Series related to Ramanujan's pi formulas
In mathematics , a Ramanujan–Sato series [ 1] [ 2] generalizes Ramanujan ’s pi formulas such as,
1
π
=
2
2
99
2
∑
k
=
0
∞
(
4
k
)
!
k
!
4
26390
k
+
1103
396
4
k
{\displaystyle {\frac {1}{\pi }}={\frac {2{\sqrt {2}}}{99^{2}}}\sum _{k=0}^{\infty }{\frac {(4k)!}{k!^{4}}}{\frac {26390k+1103}{396^{4k}}}}
to the form
1
π
=
∑
k
=
0
∞
s
(
k
)
A
k
+
B
C
k
{\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }s(k){\frac {Ak+B}{C^{k}}}}
by using other well-defined sequences of integers
s
(
k
)
{\displaystyle s(k)}
obeying a certain recurrence relation , sequences which may be expressed in terms of binomial coefficients
(
n
k
)
{\displaystyle {\tbinom {n}{k}}}
, and
A
,
B
,
C
{\displaystyle A,B,C}
employing modular forms of higher levels.
Ramanujan made the enigmatic remark that there were "corresponding theories", but it was only in 2012 that H. H. Chan and S. Cooper found a general approach that used the underlying modular congruence subgroup
Γ
0
(
n
)
{\displaystyle \Gamma _{0}(n)}
,[ 3] while G. Almkvist has experimentally found numerous other examples also with a general method using differential operators .[ 4]
Levels 1–4A were given by Ramanujan (1914),[ 5] level 5 by H. H. Chan and S. Cooper (2012),[ 3] 6A by Chan, Tanigawa, Yang, and Zudilin,[ 6] 6B by Sato (2002),[ 7] 6C by H. Chan, S. Chan, and Z. Liu (2004),[ 1] 6D by H. Chan and H. Verrill (2009),[ 8] level 7 by S. Cooper (2012),[ 9] part of level 8 by Almkvist and Guillera (2012),[ 2] part of level 10 by Y. Yang, and the rest by H. H. Chan and S. Cooper.
The notation j n (τ ) is derived from Zagier [ 10] and T n refers to the relevant McKay–Thompson series .
Examples for levels 1–4 were given by Ramanujan in his 1917 paper. Given
q
=
e
2
π
i
τ
{\displaystyle q=e^{2\pi i\tau }}
as in the rest of this article. Let,
j
(
τ
)
=
(
E
4
(
τ
)
η
8
(
τ
)
)
3
=
1
q
+
744
+
196884
q
+
21493760
q
2
+
⋯
j
∗
(
τ
)
=
432
j
(
τ
)
+
j
(
τ
)
−
1728
j
(
τ
)
−
j
(
τ
)
−
1728
=
1
q
−
120
+
10260
q
−
901120
q
2
+
⋯
{\displaystyle {\begin{aligned}j(\tau )&=\left({\frac {E_{4}(\tau )}{\eta ^{8}(\tau )}}\right)^{3}={\frac {1}{q}}+744+196884q+21493760q^{2}+\cdots \\j^{*}(\tau )&=432\,{\frac {{\sqrt {j(\tau )}}+{\sqrt {j(\tau )-1728}}}{{\sqrt {j(\tau )}}-{\sqrt {j(\tau )-1728}}}}={\frac {1}{q}}-120+10260q-901120q^{2}+\cdots \end{aligned}}}
with the j-function j (τ ), Eisenstein series E 4 , and Dedekind eta function η (τ ). The first expansion is the McKay–Thompson series of class 1A (OEIS : A007240 ) with a(0) = 744. Note that, as first noticed by J. McKay , the coefficient of the linear term of j (τ ) almost equals 196883, which is the degree of the smallest nontrivial irreducible representation of the monster group , a relationship called monstrous moonshine . Similar phenomena will be observed in the other levels. Define
s
1
A
(
k
)
=
(
2
k
k
)
(
3
k
k
)
(
6
k
3
k
)
=
1
,
120
,
83160
,
81681600
,
…
{\displaystyle s_{1A}(k)={\binom {2k}{k}}{\binom {3k}{k}}{\binom {6k}{3k}}=1,120,83160,81681600,\ldots }
(OEIS : A001421 )
s
1
B
(
k
)
=
∑
j
=
0
k
(
2
j
j
)
(
3
j
j
)
(
6
j
3
j
)
(
k
+
j
k
−
j
)
(
−
432
)
k
−
j
=
1
,
−
312
,
114264
,
−
44196288
,
…
{\displaystyle s_{1B}(k)=\sum _{j=0}^{k}{\binom {2j}{j}}{\binom {3j}{j}}{\binom {6j}{3j}}{\binom {k+j}{k-j}}(-432)^{k-j}=1,-312,114264,-44196288,\ldots }
Then the two modular functions and sequences are related by
∑
k
=
0
∞
s
1
A
(
k
)
1
(
j
(
τ
)
)
k
+
1
2
=
±
∑
k
=
0
∞
s
1
B
(
k
)
1
(
j
∗
(
τ
)
)
k
+
1
2
{\displaystyle \sum _{k=0}^{\infty }s_{1A}(k)\,{\frac {1}{(j(\tau ))^{k+{\frac {1}{2}}}}}=\pm \sum _{k=0}^{\infty }s_{1B}(k)\,{\frac {1}{(j^{*}(\tau ))^{k+{\frac {1}{2}}}}}}
if the series converges and the sign chosen appropriately, though squaring both sides easily removes the ambiguity. Analogous relationships exist for the higher levels.
