BS23]. The relation is characterised by the rank n ě 1, multiplicity

10



r ě 1 and the norm bound β ą 0. The statement is a triple pF ,F 1, βq, where F
and F 1 are families of functions f : Rn

q ˆ . . . ˆ Rn
q Ñ Rq of the form

fps1, . . . , srq “

r
ÿ

i,j“1

ai,jxsi, sjy `

r
ÿ

i“1

xϕi, siy ´ b

for ai,j , b P Rq, ϕi P Rn
q , and β ě 0. Then, a valid witness is a sequence of vectors

s1, . . . , sr P Rn
q which satisfy:

fps1, . . . , srq “ 0 @f P F
ctpf 1ps1, . . . , srqq “ 0 @f 1 P F 1

r
ÿ

i“1

}si}
2 ď β.

It was shown in [BS23, Section 7] that the Rank-1 Constraint System (R1CS)
can be reduced to the principal relation.

2.5 Inner and Outer Commitments

We recall the inner and outer commitments from [BS23], which will be the base
of our polynomial commitment. Let n,m, r, b, q P N and set δ :“ tlogb qu. Denote
β̄, γ̄, κ̄ ą 0 as the security-related norm bounds. Let pA P Rnˆm

q ,B P Rnˆnδr
q q

be the public parameters.
Suppose we want to commit to a matrix S P Rmˆr

q , which can be represented
as r column vectors s1, . . . , sr P Rm

q . The inner commitments are the r vectors
ti :“ Asi P Rn

q . Then, the outer commitment u is generated by computing

u :“ B

»

—

–

t̂1
...

t̂r

fi

ffi

fl

P Rn
q , where t̂i :“ G´1

b,nptiq for i P rrs. (4)

The decommitment state consists of pt̂iqiPrrs. A weak opening for the commit-

ment u is a tuple psi, t̂i, ciqiPrrs, which satisfies all the following conditions

@i P rrs : }ci ¨ si} ď β̄, }ci}1 ď κ̄, ci P Rˆ
q , Asi “ Gb,nt̂i

B

»

—

–

t̂1
...

t̂r

fi

ffi

fl

“ u and

›

›

›

›

›

›

›

»

—

–

t̂1
...

t̂r

fi

ffi

fl

›

›

›

›

›

›

›

ď γ̄.

Next, we show that the commitment scheme described above satisfies binding
with respect to weak openings under Module-SIS assumption [ALS20].

Lemma 2.11 (Weak Binding). There is a deterministic algorithm, that given
two weak openings psi, t̂i, ciqiPrrs and ps1

i, t̂
1
i, c

1
iqiPrrs for the commitment u P Rn

q

such that sj ‰ s1
j for some j P rrs, outputs a vector z P Rm`nδr

q such that

rA | Bsz “ 0 and 0 ă }z} ď maxp4κ̄β̄, 2γ̄q.

11



Proof. Note that if t̂i ‰ t̂1
i for some i P rrs, then we have automatically found a

short, non-zero solution zB for the matrix B of norm at most 2γ̄. Suppose this
is not the case. In particular, we have

Asj “ Gb,nt̂j “ Gb,nt̂
1
j “ As1

j .

Although sj ´ s1
j ‰ 0 is not short, we know that

}cjc
1
jpsj ´ s1

jq} ď }c1
jpcjsjq} ` }cjpc1

js
1
jq} ď 2κ̄β̄.

Finally, since both cj , c
1
j are invertible overRq, we deduce that zA :“ cjc

1
jpsj´s1

jq

is a short non-zero solution for A. We conclude the proof by combining the two
cases. [\

3 Proofs of Quadratic Relations with Sublinear
Verification

In this section, we propose a simple proof of knowledge of a commitment opening
which satisfies certain quadratic relations. More concretely, using the notation
from Section 2.5 we consider a relation:

Rb0,b1 :“

$

&

%

˜

pA,B,Dq,
pa,b,u, yq,

ppsiqiPrrs, t̂ “ pt̂iqiPrrsq

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@i P rrs,Asi “ Gb1,nt̂i;

Bt̂ “ u; a⊺
“

s1| ¨ ¨ ¨ |sr
‰

b “ y;

@i P rrs, }si}8 ď b0
2 ; }t̂}8 ď b1

2

,

.

-

. (5)

Here, width of the matrix Gb1,n is δ ¨ n, where δ :“ tlogb1 qu. Matrix D P Rnˆδr
q

has a role of an additional commitment key, used to commit to various prover
messages in order to preserve succinctness.

3.1 Simple Protocol

The three-round protocol is presented in Figure 1. As for the security analysis,
we focus on completeness and coordinate-wise special soundness.

12



Public parameters: A P Rnˆm
q ,B P Rnˆnδr

q ,D P Rnˆδr
q

Witness: psi P Rm
q qiPrrs, t̂ “ pt̂iqiPrrs P Rnδr

q

Statement: a P Rm
q ,b P Rr

q,u P Rn
q , y P Rq,

Prover Verifier

w⊺ :“ a⊺
“

s1| ¨ ¨ ¨ |sr
‰

P Rr
q

ŵ :“ G´1
b1,r

pwq P Rδr
q

v :“ Dŵ P Rn
q

v -
c “ pc1, . . . , crq Ð Cr

c�
z :“

“

s1| ¨ ¨ ¨ |sr
‰

c

ŵ, t̂, z -
Accept iff:

1.

›

›

›

›

›

›

»

–

ŵ

t̂
z

fi

fl

›

›

›

›

›

›

ď 1
2

a

b21pn ` 1qδrd ` prκb0q2md

2.

»

—

—

—

—

–

D 0 0
0 B 0

b⊺Gb1,r 0 0
c⊺Gb1,r 0 ´a⊺

0 c⊺ b Gb1,n ´A

fi

ffi

ffi

ffi

ffi

fl

»

–

ŵ

t̂
z

fi

fl “

»

—

—

—

—

–

v
u
y
0
0

fi

ffi

ffi

ffi

ffi

fl

Fig. 1: Proof of knowledge for the relation Rb0,b1 in (5). Here, δ :“ tlogb1 qu.

Lemma 3.1 (Completeness). The protocol in Figure 1 for relation Rb0,b1 sat-
isfies perfect completeness.

Proof. We start with the norm check. Since all coefficients of t̂ and ŵ are at
most b in the absolute value, we have }t̂} ď b1

2

?
nδrd and }ŵ} ď b1

2

?
δrd.

Combining with }z}8 ď
řr

i“1 }ci ¨si}8 ď rκb0{2, this yields the first verification
check. As for the algebraic equations, directly from the relation Rβ,b we have the
outer-commitment equation Bt̂ “ u. Also, by construction Dŵ “ v. Next, we
obtain

b⊺Gb,rŵ “ b⊺w “ w⊺b “ a⊺
“

s1| ¨ ¨ ¨ |sr
‰

b “ y

and

c⊺Gb,rŵ “ c⊺w “ w⊺c “ a⊺
“

s1| ¨ ¨ ¨ |sr
‰

c “ a⊺z.

