Jump to content

User:Rschwieb/Bibliography

From Wikipedia, the free encyclopedia
  • Anderson, Frank W.; Fuller, Kent R. (1992), Rings and categories of modules, Graduate Texts in Mathematics, vol. 13 (2 ed.), New York: Springer-Verlag, pp. x+376, ISBN 0-387-97845-3, MR 1245487
  • Faith, Carl (1999), Rings and things and a fine array of twentieth century associative algebra, Mathematical Surveys and Monographs, vol. 65, Providence, RI: American Mathematical Society, pp. xxxiv+422, ISBN 0-8218-0993-8, MR 1657671
  • Goodearl, K. R. (1991), von Neumann regular rings (2 ed.), Malabar, FL: Robert E. Krieger Publishing Co. Inc., pp. xviii+412, ISBN 0-89464-632-X, MR 1150975
  • Goodearl, K. R.; Warfield, R. B., Jr. (2004), An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, vol. 61 (2 ed.), Cambridge: Cambridge University Press, pp. xxiv+344, ISBN 0-521-54537-4, MR 2080008{{citation}}: CS1 maint: multiple names: authors list (link)
  • Goodearl, K. R. (1976), Ring theory: Nonsingular rings and modules, Pure and Applied Mathematics, No. 33, New York: Marcel Dekker Inc., pp. viii+206, MR 0429962
  • Hungerford, Thomas W. (1980), Algebra, Graduate Texts in Mathematics, vol. 73, New York: Springer-Verlag, pp. xxiii+502, ISBN 0-387-90518-9, MR 0600654 {{citation}}: Unknown parameter |note= ignored (help)
  • Isaacs, I. Martin (2009), Algebra: a graduate course, Graduate Studies in Mathematics, vol. 100, Providence, RI: American Mathematical Society, pp. xii+516, ISBN 978-0-8218-4799-2, MR 2472787 {{citation}}: Unknown parameter |note= ignored (help)
  • Jacobson, Nathan (1985), Basic algebra. I (2 ed.), New York: W. H. Freeman and Company, pp. xviii+499, ISBN 0-7167-1480-9, MR 0780184
  • Jacobson, Nathan (1989), Basic algebra. II (2 ed.), New York: W. H. Freeman and Company, pp. xviii+686, ISBN 0-7167-1933-9, MR 1009787
  • Jacobson, Nathan (1964), Structure of rings, American Mathematical Society Colloquium Publications, Vol. 37. Revised edition, Providence, R.I.: American Mathematical Society, pp. ix+299, MR 0222106
  • Kaplansky, Irving (1970), Commutative rings, Boston, Mass.: Allyn and Bacon Inc., pp. x+180, MR 0254021
  • Lam, T. Y. (2001), A first course in noncommutative rings, Graduate Texts in Mathematics, vol. 131 (2 ed.), New York: Springer-Verlag, pp. xx+385, ISBN 0-387-95183-0, MR 1838439
  • Lam, T. Y. (2003), Exercises in classical ring theory, Problem Books in Mathematics (2 ed.), New York: Springer-Verlag, pp. xx+359, ISBN 0-387-00500-5, MR 2003255
  • Rowen, Louis Halle (1980), Polynomial identities in ring theory, Pure and Applied Mathematics, vol. 84, New York: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], pp. xx+365, ISBN 0-12-599850-3, MR 0576061
  • Rowen, Louis H. (1988), Ring theory. Vol. I, Pure and Applied Mathematics, vol. 127, Boston, MA: Academic Press Inc., pp. xxiv+538, ISBN 0-12-599841-4, MR 0940245
  • Rowen, Louis H. (1988), Ring theory. Vol. II, Pure and Applied Mathematics, vol. 128, Boston, MA: Academic Press Inc., pp. xiv+462, ISBN 0-12-599842-2, MR 0945718
  • Wisbauer, Robert (1991), Foundations of module and ring theory, Algebra, Logic and Applications, vol. 3 (Revised and translated from the 1988 German edition ed.), Philadelphia, PA: Gordon and Breach Science Publishers, pp. xii+606, ISBN 2-88124-805-5, MR 1144522 {{citation}}: |edition= has extra text (help); Unknown parameter |note= ignored (help)