Examples:
1
π
=
12
i
∑
k
=
0
∞
s
1
A
(
k
)
163
⋅
3344418
k
+
13591409
(
−
640320
3
)
k
+
1
2
,
j
(
1
+
−
163
2
)
=
−
640320
3
=
−
262537412640768000
{\displaystyle {\frac {1}{\pi }}=12\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{1A}(k)\,{\frac {163\cdot 3344418k+13591409}{\left(-640320^{3}\right)^{k+{\frac {1}{2}}}}},\quad j\left({\frac {1+{\sqrt {-163}}}{2}}\right)=-640320^{3}=-262537412640768000}
1
π
=
24
i
∑
k
=
0
∞
s
1
B
(
k
)
−
3669
+
320
645
(
k
+
1
2
)
(
−
432
U
645
3
)
k
+
1
2
,
j
∗
(
1
+
−
43
2
)
=
−
432
U
645
3
=
−
432
(
127
+
5
645
2
)
3
{\displaystyle {\frac {1}{\pi }}=24\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{1B}(k)\,{\frac {-3669+320{\sqrt {645}}\,\left(k+{\frac {1}{2}}\right)}{\left({-432}\,U_{645}^{3}\right)^{k+{\frac {1}{2}}}}},\quad j^{*}\left({\frac {1+{\sqrt {-43}}}{2}}\right)=-432\,U_{645}^{3}=-432\left({\frac {127+5{\sqrt {645}}}{2}}\right)^{3}}
where
645
=
43
×
15
,
{\displaystyle 645=43\times 15,}
and
U
n
{\displaystyle U_{n}}
is a fundamental unit . The first belongs to a family of formulas which were rigorously proven by the Chudnovsky brothers in 1989[ 11]
and later used to calculate 10 trillion digits of π in 2011.[ 12] The second formula, and the ones for higher levels, was established by H.H. Chan and S. Cooper in 2012.[ 3]
Using Zagier's notation[ 10] for the modular function of level 2,
j
2
A
(
τ
)
=
(
(
η
(
τ
)
η
(
2
τ
)
)
12
+
2
6
(
η
(
2
τ
)
η
(
τ
)
)
12
)
2
=
1
q
+
104
+
4372
q
+
96256
q
2
+
1240002
q
3
+
⋯
j
2
B
(
τ
)
=
(
η
(
τ
)
η
(
2
τ
)
)
24
=
1
q
−
24
+
276
q
−
2048
q
2
+
11202
q
3
−
⋯
{\displaystyle {\begin{aligned}j_{2A}(\tau )&=\left(\left({\frac {\eta (\tau )}{\eta (2\tau )}}\right)^{12}+2^{6}\left({\frac {\eta (2\tau )}{\eta (\tau )}}\right)^{12}\right)^{2}={\frac {1}{q}}+104+4372q+96256q^{2}+1240002q^{3}+\cdots \\j_{2B}(\tau )&=\left({\frac {\eta (\tau )}{\eta (2\tau )}}\right)^{24}={\frac {1}{q}}-24+276q-2048q^{2}+11202q^{3}-\cdots \end{aligned}}}
Note that the coefficient of the linear term of j 2A (τ ) is one more than 4371 which is the smallest degree greater than 1 of the irreducible representations of the Baby Monster group . Define,
s
2
A
(
k
)
=
(
2
k
k
)
(
2
k
k
)
(
4
k
2
k
)
=
1
,
24
,
2520
,
369600
,
63063000
,
…
{\displaystyle s_{2A}(k)={\binom {2k}{k}}{\binom {2k}{k}}{\binom {4k}{2k}}=1,24,2520,369600,63063000,\ldots }
(OEIS : A008977 )
s
2
B
(
k
)
=
∑
j
=
0
k
(
2
j
j
)
(
2
j
j
)
(
4
j
2
j
)
(
k
+
j
k
−
j
)
(
−
64
)
k
−
j
=
1
,
−
40
,
2008
,
−
109120
,
6173656
,
…
{\displaystyle s_{2B}(k)=\sum _{j=0}^{k}{\binom {2j}{j}}{\binom {2j}{j}}{\binom {4j}{2j}}{\binom {k+j}{k-j}}(-64)^{k-j}=1,-40,2008,-109120,6173656,\ldots }
Then,
∑
k
=
0
∞
s
2
A
(
k
)
1
(
j
2
A
(
τ
)
)
k
+
1
2
=
±
∑
k
=
0
∞
s
2
B
(
k
)
1
(
j
2
B
(
τ
)
)
k
+
1
2
{\displaystyle \sum _{k=0}^{\infty }s_{2A}(k)\,{\frac {1}{(j_{2A}(\tau ))^{k+{\frac {1}{2}}}}}=\pm \sum _{k=0}^{\infty }s_{2B}(k)\,{\frac {1}{(j_{2B}(\tau ))^{k+{\frac {1}{2}}}}}}
if the series converges and the sign chosen appropriately.