Finally,

pc⊺ b Gb,rqt̂ “

r
ÿ

i“1

ciGb,r t̂i “

r
ÿ

i“1

ciAsi “ Az

which concludes the proof. [\
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As standard in lattice-based proof systems, we only manage to extract a relaxed
openings (cf. Section 2.5). This corresponds to the following relaxed relation R˚:

R˚

b1,β̄,γ̄,κ̄
:“

$

’

’

&

’

’

%

˜

pA,B,Dq,
pa,b,u, yq,

ppsiqiPrrs, t̂ “ pt̂iqiPrrs, pciqiPrrsq

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@i P rrs,Asi “ Gb1,nt̂i;

Bt̂ “ u; a⊺
“

s1| ¨ ¨ ¨ |sr
‰

b “ y;
@i P rrs, }ci ¨ si} ď β̄; }ci}1 ď κ̄; ci P Rˆ

q ;

}t̂} ď γ̄

,

/

/

.

/

/

-

.

(6)
Recall that, as shown in Lemma 2.11, the commitment scheme satisfies weak
binding under the Module-SIS assumption.

Next, we show that the three-round protocol satisfies coordinate-wise special
soundness under the Module-SIS assumption.

Lemma 3.2 (CWSS). Let γ̄ :“ 1
2

a

b21pn ` 1qδrd ` prκb0q2md, β̄ :“ 2γ̄ and
κ̄ :“ 2κ. Suppose that κ̄ ă 1?

2

?
q. Then, there exists a polynomial time algorithm

that on input public parameters pp :“ pA,B,Dq, statement x :“ pa,b,u, yq and
r ` 1 accepting transcripts

tri :“ pv, ci, pŵi, t̂i, ziqq for i “ 0, 1, . . . , r

with pc0, . . . , crq P SSpC, rq and common first message v, either outputs a witness

w P R˚

b1,β̄,γ̄,κ̄
ppp,xq, or z P Rpn`1qδr

q so that rB | Dsz “ 0 and 0 ă }z} ď β̄.

Proof. Assume without loss of generality that c0 differs from each ci exactly
in the i coordinate for i P rrs. First, if for some distinct i, j P t0, 1, . . . , ru we
have t̂i ‰ t̂j , then we immediately yield a non-zero solution z :“ t̂i ´ t̂j to
B of norm at most β̄. Similarly we argue for all ŵi. Thus, from now on we
assume that t̂ :“ t̂0 “ . . . “ t̂r and ŵ :“ ŵ0 “ . . . “ ŵr. For presentation, set
w :“ pw1, . . . , wrq “ Gb1,rŵ.

Fix i P rrs and denote c0 :“ pc1, . . . , crq and ci :“ pc1, . . . , ci´1, c
1
i, ci`1, . . . , crq

where ci ‰ c1
i. The L1 norm of c̄i :“ ci´c1

i is at most κ̄ “ 2κ and thus it is invert-
ible over Rq by Lemma 2.1. Now, define s̄i :“ pz0 ´ ziq{c̄i. Clearly, }c̄i ¨ s̄i} ď β̄.
Next, from the verification equations for tr0 and tri we have

wi “
pc⊺0 ´ c⊺i qw

c̄i
“

a⊺pz0 ´ z1q

c̄i
“ a⊺s̄i.

In particular, combined with b⊺w “ y, we obtain

a⊺
“

s̄1| ¨ ¨ ¨ |s̄r
‰

b “ y.

Moreover, by parsing t̂ :“ pt̂p1q, . . . , t̂prqq, where each t̂pjq P Rnδ
q , we have

Gb1,nt̂
piq “ Gb1,n

ˆ

c⊺0 ´ c⊺i
c̄i

b Inδ

˙

t̂ “

ˆ

c⊺0 ´ c⊺i
c̄i

˙

b Gb1,nt̂ “ A

ˆ

z0 ´ zi
c̄i

˙

“ As̄i.

Therefore, we conclude that

w :“
´

ps̄iqiPrrs, pt̂piqqiPrrs, pc̄iqiPrrs

¯

belongs to R˚

b1,β̄,γ̄,κ̄
ppp,xq. [\
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Efficiency. The communication complexity from the prover’s side can be bounded
by

ndrlog qs ` pn ` 1qδrdrlogp2b1qs ` mdrlogp2rκb0qs.

The prover’s running time is Oprpm ` n ` δqq operations over Rq. On the other
hand, the verifier’s time complexity is Opn ¨ pnδr`mqq operations over Rq. Since
the witness size is m ¨ r elements in Rq, we deduce that the verifier runtime is
sublinear.

3.2 Batching

In this section we consider a full generalisation of the relation in Equation (5).
Namely, let k ě 1 and fix aj P Rm

q ,bj P Rr
q for j P rks. Next, consider any k

positive integers L1, . . . , Lk. In the context of polynomial commitments, k is the
number of distinct evaluation points, and for the j-th point, we will prove Lj

polynomial evaluations. Clearly, the previous protocol corresponds to the case
k “ 1 and L1 “ 1.

We focus on proving knowledge of short vectors psj,ι,iqjPrks,ιPrLjs,iPrrs, such
that

a⊺j
“

sj,ι,1| ¨ ¨ ¨ |sj,ι,r
‰

bj “ yj,ι @j P rks, ι P rLjs,

where all yj,ι are public. By including the commitment opening relation, we
define (for presentation we fix the indices j P rks, ι P rLjs and i P rrs):

BRb0,b1 :“

$

’

’

&

’

’

%

˜

pA, pBj ,Djqjq,
ppaj ,bjqj ,u, pyj,ιqj,ιq,

ppsj,ι,iqj,ι,i, pt̂j “ pt̂j,ι,iqι,iqjq

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@j, ι, i,Asj,ι,i “ Gb1,nt̂j,ι,i;
řk

j“1 Bj t̂j “ u;

@j, ι,a⊺j
“

sj,ι,1| ¨ ¨ ¨ |sj,ι,r
‰

bj “ yj,ι;

@j, ι, i, }sj,ι,i}8 ď b0; }t̂j}8 ď b1

,

/

/

.

/

/

-

.

(7)
As before, width of the matrix Gb1,n is δ ¨ n for δ :“ tlogb1 qu.

