Fermat's Last Theorem
Jump to navigation
Jump to search
English
[edit]Alternative forms
[edit]Etymology
[edit]Named after French lawyer and amateur mathematician Pierre de Fermat (1601–1665), who famously claimed to have a proof, although it was not successfully proven until 1994 by Andrew Wiles.
Proper noun
[edit]- (number theory) The theorem that the Diophantine equation has no solutions for positive integers , where .
- 1872, William Thomas Brande, editor, A Dictionary of Science, Literature, & Art[1]:
- Another theorem, distinguished as Fermat's last Theorem, has obtained great celebrity on account of the numerous attempts that have been made to demonstrate it.
- 2002, Peter Hilton, Derek Holton, Jean Pedersen, Mathematical Vistas: From a Room with Many Windows, Springer, page 23:
- A lot has been written about Fermat's Last Theorem since its proof was announced in 1993.
- 2002, Brendan Kelly, Algebra with the TI-83 Plus & TI-83 Plus SE, Brendan Kelly Publishing, page 36,
- It appeared that Dr. Wiles had proved Fermat's Last Theorem, the most famous conjecture in Number Theory which had eluded the greatest mathematicians for over 350 years!
- 2007, Eli Maor, The Pythagorean Theorem: A 4,000-year History, Princeton University Press, page 1:
- Then, almost casually, Dr. Wiles ended his lecture with these words: "And by the way, this means that Fermat's Last Theorem was true. Q.E.D."
Related terms
[edit]Translations
[edit]theorem that an + bn equal to cn has no positive integer solutions for a, b, c, n with n > 2
|