Examples:
1
π
=
32
2
∑
k
=
0
∞
s
2
A
(
k
)
58
⋅
455
k
+
1103
(
396
4
)
k
+
1
2
,
j
2
A
(
−
58
2
)
=
396
4
=
24591257856
{\displaystyle {\frac {1}{\pi }}=32{\sqrt {2}}\,\sum _{k=0}^{\infty }s_{2A}(k)\,{\frac {58\cdot 455k+1103}{\left(396^{4}\right)^{k+{\frac {1}{2}}}}},\quad j_{2A}\left({\frac {\sqrt {-58}}{2}}\right)=396^{4}=24591257856}
1
π
=
16
2
∑
k
=
0
∞
s
2
B
(
k
)
−
24184
+
9801
29
(
k
+
1
2
)
(
64
U
29
12
)
k
+
1
2
,
j
2
B
(
−
58
2
)
=
64
(
5
+
29
2
)
12
=
64
U
29
12
{\displaystyle {\frac {1}{\pi }}=16{\sqrt {2}}\,\sum _{k=0}^{\infty }s_{2B}(k)\,{\frac {-24184+9801{\sqrt {29}}\,\left(k+{\frac {1}{2}}\right)}{\left(64\,U_{29}^{12}\right)^{k+{\frac {1}{2}}}}},\quad j_{2B}\left({\frac {\sqrt {-58}}{2}}\right)=64\left({\frac {5+{\sqrt {29}}}{2}}\right)^{12}=64\,U_{29}^{12}}
The first formula, found by Ramanujan and mentioned at the start of the article, belongs to a family proven by D. Bailey and the Borwein brothers in a 1989 paper.[ 13]
Define,
j
3
A
(
τ
)
=
(
(
η
(
τ
)
η
(
3
τ
)
)
6
+
3
3
(
η
(
3
τ
)
η
(
τ
)
)
6
)
2
=
1
q
+
42
+
783
q
+
8672
q
2
+
65367
q
3
+
⋯
j
3
B
(
τ
)
=
(
η
(
τ
)
η
(
3
τ
)
)
12
=
1
q
−
12
+
54
q
−
76
q
2
−
243
q
3
+
1188
q
4
+
⋯
{\displaystyle {\begin{aligned}j_{3A}(\tau )&=\left(\left({\frac {\eta (\tau )}{\eta (3\tau )}}\right)^{6}+3^{3}\left({\frac {\eta (3\tau )}{\eta (\tau )}}\right)^{6}\right)^{2}={\frac {1}{q}}+42+783q+8672q^{2}+65367q^{3}+\cdots \\j_{3B}(\tau )&=\left({\frac {\eta (\tau )}{\eta (3\tau )}}\right)^{12}={\frac {1}{q}}-12+54q-76q^{2}-243q^{3}+1188q^{4}+\cdots \\\end{aligned}}}
where 782 is the smallest degree greater than 1 of the irreducible representations of the Fischer group Fi 23 and,
s
3
A
(
k
)
=
(
2
k
k
)
(
2
k
k
)
(
3
k
k
)
=
1
,
12
,
540
,
33600
,
2425500
,
…
{\displaystyle s_{3A}(k)={\binom {2k}{k}}{\binom {2k}{k}}{\binom {3k}{k}}=1,12,540,33600,2425500,\ldots }
(OEIS : A184423 )
s
3
B
(
k
)
=
∑
j
=
0
k
(
2
j
j
)
(
2
j
j
)
(
3
j
j
)
(
k
+
j
k
−
j
)
(
−
27
)
k
−
j
=
1
,
−
15
,
297
,
−
6495
,
149481
,
…
{\displaystyle s_{3B}(k)=\sum _{j=0}^{k}{\binom {2j}{j}}{\binom {2j}{j}}{\binom {3j}{j}}{\binom {k+j}{k-j}}(-27)^{k-j}=1,-15,297,-6495,149481,\ldots }
Examples:
1
π
=
2
i
∑
k
=
0
∞
s
3
A
(
k
)
267
⋅
53
k
+
827
(
−
300
3
)
k
+
1
2
,
j
3
A
(
3
+
−
267
6
)
=
−
300
3
=
−
27000000
{\displaystyle {\frac {1}{\pi }}=2\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{3A}(k)\,{\frac {267\cdot 53k+827}{\left(-300^{3}\right)^{k+{\frac {1}{2}}}}},\quad j_{3A}\left({\frac {3+{\sqrt {-267}}}{6}}\right)=-300^{3}=-27000000}
1
π
=
i
∑
k
=
0
∞
s
3
B
(
k
)
12497
−
3000
89
(
k
+
1
2
)
(
−
27
U
89
2
)
k
+
1
2
,
j
3
B
(
3
+
−
267
6
)
=
−
27
(
500
+
53
89
)
2
=
−
27
U
89
2
{\displaystyle {\frac {1}{\pi }}={\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{3B}(k)\,{\frac {12497-3000{\sqrt {89}}\,\left(k+{\frac {1}{2}}\right)}{\left(-27\,U_{89}^{2}\right)^{k+{\frac {1}{2}}}}},\quad j_{3B}\left({\frac {3+{\sqrt {-267}}}{6}}\right)=-27\,\left(500+53{\sqrt {89}}\right)^{2}=-27\,U_{89}^{2}}
Define,
j
4
A
(
τ
)
=
(
(
η
(
τ
)
η
(
4
τ
)
)
4
+
4
2
(
η
(
4
τ
)
η
(
τ
)
)
4
)
2
=
(
η
2
(
2
τ
)
η
(
τ
)
η
(
4
τ
)
)
24
=
−
(
η
(
2
τ
+
3
2
)
η
(
2
τ
+
3
)
)
24
=
1
q
+
24
+
276
q
+
2048
q
2
+
11202
q
3
+
⋯
j
4
C
(
τ
)
=
(
η
(
τ
)
η
(
4
τ
)
)
8
=
1
q
−
8
+
20
q
−
62
q
3