We present a three-round protocol for BRb0,b1 in Figure 2 and provide an
informal description below due to more involved notation. The prover starts by
computing for all j P rks, ι P rLjs:

ŵj,ι :“ G´1
b1,r

pwj,ιq P Rδr
q , where w⊺

j,ι :“ a⊺j
“

sj,ι,1| ¨ ¨ ¨ |sj,ι,r
‰

P Rr
q

and sets ŵ⊺
j :“

“

ŵ⊺
j,1| ¨ ¨ ¨ |ŵ⊺

j,Lj

‰

for j P rks. Finally, it commits to all ŵ1, . . . , ŵk

by sending

v :“ D1ŵ1 ` . . . ` Dkŵk

to the verifier. Then, L1 ` . . . ` Lk vectors c1,1, . . . , ck,Lk
generated uniformly

at random from Cr are sent by the verifier. The prover responds by computing

zj :“

Lj
ÿ

ι“1

“

sj,ι,1| ¨ ¨ ¨ |sj,ι,r
‰

cj,ι for j “ 1, . . . , k
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and outputting pŵ1, . . . , ŵkq, t̂, pz1, . . . , zkq. The verifier then checks whether
›

›

›

›

›

›

»

–

pŵjqjPrks

pt̂jqjPrks

pzjqjPrks

fi

fl

›

›

›

›

›

›

ď
1

2

g

f

f

eb21pn ` 1qδr

˜

k
ÿ

j“1

Lj

¸

d ` prκb0q2

˜

k
ÿ

j“1

ℓ2j

¸

md (8)

and
k

ÿ

j“1

Djŵj “ v

k
ÿ

j“1

Bj t̂j “ u

@j P rks,

»

—

–

b⊺
jGb1,r

. . .

b⊺
jGb1,r

fi

ffi

fl

ŵj “

»

—

–

yj,1
...

yj,Lj

fi

ffi

fl

@j P rks,
“

c⊺j,1Gb1,r ¨ ¨ ¨ c⊺j,Lj
Gb1,r

‰

ŵj “ a⊺j zj

@j P rks,
“

c⊺j,1 b Gb1,n ¨ ¨ ¨ c⊺j,Lj
b Gb1,n

‰

t̂j “ Azj .

(9)

Public parameters: A P Rnˆm
q , pBj P RnˆnδrLj

q ,Dj P RnˆδrLj
q qjPrks

Witness: psj,ι,i P Rm
q qjPrks,ιPrLj s,iPrrs, pt̂j P RnδrLj

q qjPrks

Statement: paj P Rm
q ,bj P Rr

qqjPrks,u P Rn
q , pyj,ι P RqqjPrks,ιPrLj s,

Prover Verifier

For j P rks :
For ι P rLjs :

w⊺
j,ι :“ a⊺

j

“

sj,ι,1| ¨ ¨ ¨ |sj,ι,r
‰

P Rr
q

ŵj,ι :“ G´1
b1,r

pwj,ιq P Rδr
q

ŵ⊺
j :“

”

ŵ⊺
j,1| ¨ ¨ ¨ |ŵ⊺

j,Lj

ı

v :“
řk

j“1 Djŵj P Rn
q

v -
c1,1, . . . , ck,Lk Ð Cr

c1,1, . . . , ck,Lk�
For j P rks :

zj :“
řLj

ι“1

“

sj,ι,1| ¨ ¨ ¨ |sj,ι,r
‰

cj,ι

pŵj , t̂j , zjqjPrks-
Accept iff (8) and (9) hold

Fig. 2: Proof of knowledge for the relation BRb0,b1 in (7).

Security analysis. We prove completeness and coordinate-wise special soundness.
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Lemma 3.3. The protocol in Figure 2 for relation BRb0,b1 satisfies perfect com-
pleteness.

Proof. We start with the norm checks. We know that for j P rks, }ŵj}8 ď b1
2

and }t̂j}8 ď b1
2 . Also, }zj}8 ď rκb0Lj{2. Hence, (8) holds by applying the

naive ℓ8-to-ℓ2 inequality. Now, we move on to (9). The first two equations hold
trivially. As for the third one, we note that for any j P rks and ι P rLjs:

b⊺
jGb1,rŵj,ι “ b⊺

jwj,ι “ w⊺
j,ιbj “ a⊺j

“

sj,ι,1| ¨ ¨ ¨ |sj,ι,r
‰

bj “ yj,ι.

As for the fourth item:

“

c⊺j,1Gb1,r ¨ ¨ ¨ c⊺j,Lj
Gb1,r

‰

ŵj “

Lj
ÿ

ι“1

c⊺j,ιGb1,rŵj,ι

“

Lj
ÿ

ι“1

w⊺
j,ιcj,ι

“

Lj
ÿ

ι“1

a⊺j
“

sj,ι,1| ¨ ¨ ¨ |sj,ι,r
‰

cj,ι

“ a⊺j zj .

For the last equation, we know that:

“

c⊺j,1 b Gb1,n ¨ ¨ ¨ c⊺j,Lj
b Gb1,n

‰

t̂j “

Lj
ÿ

ι

r
ÿ

i“1

cj,ι,iGb1,nt̂j,ι,i

“ A

˜

Lj
ÿ

ι

r
ÿ

i“1

cj,ι,isj,ι,i

¸

“ Azj .

This concludes the proof. [\

Similarly as before, we consider a relaxed relation for proving coordinate-wise
special soundness:

BR˚

b1,β̄,γ̄,κ̄
:“

$

’

’

’

’

&

’

’

’

’

%

˜

pA, pBj ,Djqjq,
ppaj ,bjqj ,u, pyj,ιqj,ιq,

ppsj,ι,iqj,ι,i, pt̂j “ pt̂j,ι,iqι,iqj , pcj,ι,iqj,ι,iq

¸

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@j, ι, i,Asj,ι,i “ Gb1,nt̂j,ι,i;
řk

j“1 Bj t̂j “ u;

@j, ι,a⊺j
“

sj,ι,1| ¨ ¨ ¨ |sj,ι,r
‰

bj “ yj,ι;

@j, ι, i, }cj,ι,i ¨ sj,ι,i} ď β̄; }cj,ι,i}1 ď κ̄;

cj,ι,i P Rˆ
q , }t̂j} ď γ̄

,

/

/

/

/

.

/

/

/

/

-

.

(10)

Lemma 3.4. Define γ̄ :“ 1
2

c

b21pn ` 1qδr
´

řk
j“1 Lj

¯

d ` prκb0q2
´

řk
j“1 ℓ

2
j

¯

md,

β̄ :“ 2γ̄ and κ̄ :“ 2κ. Suppose that κ̄ ă 1?
2

?
q. Then, there exists a polynomial
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time algorithm that on input public parameters pp :“ pA, pBj ,Djqjq, statement

x :“ ppaj ,bjqj ,u, pyj,ιqj,ιq and p
řk

j“1 Ljqr ` 1 accepting transcripts

tri :“ pv, cpeq, pŵ
peq

j , t̂
peq

j , z
peq

j qjPrksq for e “ 0, 1, . . . ,

˜

k
ÿ

j“1

Lj

¸

r

with pcpeqqe P SSpC, p
řk

j“1 Ljqrq and common first message v, either outputs a

witness w P BR˚

b1,β̄,γ̄,κ̄
ppp,xq, or z P Rpn`1qδrp

řk
j“1 Ljq

q so that

“

B1| ¨ ¨ ¨ |Bk|D1| ¨ ¨ ¨ |Dk

‰

z “ 0 and 0 ă }z} ď β̄.

The proof follows almost identically as for Lemma 3.2. That is, we first claim that

unless we found a short Module-SIS solution, all ŵ
peq

j , for e “ 0, 1, . . . , p
řk

j“1 Ljqr,

must be the same (and similarly for t̂
peq

j ). Then, using the coordinate-wise special
soundness property, we extract each vector sj,ι,i.