+
216
q
5
−
641
q
7
+
…
{\displaystyle {\begin{aligned}j_{4A}(\tau )&=\left(\left({\frac {\eta (\tau )}{\eta (4\tau )}}\right)^{4}+4^{2}\left({\frac {\eta (4\tau )}{\eta (\tau )}}\right)^{4}\right)^{2}=\left({\frac {\eta ^{2}(2\tau )}{\eta (\tau )\,\eta (4\tau )}}\right)^{24}=-\left({\frac {\eta \left({\frac {2\tau +3}{2}}\right)}{\eta (2\tau +3)}}\right)^{24}={\frac {1}{q}}+24+276q+2048q^{2}+11202q^{3}+\cdots \\j_{4C}(\tau )&=\left({\frac {\eta (\tau )}{\eta (4\tau )}}\right)^{8}={\frac {1}{q}}-8+20q-62q^{3}+216q^{5}-641q^{7}+\ldots \\\end{aligned}}}
where the first is the 24th power of the Weber modular function
f
(
2
τ
)
{\displaystyle {\mathfrak {f}}(2\tau )}
. And,
s
4
A
(
k
)
=
(
2
k
k
)
3
=
1
,
8
,
216
,
8000
,
343000
,
…
{\displaystyle s_{4A}(k)={\binom {2k}{k}}^{3}=1,8,216,8000,343000,\ldots }
(OEIS : A002897 )
s
4
C
(
k
)
=
∑
j
=
0
k
(
2
j
j
)
3
(
k
+
j
k
−
j
)
(
−
16
)
k
−
j
=
(
−
1
)
k
∑
j
=
0
k
(
2
j
j
)
2
(
2
k
−
2
j
k
−
j
)
2
=
1
,
−
8
,
88
,
−
1088
,
14296
,
…
{\displaystyle s_{4C}(k)=\sum _{j=0}^{k}{\binom {2j}{j}}^{3}{\binom {k+j}{k-j}}(-16)^{k-j}=(-1)^{k}\sum _{j=0}^{k}{\binom {2j}{j}}^{2}{\binom {2k-2j}{k-j}}^{2}=1,-8,88,-1088,14296,\ldots }
(OEIS : A036917 )
Examples:
1
π
=
8
i
∑
k
=
0
∞
s
4
A
(
k
)
6
k
+
1
(
−
2
9
)
k
+
1
2
,
j
4
A
(
1
+
−
4
2
)
=
−
2
9
=
−
512
{\displaystyle {\frac {1}{\pi }}=8\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{4A}(k)\,{\frac {6k+1}{\left(-2^{9}\right)^{k+{\frac {1}{2}}}}},\quad j_{4A}\left({\frac {1+{\sqrt {-4}}}{2}}\right)=-2^{9}=-512}
1
π
=
16
i
∑
k
=
0
∞
s
4
C
(
k
)
1
−
2
2
(
k
+
1
2
)
(
−
16
U
2
4
)
k
+
1
2
,
j
4
C
(
1
+
−
4
2
)
=
−
16
(
1
+
2
)
4
=
−
16
U
2
4
{\displaystyle {\frac {1}{\pi }}=16\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{4C}(k)\,{\frac {1-2{\sqrt {2}}\,\left(k+{\frac {1}{2}}\right)}{\left(-16\,U_{2}^{4}\right)^{k+{\frac {1}{2}}}}},\quad j_{4C}\left({\frac {1+{\sqrt {-4}}}{2}}\right)=-16\,\left(1+{\sqrt {2}}\right)^{4}=-16\,U_{2}^{4}}
Define,
j
5
A
(
τ
)
=
(
η
(
τ
)
η
(
5
τ
)
)
6
+
5
3
(
η
(
5
τ
)
η
(
τ
)
)
6
+
22
=
1
q
+
16
+
134
q
+
760
q
2
+
3345
q
3
+
⋯
j
5
B
(
τ
)
=
(
η
(
τ
)
η
(
5
τ
)
)
6
=
1
q
−
6
+
9
q
+
10
q
2
−
30
q
3
+
6
q
4
+
⋯
{\displaystyle {\begin{aligned}j_{5A}(\tau )&=\left({\frac {\eta (\tau )}{\eta (5\tau )}}\right)^{6}+5^{3}\left({\frac {\eta (5\tau )}{\eta (\tau )}}\right)^{6}+22={\frac {1}{q}}+16+134q+760q^{2}+3345q^{3}+\cdots \\j_{5B}(\tau )&=\left({\frac {\eta (\tau )}{\eta (5\tau )}}\right)^{6}={\frac {1}{q}}-6+9q+10q^{2}-30q^{3}+6q^{4}+\cdots \end{aligned}}}
and,
s
5
A
(
k
)
=
(
2
k
k
)
∑
j
=
0
k
(
k
j
)
2
(
k
+
j
j
)
=
1
,
6
,
114
,
2940
,
87570
,
…
{\displaystyle s_{5A}(k)={\binom {2k}{k}}\sum _{j=0}^{k}{\binom {k}{j}}^{2}{\binom {k+j}{j}}=1,6,114,2940,87570,\ldots }
s
5
B
(
k
)
=
∑
j
=
0
k
(
−
1
)
j
+
k
(
k
j
)
3
(
4
k
−
5
j
3
k
)
=
1
,
−
5
,
35
,
−
275
,
2275
,
−
19255
,
…
{\displaystyle s_{5B}(k)=\sum _{j=0}^{k}(-1)^{j+k}{\binom {k}{j}}^{3}{\binom {4k-5j}{3k}}=1,-5,35,-275,2275,-19255,\ldots }
(OEIS : A229111 )
where the first is the product of the central binomial coefficients and the Apéry numbers (OEIS : A005258 )[ 9]
Examples:
1
π
=
5
9
i
∑
k
=
0
∞
s
5
A
(
k
)
682
k
+
71
(
−
15228
)
k
+
1
2
,
j
5
A
(
5
+
−
5
(
47
)
10
)
=
−
15228
=
−
(
18
47
)
2
{\displaystyle {\frac {1}{\pi }}={\frac {5}{9}}\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{5A}(k)\,{\frac {682k+71}{(-15228)^{k+{\frac {1}{2}}}}},\quad j_{5A}\left({\frac {5+{\sqrt {-5(47)}}}{10}}\right)=-15228=-(18{\sqrt {47}})^{2}}
1
π
=
6
5
i
∑
k
=
0
∞
s
5
B
(
k
)
25
5
−
141
(
k
+
1
2
)
(
−
5
5
U
5
15
)
k
+
1
2
,
j
5
B
(
5
+
−
5
(
47
)
10
)
=
−
5
5
(
1
+
5
2
)
15
=
−
5
5
U
5
15
{\displaystyle {\frac {1}{\pi }}={\frac {6}{\sqrt {5}}}\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{5B}(k)\,{\frac {25{\sqrt {5}}-141\left(k+{\frac {1}{2}}\right)}{\left(-5{\sqrt {5}}\,U_{5}^{15}\right)^{k+{\frac {1}{2}}}}},\quad j_{5B}\left({\frac {5+{\sqrt {-5(47)}}}{10}}\right)=-5{\sqrt {5}}\,\left({\frac {1+{\sqrt {5}}}{2}}\right)^{15}=-5{\sqrt {5}}\,U_{5}^{15}}
In 2002, Takeshi Sato[ 7] established the first results for levels above 4. It involved Apéry numbers which were first used to establish the irrationality of
ζ
(
3
)
{\displaystyle \zeta (3)}
. First, define,
j
6
A
(
τ
)
=
(
j
6
B
(
τ
)
−
1
j
6
B
(
τ
)
)
2
=
(
j
6
C
(
τ
)
+
8
j
6
C
(
τ
)
)
2
=
(
j
6
D
(
τ
)
+
9
j
6
D
(
τ
)
)
2
−
4
=
1
q
+
10
+
79
q
+
352
q
2
+
⋯
{\displaystyle {\begin{aligned}j_{6A}(\tau )&=\left({\sqrt {j_{6B}(\tau )}}-{\frac {1}{\sqrt {j_{6B}(\tau )}}}\right)^{2}=\left({\sqrt {j_{6C}(\tau )}}+{\frac {8}{\sqrt {j_{6C}(\tau )}}}\right)^{2}=\left({\sqrt {j_{6D}(\tau )}}+{\frac {9}{\sqrt {j_{6D}(\tau )}}}\right)^{2}-4={\frac {1}{q}}+10+79q+352q^{2}+\cdots \end{aligned}}}
j
6
B
(
τ
)
=
(
η
(
2
τ
)
η
(
3
τ
)
η
(
τ
)
η
(
6
τ
)
)
12
=
1
q
+
12
+
78
q
+
364
q
2
+
1365
q
3
+
⋯
{\displaystyle {\begin{aligned}j_{6B}(\tau )&=\left({\frac {\eta (2\tau )\eta (3\tau )}{\eta (\tau )\eta (6\tau )}}\right)^{12}={\frac {1}{q}}+12+78q+364q^{2}+1365q^{3}+\cdots \end{aligned}}}
j
6
C
(
τ
)
=
(
η
(
τ
)
η
(
3
τ
)
η
(
2
τ
)
η
(
6
τ
)
)
6
=
1
q
−
6
+
15
q
−
32
q
2
+
87
q
3
−
192
q
4
+
⋯
{\displaystyle {\begin{aligned}j_{6C}(\tau )&=\left({\frac {\eta (\tau )\eta (3\tau )}{\eta (2\tau )\eta (6\tau )}}\right)^{6}={\frac {1}{q}}-6+15q-32q^{2}+87q^{3}-192q^{4}+\cdots \end{aligned}}}
j
6
D
(
τ
)
=
(
η
(
τ
)
η
(
2
τ
)
η
(
3
τ
)
η
(
6
τ
)
)
4
=
1
q
−
4
−
2
q
+
28
q
2
−
27
q
3
−
52
q
4
+
⋯
{\displaystyle {\begin{aligned}j_{6D}(\tau )&=\left({\frac {\eta (\tau )\eta (2\tau )}{\eta (3\tau )\eta (6\tau )}}\right)^{4}={\frac {1}{q}}-4-2q+28q^{2}-27q^{3}-52q^{4}+\cdots \end{aligned}}}
j
6
E
(
τ
)
=
(
η
(
2
τ
)
η
3
(
3
τ
)
η
(
τ
)
η
3
(
6
τ
)
)
3
=
1
q
+
3
+
6
q
+
4
q
2
−
3
q
3
−
12
q
4
+
⋯
{\displaystyle {\begin{aligned}j_{6E}(\tau )&=\left({\frac {\eta (2\tau )\eta ^{3}(3\tau )}{\eta (\tau )\eta ^{3}(6\tau )}}\right)^{3}={\frac {1}{q}}+3+6q+4q^{2}-3q^{3}-12q^{4}+\cdots \end{aligned}}}
The phenomenon of
j
6
A
{\displaystyle j_{6A}}
being squares or a near-square of the other functions will also be manifested by
j
10
A
{\displaystyle j_{10A}}
. Another similarity between levels 6 and 10 is J. Conway and S. Norton showed there are linear relations between the McKay–Thompson series T n ,[ 14] one of which was,
T
6
A
−
T
6
B
−
T
6
C
−
T
6
D
+
2
T
6
E
=
0
{\displaystyle T_{6A}-T_{6B}-T_{6C}-T_{6D}+2T_{6E}=0}
or using the above eta quotients j n ,
j
6
A
−
j
6
B
−
j
6
C
−
j
6
D
+
2
j
6
E
=
22
{\displaystyle j_{6A}-j_{6B}-j_{6C}-j_{6D}+2j_{6E}=22}
A similar relation exists for level 10.