Efficiency. Communication complexity from the prover’s side can be bounded
by

ndrlog qs ` pn ` 1qδr

˜

k
ÿ

j“1

Lj

¸

drlogp2b1qs `

k
ÿ

j“1

mdrlogp2rκb0Ljqs.

The prover’s running time is Opp
řk

j“1 Ljqrpm ` n ` δqq operations over Rq. On
the other hand, the verifier’s time complexity is dominated by the last equation
of (9), which takes Opn2δrp

řk
j“1 Ljq`knmq ring operations. Thus, if each Lj “

Op1q then the verifier runtime becomes asymptotically linear in k.

Remark 3.5. Note that trivially concatenating proofs would result in the verifi-
cation time

O

˜

pn2 ¨ δ ¨ r ` n ¨ mq ¨

˜

k
ÿ

j“1

Lj

¸¸

.

When L1 “ ... “ Lk “ 1 (i.e. we prove k polynomial evaluations at k different
points) then our proposed batching method does not differ from trivially con-
catenating proofs. The main advantage of our approach comes when one wants
prove multiple polynomial evaluations at the same evaluation point.

4 Efficient Polynomial Commitments over Zq

In this section we show how to utilise the proofs of quadratic relations from
Section 3 to efficiently prove polynomial evaluations. The key idea is that for a
bivariate polynomial

fpX,Yq “

m´1
ÿ

i“0

r´1
ÿ

j“0

fi,jX
iYj ,
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where the individual degrees of X and Y are m ´ 1 and r ´ 1 respectively, we
can write

fpX,Yq “
“

1 X X2 ¨ ¨ ¨ Xm´1
‰

»

—

—

—

–

f0,0 ¨ ¨ ¨ f0,r´1

f1,0 ¨ ¨ ¨ f1,r´1

...
...

...
fm´1,0 ¨ ¨ ¨ fm´1,r´1

fi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

1
Y
Y2

...
Yr´1

fi

ffi

ffi

ffi

ffi

ffi

fl

(11)

which is of the same form as in (5) by setting si to be the i-th column of the
middle matrix for i P rrs, a⊺ :“

“

1 X X2 ¨ ¨ ¨ Xm´1
‰

and b⊺ :“
“

1 Y Y2 ¨ ¨ ¨ Yr´1
‰

.
Therefore, the protocols in Section 3 can intuitively prove polynomial evalua-
tions over Rq. However, there are two caveats. First, the protocols only support
witnesses psiqi with short coefficients. Additionally, to achieve compatibility with
Polynomial IOPs, the polynomial commitments should be over finite fields, which
is not the case for Rq. We deal with these issues as follows.

4.1 Adapting the Protocols from Section 3

Short coefficients. If we denote the i-th row of the middle matrix in (11) as
fi P Rm

q for i P rrs, then we can define si :“ G´1
b0,m

pfiq P Rδ0m
q for δ0 :“ tlogb0 qu.

Then, the coefficients of all si are indeed short and

fpX,Yq “ a⊺
“

s1| ¨ ¨ ¨ |sr
‰

b where
a⊺ :“

“

1 X X2 ¨ ¨ ¨ Xm´1
‰

Gb0,m P Rδ0m
q

b⊺ :“
“

1 Y Y2 ¨ ¨ ¨ Yr´1
‰

P Rr
q

.

Hence, by setting Y :“ Xm and using the protocols in Section 3 we can prove
arbitrary polynomial evaluations of degree strictly less than m ¨ r over Rq.

Working over Zq. We recall how one translates proving polynomial evaluations
over Zq to Rq as shown in [AFLN24]. Suppose fpxq “ y over Zq and f has
degree at most N ´ 1, where N is divisible by the ring dimension d. Then

y “

N´1
ÿ

i“0

fix
i “

N{d´1
ÿ

i“0

d´1
ÿ

j“0

fid`jx
id`j “

N{d´1
ÿ

i“0

˜

d´1
ÿ

j“0

fid`jx
j

¸

¨
`

xd
˘i

.

Let σ´1 : R Ñ R be the Galois automorphism, which maps X ÞÑ X´1. Thus, if
we define the following Rq-elements:

x :“
d´1
ÿ

j“0

xj ¨ Xj , fi :“
d´1
ÿ

j“0

fid`j ¨ Xj for i “ 0, 1, . . . , N{d ´ 1,

then the constant term (as defined in Section 2) of

y :“

N{d´1
ÿ

i“0

σ´1pxq ¨ fi ¨
`

xd
˘i
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variable description instantiation

q prime modulus, q ” 5 pmod 8q

N degree bound on the polynomials

d ring dimension, power-of-two polypλq

m folding parameter Op
a

N{dq

r folding parameter Op
a

N{dq

n height of matrices A,B,D Op1q

b0 ℓ8 norm of s1, . . . , sr q1{Op1q

b1 ℓ8 norm of t̂1, . . . , t̂r q1{Op1q

δ0 tlogb0 qu Op1q

δ1 tlogb1 qu Op1q

κ ℓ1 norm of a challenge ωp1q

κ̄ slack parameter
a

q{2 ą κ̄ ě 2κ

γ̄ ℓ2 norm of z γ̄ :“
a

b21pn ` 1qδ1rd ` prκb0q2δ0md
β̄ ℓ2 norm bound on extracted witness 2γ̄

C Cr is the challenge space tc P R : }c}1 ď κu

SL slack space tc P R : }c}1 ď κ̄u
r

e identity element in SL p1, . . . , 1q

Fig. 3: Overview of the notation.

is equal to y [LNP22]. Also, the equation above is a polynomial evaluation state-

ment σ´1pxq ¨ fpxdq “ y over Rq, where the polynomial f P RăN{d
q rXs has coeffi-

cients

pf0, . . . , fN{d´1q P RN{d
q ,

the evaluation point is xd P Rq and the image is y defined above. Therefore, the
prover can first send y P Rq in the clear and proceed with proving knowledge
of f such that fpxdq “ σ´1pxq´1 ¨ y. Note that now we prove evaluations for
polynomials of degree less thanN{d rather thanN . We refer to [AFLN24, Section
5.5] for more details.