For the modular function j 6A , one can associate it with three different sequences. (A similar situation happens for the level 10 function j 10A .) Let,
α
1
(
k
)
=
(
2
k
k
)
∑
j
=
0
k
(
k
j
)
3
=
1
,
4
,
60
,
1120
,
24220
,
…
{\displaystyle \alpha _{1}(k)={\binom {2k}{k}}\sum _{j=0}^{k}{\binom {k}{j}}^{3}=1,4,60,1120,24220,\ldots }
(OEIS : A181418 , labeled as s 6 in Cooper's paper)
α
2
(
k
)
=
(
2
k
k
)
∑
j
=
0
k
(
k
j
)
∑
m
=
0
j
(
j
m
)
3
=
(
2
k
k
)
∑
j
=
0
k
(
k
j
)
2
(
2
j
j
)
=
1
,
6
,
90
,
1860
,
44730
,
…
{\displaystyle \alpha _{2}(k)={\binom {2k}{k}}\sum _{j=0}^{k}{\binom {k}{j}}\sum _{m=0}^{j}{\binom {j}{m}}^{3}={\binom {2k}{k}}\sum _{j=0}^{k}{\binom {k}{j}}^{2}{\binom {2j}{j}}=1,6,90,1860,44730,\ldots }
(OEIS : A002896 )
α
3
(
k
)
=
(
2
k
k
)
∑
j
=
0
k
(
k
j
)
(
−
8
)
k
−
j
∑
m
=
0
j
(
j
m
)
3
=
1
,
−
12
,
252
,
−
6240
,
167580
,
−
4726512
,
…
{\displaystyle \alpha _{3}(k)={\binom {2k}{k}}\sum _{j=0}^{k}{\binom {k}{j}}(-8)^{k-j}\sum _{m=0}^{j}{\binom {j}{m}}^{3}=1,-12,252,-6240,167580,-4726512,\ldots }
The three sequences involve the product of the central binomial coefficients
c
(
k
)
=
(
2
k
k
)
{\displaystyle c(k)={\tbinom {2k}{k}}}
with: first, the Franel numbers
∑
j
=
0
k
(
k
j
)
3
{\displaystyle \textstyle \sum _{j=0}^{k}{\tbinom {k}{j}}^{3}}
; second, OEIS : A002893 , and third,
(
−
1
)
k
{\displaystyle (-1)^{k}}
OEIS : A093388 . Note that the second sequence, α 2 (k ) is also the number of 2n -step polygons on a cubic lattice . Their complements,
α
2
′
(
k
)
=
(
2
k
k
)
∑
j
=
0
k
(
k
j
)
(
−
1
)
k
−
j
∑
m
=
0
j
(
j
m
)
3
=
1
,
2
,
42
,
620
,
12250
,
…
{\displaystyle \alpha '_{2}(k)={\binom {2k}{k}}\sum _{j=0}^{k}{\binom {k}{j}}(-1)^{k-j}\sum _{m=0}^{j}{\binom {j}{m}}^{3}=1,2,42,620,12250,\ldots }
α
3
′
(
k
)
=
(
2
k
k
)
∑
j
=
0
k
(
k
j
)
(
8
)
k
−
j
∑
m
=
0
j
(
j
m
)
3
=
1
,
20
,
636
,
23840
,
991900
,
…
{\displaystyle \alpha '_{3}(k)={\binom {2k}{k}}\sum _{j=0}^{k}{\binom {k}{j}}(8)^{k-j}\sum _{m=0}^{j}{\binom {j}{m}}^{3}=1,20,636,23840,991900,\ldots }
There are also associated sequences, namely the Apéry numbers,
s
6
B
(
k
)
=
∑
j
=
0
k
(
k
j
)
2
(
k
+
j
j
)
2
=
1
,
5
,
73
,
1445
,
33001
,
…
{\displaystyle s_{6B}(k)=\sum _{j=0}^{k}{\binom {k}{j}}^{2}{\binom {k+j}{j}}^{2}=1,5,73,1445,33001,\ldots }
(OEIS : A005259 )
the Domb numbers (unsigned) or the number of 2n -step polygons on a diamond lattice ,
s
6
C
(
k
)
=
(
−
1
)
k
∑
j
=
0
k
(
k
j
)
2
(
2
(
k
−
j
)
k
−
j
)
(
2
j
j
)
=
1
,
−
4
,
28
,
−
256
,
2716
,
…
{\displaystyle s_{6C}(k)=(-1)^{k}\sum _{j=0}^{k}{\binom {k}{j}}^{2}{\binom {2(k-j)}{k-j}}{\binom {2j}{j}}=1,-4,28,-256,2716,\ldots }
(OEIS : A002895 )
and the Almkvist-Zudilin numbers,
s
6
D
(
k
)
=
∑
j
=
0
k
(
−
1
)
k
−
j
3
k
−
3
j
(
3
j
)
!
j
!
3
(
k
3
j
)
(
k
+
j
j
)
=
1
,
−
3
,
9
,
−
3
,
−
279
,
2997
,
…
{\displaystyle s_{6D}(k)=\sum _{j=0}^{k}(-1)^{k-j}\,3^{k-3j}\,{\frac {(3j)!}{j!^{3}}}{\binom {k}{3j}}{\binom {k+j}{j}}=1,-3,9,-3,-279,2997,\ldots }
(OEIS : A125143 )
where
(
3
j
)
!
j
!
3
=
(
2
j
j
)
(
3
j
j
)
{\displaystyle {\frac {(3j)!}{j!^{3}}}={\binom {2j}{j}}{\binom {3j}{j}}}
The modular functions can be related as,
P
=
∑
k
=
0
∞
α
1
(
k
)
1
(
j
6
A
(
τ
)
)
k
+
1
2
=
∑
k
=
0
∞
α
2
(
k
)
1
(
j
6
A
(
τ
)
+
4
)
k
+
1
2
=
∑
k
=
0
∞
α
3
(
k
)
1
(
j
6
A
(
τ
)
−
32
)
k
+
1
2
{\displaystyle P=\sum _{k=0}^{\infty }\alpha _{1}(k)\,{\frac {1}{\left(j_{6A}(\tau )\right)^{k+{\frac {1}{2}}}}}=\sum _{k=0}^{\infty }\alpha _{2}(k)\,{\frac {1}{\left(j_{6A}(\tau )+4\right)^{k+{\frac {1}{2}}}}}=\sum _{k=0}^{\infty }\alpha _{3}(k)\,{\frac {1}{\left(j_{6A}(\tau )-32\right)^{k+{\frac {1}{2}}}}}}
Q
=
∑
k
=
0
∞
s
6
B
(
k
)
1
(
j
6
B
(
τ
)
)
k
+
1
2
=
∑
k
=
0
∞
s
6
C
(
k
)
1
(
j
6
C
(
τ
)
)
k
+
1
2
=
∑
k
=
0
∞
s
6
D
(
k
)
1
(
j
6
D
(
τ
)
)
k
+
1
2
{\displaystyle Q=\sum _{k=0}^{\infty }s_{6B}(k)\,{\frac {1}{\left(j_{6B}(\tau )\right)^{k+{\frac {1}{2}}}}}=\sum _{k=0}^{\infty }s_{6C}(k)\,{\frac {1}{\left(j_{6C}(\tau )\right)^{k+{\frac {1}{2}}}}}=\sum _{k=0}^{\infty }s_{6D}(k)\,{\frac {1}{\left(j_{6D}(\tau )\right)^{k+{\frac {1}{2}}}}}}
if the series converges and the sign chosen appropriately. It can also be observed that,
P
=
Q
=
∑
k
=
0
∞
α
2
′
(
k
)
1
(
j
6
A
(
τ
)
−
4
)
k
+
1
2
=
∑
k
=
0
∞
α
3
′
(
k
)
1
(
j
6
A
(
τ
)
+
32
)
k
+
1
2
{\displaystyle P=Q=\sum _{k=0}^{\infty }\alpha '_{2}(k)\,{\frac {1}{\left(j_{6A}(\tau )-4\right)^{k+{\frac {1}{2}}}}}=\sum _{k=0}^{\infty }\alpha '_{3}(k)\,{\frac {1}{\left(j_{6A}(\tau )+32\right)^{k+{\frac {1}{2}}}}}}
which implies,
∑
k
=
0
∞
α
2
(
k
)
1
(
j
6
A
(
τ
)
+
4
)
k
+
1
2
=
∑
k
=
0
∞
α
2
′
(
k
)
1
(
j
6
A
(
τ
)
−
4
)
k
+
1
2
{\displaystyle \sum _{k=0}^{\infty }\alpha _{2}(k)\,{\frac {1}{\left(j_{6A}(\tau )+4\right)^{k+{\frac {1}{2}}}}}=\sum _{k=0}^{\infty }\alpha '_{2}(k)\,{\frac {1}{\left(j_{6A}(\tau )-4\right)^{k+{\frac {1}{2}}}}}}
and similarly using α3 and α'3 .