4.2 Construction

We present our basic construction PCS “ pSetup,Commit,Open,Eval,Verifyq for-
polynomials over ZqrXs of degree less than N :“ m ¨ r ¨ d in Figure 4. Basic
notation is summarized in Figure 3. The slack space is defined as SL :“ tc P

R : }c}1 ď κ̄ur for κ̄ ě 1. We set the identity e :“ p1, . . . , 1q P SL. As before,
we define C :“ tc P R : }c}1 ď κu. As a building block, we need a proof system
Π 1 “ pS 1,P 1,V 1q for the relation R1 defined as follows:

R1 :“ tppp, pP,h, γ̄q, zq : Pz “ h ^ }z} ď γ̄u . (12)

We are ready to summarise the security properties of our polynomial commit-
ment.
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Setupp1λq:

1: A Ð Rnˆδ0m
q

2: B Ð Rnˆnδr
q

3: D Ð Rnˆδr
q

4: pp1
Ð S 1

p1λq

5: return pp :“ pA,B,D, pp1
q

Commitppp, f P ZăN
q rXsq:

1: fpXq :“
řN´1

i“0 fiX
i

2: for i “ 0, 1, . . . , N{d ´ 1 :
3: fi :“

řd´1
j“0 fid`jX

j
P Rq

4: for i “ 1, . . . , r:
5: f⊺i :“ pfpi´1qm, . . . , fim´1q P Rm

q

6: si :“ G´1
b0,m

pfiq
7: ti :“ Asi
8: t̂i :“ G´1

b1,n
ptiq

9: t̂ :“ pt̂iqiPrrs P Rnδr
q

10: u :“ Bt̂
11: st :“ psi, t̂iqiPrrs

12: return pu, stq

Eval.Pppp, pu, x, yq, pf, st :“ psi, t̂iqqq:

1: fpXq :“
řN´1

i“0 fiX
i

2: for i “ 0, 1, . . . , N{d ´ 1 :
3: fi :“

řd´1
j“0 fid`jX

j
P Rq

4: x :“
řd´1

j“0 x
j

¨ Xj

5: y :“
řN{d´1

i“0 σ´1pxq ¨ fi ¨
`

xd
˘i

6: a⊺ :“
“

1 xd x2d
¨ ¨ ¨ xpm´1qd

‰

Gb0,m

7: b⊺ :“
“

1 xmd x2md
¨ ¨ ¨ xpr´1qmd

‰

8: w⊺ :“ a⊺
“

s1| ¨ ¨ ¨ |sr
‰

P Rr
q

9: ŵ :“ G´1
b1,r

pwq P Rδr
q

10: v :“ Dŵ P Rn
q

11: send py,vq to Eval.V
12: receive c P Cr from Eval.V
13: z :“

“

s1| ¨ ¨ ¨ |sr
‰

c

14: P :“

»

—

—

—

—

–

D 0 0
0 B 0

b⊺Gb1,r 0 0
c⊺Gb1,r 0 ´a⊺

0 c⊺ b Gb1,n ´A

fi

ffi

ffi

ffi

ffi

fl

15: z :“

»

–

ŵ

t̂
z

fi

fl, h :“

»

—

—

—

—

–

v
u

σ´1pxq
´1

¨ y
0
0

fi

ffi

ffi

ffi

ffi

fl

16: γ̄ :“
a

b21pn ` 1qδrd ` prκb0q2δ0md
17: run P 1

ppp1, pP,h, γ̄q, zq

Openppp,u, f, st :“ psi, t̂iqiPrrs, pciqiPrrsq

1: fpXq :“
řN´1

i“0 fiX
i

2: for i “ 0, 1, . . . , N{d ´ 1 :
3: fi :“

řd´1
j“0 fid`jX

j
P Rq

4: for i “ 1, . . . , r:
5: f⊺i :“ pfpi´1qm, . . . , fim´1q P Rm

q

6: if Gb0,msi ‰ fi _ Asi ‰ Gb1,nt̂i
7: return 0
8: if }ci ¨ si} ą β̄ _ }ci}1 ą κ̄ _ ci R Rˆ

q

9: return 0
10: t̂⊺ :“ rt̂⊺1| ¨ ¨ ¨ |t̂⊺rs

11: if }t̂} ą γ̄ _ Bt̂ ‰ u
12: return 0
13: return 1

Eval.Vppp, pu, x, yqq:

1: x :“
řd´1

j“0 x
j

¨ Xj

2: a⊺ :“
“

1 xd x2d
¨ ¨ ¨ xpm´1qd

‰

Gb0,m

3: b⊺ :“
“

1 xmd x2md
¨ ¨ ¨ xpr´1qmd

‰

4: receive py,vq from Eval.P
5: send c Ð Cr to Eval.P
6: compute P,h, γ̄ as in Lines 14 to 16 of

Eval.P
7: if ctpyq ‰ y
8: return 0
9: else run V 1

ppp1, pP,h, γ̄qq

Fig. 4: Description of the Setup,Commit,Open and Eval “ pEval.P,Eval.Vq algorithms.
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Theorem 4.1. The polynomial commitment PCS defined in Figure 4 satisfies
evaluation completeness, weak binding, and knowledge soundness under the Module-
SIS assumption. Namely, let Π 1 “ pS 1,P 1,V 1q be a proof system for the relation
R1. Then, the following hold.

1. For evaluation completeness, PCS satisfies evaluation completeness with com-
pleteness error ϵ1, where ϵ1 is the completeness error for Π 1.

2. For weak binding, there is a deterministic algorithm, that given public param-
eters pA,B,D, pp1q Ð Setupp1λq, and two weak openings pf, psi, t̂i, ciqiPrrsq

and pf 1, ps1
i, t̂

1
i, c

1
iqiPrrsq for the commitment u P Rn

q such that f ‰ f 1, outputs

a vector z P Rδ0m`nδ1r
q such that rA | Bsz “ 0 and 0 ă }z} ď maxp4κ̄β̄, 2γ̄q.

3. As for knowledge soundness, there is an expected PPT extractor E with the
folowing properties. Given rewindable black-box access to a PPT prover P˚

that convinces Eval.Vppp, pu, x, yqq, where pp :“ pA,B,D, pp1q Ð Setupp1λq,
with probability ε, extractor E with probability at least

ε ´ ε1 ´
r

|C|

either outputs f, st, pciqiPrrs such that Openppp,u, f, st, pciqiPrrsq “ 1, or a

vector z P Rpn`1qδ1r
q such that rB|Dsz “ 0 and 0 ă }z} ď β̄, where ε1 is the

knowledge error of Π 1.

Proof. We first show that a modified scheme, where instead of running Π 1 the
prover outputs z in the clear, satisfies perfect evaluation completeness. The state-
ment then follows by composition. Take any polynomial f P ZăN

q rXs. Then, for

pp :“ pA,B,D, pp1q Ð Setupp1λq and pu, st :“ psi, t̂iqiPrrsq Ð Commitppp, fq we
have

Gb0,msi “ Gb0,mG´1
b0,m

pfiq “ fi and Asi “ ti “ Gb1,npt̂iq for i P rrs.

Moreover, }si} ď b0
?
δ0md ď β̄ for all i. Therefore, Openppp,u, f, st, eq “ 1.

Finally, by applying the methodology described in Section 4.1 together with
Lemma 3.3, we conclude that the underlying evaluation protocol satisfies perfect
completeness, and thus the claim holds.

We move on to weak binding. From Lemma 2.11 we deduce that either all
si “ s1

i for all i, or there is an efficient algorithm which finds a short solution
to rA|Bs. Suppose the former case. Since fi “ Gb0,msi “ Gb0,ms1

i “ f 1
i for all i,

and therefore we conclude that f “ f 1, which leads to a contradiction.
As for knowledge soundness, we first consider the modified evaluation proto-

col, where instead of running Π 1, the prover outputs z in the clear. The state-
ment then follows by the composition result [BS23, Lemma 3.7]. To begin with,
we use Lemmas 3.2 and 2.6 to deduce that the knowledge error of the evalua-
tion protocol is at least r{|C|. This means that we can define an extractor that
with probability at least ε ´ r{|C| either outputs a short solution to rB|Ds, or
st :“ ps̄i, t̂iqiPrrs and pc̄iqiPrrs P SL such that for }pt̂iqiPrrs} ď γ̄ and }c̄i ¨ s̄i} ď β̄
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size runtime

commitment eval. proof prover verifier

Oλp1q Oλplog logNq OλpNq Oλp
?
Nq

Table 3: Asymptotic efficiency in terms of Zq elements and operations.

for all i P rrs and

“

1 xd x2d ¨ ¨ ¨ xpm´1qd
‰

Gb0,m

“

s̄1| ¨ ¨ ¨ |s̄r
‰

»

—

—

—

—

—

–

1
xmd

x2md

...

xpr´1qmd

fi

ffi

ffi

ffi

ffi

ffi

fl

“ σ´1pxq´1 ¨ y.

Then, by defining fi :“ Gb0,ms̄i for i P rrs and following the strategy from
Section 4.1, one can extract f P ZăN

q rXs so that fpxq “ y over Zq. This concludes
the proof. [\

Remark 4.2. We highlight that matrices A,B,D can be generated uniformly at
random from a seed. Thus, by embedding a Module-SIS challenge inside the
aforementioned matrices yields weak binding and knowledge soundness under
the Module-SIS assumption.

4.3 Instantiation and Asymptotic Efficiency

We set asymptotic parameters for our polynomial commitment scheme as de-
scribed in Figure 3. We instantiate our evaluation protocol with LaBRADOR
[BS23] as the underlying proof system Π 1. We first show that R1 is a folklore
lattice-type relation that is a special case of principal relations (cf. Section 2.4).
Thus, we can directly apply the LaBRADOR proof system [BS23] to produce a
succinct proof.

The length of the vector z is pn ` 1qδ1r ` m “ Op
a

N{dq elements in Rq,
while the height of the matrix P is 3n ` 2 “ Op1q. Denote by p⊺

i the i-th row
of P. We can then split the vector z into r1 subvectors z1, . . . , zr1 of length n1

each, where r1 ¨ n1 “ pn ` 1qδ1r ` m. We proceed similarly for all row vectors
p⊺
i :“ rp⊺

i,1| ¨ ¨ ¨ |p⊺
i,r1 s. Then, the linear equation of (12) can be rewritten as 3n`2

constraints of the form:

fipzq :“
r1
ÿ

j“1

xpi,j , zjy ´ hi “ 0 for i P r3n ` 2s

where h :“ ph1, . . . , h3n`2q. Hence, we formulated the relation in (12) using the
native language of LaBRADOR. We apply the LaBRADOR proof system as an
underlying building block and pick the most asymptotically optimal parameters
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as described in [BS23, Section 1.1]. In particular, we set the multiplicity r1 and
rank n1 as follows:

r1 “ Oλ

´

N
1
6

¯

and n1 “ Oλ

´

N
1
3

¯

.

Then, the LaBRADOR sub-protocol has Oplog logNq rounds and the total size
of prover’s messages in our evaluation protocol, in terms of the number of Rq-
elements, is Oλ plog logNq.

The prover runtime (in terms of the number of Rq-operations) of our evalu-
ation protocol can be split the two parts. The first one is running the protocol
in Figure 1, which takes Oλpr ¨ mq “ OλpNq operations. As for running the
LaBRADOR building block, the main bottleneck is computing the so-called
garbage cross-terms, which takes at most Oλpr12 ¨ n1q “ OλpN2{3q operations
over Zq. Hence, the naive upper-bound on the prover time for this sub-protocol
is OλpN2{3 log logNq. By combining the two parts, we conclude that the total
prover runtime is OλpNq.

Similarly as above, the verifier runtime can be analysed in two parts. The first
is receiving the vector v and generating the challenge c, which takes Oλprq “

Oλp
?
Nq time. Further, the verifier runs the verification algorithm from the

LaBRADOR protocol, where the statement size is Oλpr ` mq “ Oλp
?
Nq ele-

ments over Rq. Since the verifier time for LaBRADOR is linear in the size of
the statement, we conclude that the total verifier runtime is Oλp

?
Nq.

4.4 Batching Evaluation Proofs

Suppose we want to prove knowledge of L polynomials pfj,ιqjPrks,ιPrℓjs over Zq

such that
fj,ιpxjq “ yj,ι for j P rks, ι P rℓjs.

We can do this similarly as before by adapting the protocol in Figure 2, where k
is now the number of distinct evaluation points, and for the j-th point, we want
to prove ℓj ě 1 polynomial evaluations. Then, by following the strategy from

Section 4.1, the prover needs to send L :“
řk

j“1 ℓj ring elements pyj,ιqjPrks,ιPrℓjs

in the clear.
Even though in many Polynomial IOPs we have L “ Op1q, and thus suc-

cinctness is asymptotically preserved, sending all L full-sized elements in Rq can
be costly in practice. To circumvent this problem, one can instead commit to the
vector y :“ pyj,ιqjPrks,ιPrℓjs P RL

q and later prove its well-formedness, as well as
that the constant term of each yj,ι equals yj,ι. The key observation here is that
these “constant term”-type statements are also natively supported by principal
relations, and therefore we can still apply LaBRADOR in a black-box manner.

4.5 Hiding

Our current construction of the polynomial commitment scheme does not na-
tively satisfy the hiding property. Namely, both the commitment and the evalu-
ation protocol may reveal information about the committed values. To remedy
this, we introduce the following simple changes.
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Computationally hiding commitment scheme. First, we use the hiding version
of the outer commitment scheme by sampling a randomness vector r Ð χµ and
computing the commitment u :“ Bt̂`Er (instead of u “ Bt̂), where E P Rnˆµ

q

is an additional uniformly random matrix. By the (knapsack) Module-LWE as-
sumption, the commitment u looks pseudorandom. Hence, one needs to choose
the parameter µ big enough to ensure that u does not leak any information
about t̂, while not too big since it directly affects efficiency of the underlying
scheme.

Defining weak binding. In the hiding version of the commitment, we define a
weak opening to additionally contain a short randomness vector r, such that
u “ Bt̂`Er. More concretely, a weak opening for the commitment u is a tuple
ppsi, t̂i, ciqiPrrs, rq, which satisfies all the following conditions

@i P rrs : }ci ¨ si} ď β̄, }ci}1 ď κ̄, ci P Rˆ
q , Asi “ Gb,nt̂i

B

»

—

–

t̂1
...

t̂r

fi

ffi

fl

` Er “ u and

›

›

›

›

›

›

›

›

›

»

—

—

—

–

t̂1
...

t̂r
r

fi

ffi

ffi

ffi

fl

›

›

›

›

›

›

›

›

›

ď γ̄.

Suppose we have two weak openings ppsi, t̂i, ciqiPrrs, rq and pps1
i, t̂

1
i, c

1
iqiPrrs, r

1q for

the same commitment u. Note that if t̂i ‰ t̂1
i for some i, then we immediately

yield a short solution for the uniformly random concatenated matrix rB | Es.
We argue analogously for the case r ‰ r1. The rest of the proof follows similarly
as in Lemma 2.11.

Finally, we highlight that in the knowledge soundness argument, we will be
able to extract such a weak opening, since the additional randomness vector r
is a part of the witness for the LaBRADOR subroutine (see (14)).

HVZK Evaluation Proof. We modify the evaluation protocol to achieve honest-
verifier zero-knowledge (HVZK) as follows. To begin with, note that sending
y P Rq in the clear, and in particular the non-constant terms of y, may naturally
reveal some information about the secret polynomial f . To circumvent this issue,
we follow the strategy from [ENS20, LNP22]. Let L ě 1 be the soundness pa-
rameter. The prover at the beginning samples masking terms l :“ pl1, . . . , lLq Ð

tl P Rq : ctplq “ 0uL. Then, it computes l̂ :“ G´1
b1,L

plq. Next, it commits to both

ŵ, l̂ by sampling rv Ð χµ and computing

v :“ D0ŵ ` D1 l̂ ` Erv

where D0,D1,E are part of public parameters. Similarly as before, v is compu-
tationally indistinguishable from random. The first prover message is v.

In the second round, the verifier provides L challenges α1, . . . , αL Ð Zq. The
prover replies with j :“ pj1, . . . , jLq where

ji :“ li ` αi ¨ y for i “ 1, . . . , L. (13)
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Note that ctpjiq “ ctpli ` αi ¨ yq “ αi ¨ ctpyq “ αi ¨ y by definition of l1, . . . , lL.
In particular, the verifier can manually check whether constant terms of each
ji are exactly αi ¨ y. Moreover, sending all ji reveals no information about the
coefficients of y apart from the constant term.

Finally, we have to prove well-formedness of polynomials j1, . . . , jL in Equa-
tion (13). That is,

ji “ li ` αi ¨ σ´1pxq ¨ a⊺
“

s1| ¨ ¨ ¨ |sr
‰

b

“ eiGb1,L l̂ ` αi ¨ σ´1pxq ¨ b⊺Gb1,rŵ

for i P rLs, where ei P RL
q is the binary vector with 1-entry in exactly i-th

position and a,b, ŵ are constructed as before. Then, given a challenge c Ð Cr,
the prover now runs the proof system Π 1 to prove knowledge of short vectors
ŵ, l̂, rv, t̂, r, z which satisfy

»

—

—

—

—

—

—

—

—

—

–

D0 D1 E 0 0 0
0 0 0 B E 0

α1 ¨ σ´1pxq ¨ b⊺Gb1,r e1Gb1,L 0 0 0 0
...

...
...

...
...

...
αL ¨ σ´1pxq ¨ b⊺Gb1,r eLGb1,L 0 0 0 0

c⊺Gb1,r 0 0 0 0 ´a⊺

0 0 0 c⊺ b Gb1,n 0 ´A

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

ŵ

l̂
rv
t̂
r
z

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

v
u
j1
...
jL
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (14)

Finally, we requireΠ 1 to satisfy HVZK. As demonstrated in [BS23, Section 6], we
can still apply LaBRADOR to achieve a hiding polynomial commitment scheme.

The intuition for knowledge soundness comes from the following observation,
which is used to formally argue (coordinate-wise) special soundness. Suppose we
are given two distinct tuples pα0,1, . . . , α0,Lq ‰ pα1,1, . . . , α1,Lq, along with 2L
polynomials pjb,iqbPt0,1u,iPrLs such that

jb,i “ li ` αb,iy and ctpjb,iq “ αb,i ¨ y for b P t0, 1u, i P rLs.

First, there exists some index i for which α0,i ‰ α1,i, and thus α0,i ´ α1,i is
invertible over Zq. Also, the constant term of j0,i ´ j1,i “ pα0,i ´α1,iqy is pα0,i ´

α1,iqy. Therefore, we conclude that the ctpyq “ y, which is what we wanted.
Hence, the soundness error of our HVZK protocol is increased by an additive
factor of q´L.

Remark 4.3. We note that the prover actually does not need to reveal all the
L ring elements j1, . . . , jL defined in (13). The reason is that LaBRADOR na-
tively also allows to prove statements related to constant terms (see Section 2.4)
by applying the same “masking non-constant term” technique as shown above.
Thus, we can directly use the framework to prove that ctpyq “ y.

5 Concrete Parameters

We now discuss how to set the various parameters in Greyhound. Similar strate-
gies as in LaBRADOR are employed. We use the standard power-of-two cyclo-
tomic ring of dimension d “ 64 and modulus q « 232, and challenges with τ1 “ 32
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non-zero coefficients that are ˘1 and τ2 “ 8 non-zero coefficients that are ˘2.
For simplicity, in the above presentation of the protocol we have used the same
SIS rank n for the inner and outer commitments (i.e. height of the matrices A
and B). However, it is indeed more efficient to allow for different ranks and we
denote them by n and n1 for the inner and outer commitments, respectively.
They need to be chosen large enough to achieve (weak) binding. We do this in
the standard way with respect to the relevant norm bounds, c.f. [MR08].

The N{d witness polynomials that make up the polynomial f P ZqrXs are
distributed over r vectors of length m. So we need to have rm ě N{d. Then the
vectors are decomposed into δ0 parts with respect to the small integer basis b0
in order to commit to them. So here we want to have δ0 logpb0q « logpqq. In the
protocol the last prover message, i.e. the witness for the LaBRADOR statement,
consists of r commitments that are each decomposed into δ parts of length n, the
decomposed ŵ vector of length δr, and the amortized opening z of length δ0m,
which is decomposed into two parts with respect to the basis b before handing it
over to LaBRADOR. Our goal is thus to minimize rδpn ` 1q ` 2δ0m under the
constraint rm ě N{d. We approximate b0 “ b and hence δ0 “ δ. Then we find

m “

S

c

Npn ` 1q

2d

_

and r “

R

N

md

V

.

We predict the variance of the decomposed z vectors to be vz “ b2

12rpτ1 ` 4τ2q,
where we have used b2{12 for the variance of the discrete uniform distribution

on t´b{2, . . . , b{2 ´ 1u. Then we use logpbq “

Q

logp12vzq

4

U

as the decomposition

basis for z, and δ “ rlogpqq{ logpbqu. Finally, the square of the predicted total
norm for the LaBRADOR statement turns out to be

ˆ

b2

12
`

zv
b2

˙

mδ0d `

ˆ

pδ ´ 1q
b2

12
`

q2

12b2pδ´1q

˙

pn ` 1qrd.

We summarize the concrete parameters that we have used in our implemen-
tation in Table 4. For the parameters inside LaBRADOR and how to optimize
them see the Labrador paper. The concrete contributions from the Greyhound
protocol to the proof sizes for N “ 226, N “ 228 and N “ 230 due to the
parameter choices in Table 4 are 3.75 KB, 3.75 KB and 4.25 KB, respectively.

Making the protocol zero-knowledge. As explained in Section 4.5 for adding
zero-knowledge it suffices to add LWE randomness to the outer commitments
and mask the polynomial y where the uniformly random masks need to be
put into the first outer commitment. This is similar to LaBRADOR. Unlike in
LaBRADOR there is no Johnson-Lindenstrauss projection in Greyhound which
would be more complicated to mask since it would need a short mask and rejec-
tion sampling. We refer to [BS23] for the details. The relatively low-dimensional
randomness vectors and masks do not increase the total norm of the output wit-
ness much and hence the SIS ranks for the outer commitments can stay the same.
Since q « 232 we need L “ 4 masking terms for y so the proof size of Greyhound
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N “ 226 N “ 228 N “ 230

m 3156 6312 12625
r 333 665 1329
n 18 18 18
n1 7 7 7
b0 6 5 4
δ0 5 6 8
b 7 6 6
δ 5 5 5

Table 4: Concrete parameter choices for Greyhound for three different polynomial
lengths N .

goes up by three additional polynomials, or 0.75KB. For the LWE randomness we
use the uniform distribution modulo b. Then the required LWE rank to achieve
the hiding property can be computed in the usual way, c.f. [ADPS15].

6 Implementation

We have implemented Greyhound and LaBRADOR in C with intrinsics for vec-
torization using the AVX-512 instruction set. The source can be found here:

https://github.com/lattice-dogs/labrador.

Our code is single-threaded and so we do not make use of parallization beyond
SIMD. We have deviated from the LaBRADOR paper in a few ways. Most im-
portantly we only use power-of-two bases for decomposing vectors, and sample
the matrices for the Johnson-Lindenstrauss projections to have coefficients that
are ˘1 instead of ´1, 0, 1. The heuristic from [GHL22, BS23] regarding the tail of
the distribution of the projected vectors still applies. The power-of-two decom-
position bases mean that we do not achieve the best possible proof sizes. Also we
have not yet implemented the most elaborated parameter selection strategy and
optimize the parameters for each LaBRADOR layer locally instead of globally
optimizing over all layers. The focus of this paper is on runtime and we leave
the proof size optimization to later work. The proof sizes are determined by the
later LaBRADOR layers where the instance sizes are already so small that those
layers do not contribute significantly to the runtime. Therefore we believe that
one can improve our proof sizes without influencing the runtime.

Since vectorized code on the Intel architecture often bottlenecks on the front-
end of the CPU pipeline we tried to structure our code in a way that is friendly
to the µop cache. Concretely, this means that we try to compute on chunks of
polynomial vectors that are short enough to fit into the data caches but long
enough that the same small code section (for example implementing an NTT)
is used on many polynomials and comes from the µop cache rather than the L1
instruction cache and decoding.
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For sampling randomness we use the new vectorized AES instructions from
the VAES instruction set that compute four (independent) AES-128 rounds si-
multaneously. Together with hiding the instruction latencies by computing suffi-
ciently many AES blocks in parallel this results in our sampler outputting blocks
of 512 bytes of randomness at a time. For the hashing needed in the Fiat-Shamir
transform we use SHAKE128.

6.1 Polynomial Arithmetic Library

As part of our implementation we provide an optimized library for polynomial
arithmetic modulo (low-degree) power-of-two cyclotomics and primes q of the
form q “ 2d ´ a for d “ 3, . . . , 263 and minimal a such that q ” 5 pmod 8q. The
library is fully vectorized and includes functions for sampling polynomials from
various distributions and applying ring automorphisms.

For theoretical reasons the prime q defining the quotient polynomial ring Rq

for the LaBRADOR proof system needs to have high inertia degree. Therefore
we can not use NTT-based multiplication directly for the ring Rq. Instead we
use a multi-modular algorithm with NTT-based multiplication modulo several
small primes pi. This is similar to [CHK`21]. Unlike [CHK`21] where a divided-
difference based CRT algorithm is used to lift the results from mod pi, followed
by reduction modulo q, we use the explicit CRT mod q from [BS07]. This is
advantageous in our case since we compute modulo more small primes primes
pi.

For the pi we use primes between 212 and 214 that are fully splitting in the
main ring ZrXs{pX64 ` 1q in LaBRADOR. Such 16-bit primes allow us to use
the fast Montgomery arithmetic from [Sei18] and [LS19] on the x86 instruction
set.

For the multi-precision arithmetic modulo q we use 14-bit limbs. This is not
optimal but allows us to always compute on vectors of 16-bit integers. This
also includes the fixed-point approximation to the quotient in the explicit CRT.
Moreover, the 14-bit limbs enable a fast forward CRT-map using a (modified)
Montgomery reduction algorithm. The arithmetic mod q is much less relevant
for the overall speed of our protocols compared to the arithmetic modulo the pi
where most of the operations take place.

We keep the computation of CRT maps and NTTs to a minimum and com-
pute in the multi-modular NTT representation as much as possible. This is
the main advantage of NTT-based multiplication in lattice-based protocols with
arithmetic in high-rank modules. In the case of Greyhound and LaBRADOR this
means that the arithmetic becomes effectively linear.

Instead of the usual sign-and-magnitude representation for the multi-precision
arithmetic modulo q we use two’s complement and allow for signed limbs in our
representation. The main advantage of this is that conversion to and from short
polynomials that are stored in signed single-precision representations are very
fast. This explains the reason for the 14 bits: positive limbs can go up to 215 ´ 1
to not overflow into negative values and we need one nail bit to handle the carries
in our vectorized algorithms.
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For computing commitments we compute over extension rings by viewing
them as vector spaces over our base ring. This reduces the randomness that
has to be sampled for the commitment matrices. The computational cost stays
quadratic in the extension degree (resp. the SIS rank).

6.2 Johnson-Lindenstrauss Projection

For fast computation of the Johnson-Lindenstrauss reductions in LaBRADOR
which essentially entails a matrix-vector product where the matrix has coeffi-
cients that are ˘1, we use the Four Russians algorithm on blocks of 4 integers.
We precompute 16 vector registers at a time, each containing the 16 possible
signed summations of 4 vector coefficients. Then, for every matrix row and four
times four columns we lookup the correct summations from the precomputed
vectors using vector shuffle instructions.

6.3 Future Work

Unlike AVX2, AVX-512 has 52-bit integer instructions that include fused low and
high half multiply and add instructions. These instructions enable fast vectorized
NTTs modulo 52-bit primes pi, c.f. [BKS`21]. The advantage of this approach
would be that one could compute the commitments directly with NTTs for
the extension rings instead of implementing the extension ring arithmetic using
quadratic linear algebra over the 64 dimensional base ring. Concretely we often
compute commitments in extension rings of rank 16 over Rq “ ZqrXs{pX64 `1q

with a cost of 162 pointwise multiplications of length 64 (note that the NTTs
don’t matter as they can be precomputed in case of the commitment matrices
and reused many times in case of the matrices and the vectors). By directly
computing length-1024 pointwise products when the pi are fully splitting in
ZqrXs{pX1024 ` 1q one can reduce the computational cost to only one pointwise
product of length 1024 and hence reduce the cost by a factor of 16.
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