One can use a value for j 6A in three ways. For example, starting with,
Δ
=
j
6
A
(
−
17
6
)
=
198
2
−
4
=
(
140
2
)
2
=
39200
{\displaystyle \Delta =j_{6A}\left({\sqrt {\frac {-17}{6}}}\right)=198^{2}-4=\left(140{\sqrt {2}}\right)^{2}=39200}
and noting that
3
⋅
17
=
51
{\displaystyle 3\cdot 17=51}
then,
1
π
=
24
3
35
∑
k
=
0
∞
α
1
(
k
)
51
⋅
11
k
+
53
(
Δ
)
k
+
1
2
1
π
=
4
3
99
∑
k
=
0
∞
α
2
(
k
)
17
⋅
560
k
+
899
(
Δ
+
4
)
k
+
1
2
1
π
=
3
2
∑
k
=
0
∞
α
3
(
k
)
770
k
+
73
(
Δ
−
32
)
k
+
1
2
{\displaystyle {\begin{aligned}{\frac {1}{\pi }}&={\frac {24{\sqrt {3}}}{35}}\,\sum _{k=0}^{\infty }\alpha _{1}(k)\,{\frac {51\cdot 11k+53}{(\Delta )^{k+{\frac {1}{2}}}}}\\{\frac {1}{\pi }}&={\frac {4{\sqrt {3}}}{99}}\,\sum _{k=0}^{\infty }\alpha _{2}(k)\,{\frac {17\cdot 560k+899}{(\Delta +4)^{k+{\frac {1}{2}}}}}\\{\frac {1}{\pi }}&={\frac {\sqrt {3}}{2}}\,\sum _{k=0}^{\infty }\alpha _{3}(k)\,{\frac {770k+73}{(\Delta -32)^{k+{\frac {1}{2}}}}}\\\end{aligned}}}
as well as,
1
π
=
12
3
9799
∑
k
=
0
∞
α
2
′
(
k
)
11
⋅
51
⋅
560
k
+
29693
(
Δ
−
4
)
k
+
1
2
1
π
=
6
3
613
∑
k
=
0
∞
α
3
′
(
k
)
51
⋅
770
k
+
3697
(
Δ
+
32
)
k
+
1
2
{\displaystyle {\begin{aligned}{\frac {1}{\pi }}&={\frac {12{\sqrt {3}}}{9799}}\,\sum _{k=0}^{\infty }\alpha '_{2}(k)\,{\frac {11\cdot 51\cdot 560k+29693}{(\Delta -4)^{k+{\frac {1}{2}}}}}\\{\frac {1}{\pi }}&={\frac {6{\sqrt {3}}}{613}}\,\sum _{k=0}^{\infty }\alpha '_{3}(k)\,{\frac {51\cdot 770k+3697}{(\Delta +32)^{k+{\frac {1}{2}}}}}\\\end{aligned}}}
though the formulas using the complements apparently do not yet have a rigorous proof. For the other modular functions,
1
π
=
8
15
∑
k
=
0
∞
s
6
B
(
k
)
(
1
2
−
3
5
20
+
k
)
(
1
ϕ
12
)
k
+
1
2
,
j
6
B
(
−
5
6
)
=
(
1
+
5
2
)
12
=
ϕ
12
{\displaystyle {\frac {1}{\pi }}=8{\sqrt {15}}\,\sum _{k=0}^{\infty }s_{6B}(k)\,\left({\frac {1}{2}}-{\frac {3{\sqrt {5}}}{20}}+k\right)\left({\frac {1}{\phi ^{12}}}\right)^{k+{\frac {1}{2}}},\quad j_{6B}\left({\sqrt {\frac {-5}{6}}}\right)=\left({\frac {1+{\sqrt {5}}}{2}}\right)^{12}=\phi ^{12}}
1
π
=
1
2
∑
k
=
0
∞
s
6
C
(
k
)
3
k
+
1
32
k
,
j
6
C
(
−
1
3
)
=
32
{\displaystyle {\frac {1}{\pi }}={\frac {1}{2}}\,\sum _{k=0}^{\infty }s_{6C}(k)\,{\frac {3k+1}{32^{k}}},\quad j_{6C}\left({\sqrt {\frac {-1}{3}}}\right)=32}
1
π
=
2
3
∑
k
=
0
∞
s
6
D
(
k
)
4
k
+
1
81
k
+
1
2
,
j
6
D
(
−
1
2
)
=
81
{\displaystyle {\frac {1}{\pi }}=2{\sqrt {3}}\,\sum _{k=0}^{\infty }s_{6D}(k)\,{\frac {4k+1}{81^{k+{\frac {1}{2}}}}},\quad j_{6D}\left({\sqrt {\frac {-1}{2}}}\right)=81}
Define
s
7
A
(
k
)
=
∑
j
=
0
k
(
k
j
)
2
(
2
j
k
)
(
k
+
j
j
)
=
1
,
4
,
48
,
760
,
13840
,
…
{\displaystyle s_{7A}(k)=\sum _{j=0}^{k}{\binom {k}{j}}^{2}{\binom {2j}{k}}{\binom {k+j}{j}}=1,4,48,760,13840,\ldots }
(OEIS : A183204 )
and,
j
7
A
(
τ
)
=
(
(
η
(
τ
)
η
(
7
τ
)
)
2
+
7
(
η
(
7
τ
)
η
(
τ
)
)
2
)
2
=
1
q
+
10
+
51
q
+
204
q
2
+
681
q
3
+
⋯
j
7
B
(
τ
)
=
(
η
(
τ
)
η
(
7
τ
)
)
4
=
1
q
−
4
+
2
q
+
8
q
2
−
5
q
3
−
4
q
4
−
10
q
5
+
⋯
{\displaystyle {\begin{aligned}j_{7A}(\tau )&=\left(\left({\frac {\eta (\tau )}{\eta (7\tau )}}\right)^{2}+7\left({\frac {\eta (7\tau )}{\eta (\tau )}}\right)^{2}\right)^{2}={\frac {1}{q}}+10+51q+204q^{2}+681q^{3}+\cdots \\j_{7B}(\tau )&=\left({\frac {\eta (\tau )}{\eta (7\tau )}}\right)^{4}={\frac {1}{q}}-4+2q+8q^{2}-5q^{3}-4q^{4}-10q^{5}+\cdots \end{aligned}}}
Example:
1
π
=
7
22
3
∑
k
=
0
∞
s
7
A
(
k
)
11895
k
+
1286
(
−
22
3
)
k
,
j
7
A
(
7
+
−
427
14
)
=
−
22
3
+
1
=
−
(
39
7
)
2
=
−
10647
{\displaystyle {\frac {1}{\pi }}={\frac {\sqrt {7}}{22^{3}}}\,\sum _{k=0}^{\infty }s_{7A}(k)\,{\frac {11895k+1286}{\left(-22^{3}\right)^{k}}},\quad j_{7A}\left({\frac {7+{\sqrt {-427}}}{14}}\right)=-22^{3}+1=-\left(39{\sqrt {7}}\right)^{2}=-10647}
No pi formula has yet been found using j 7B .
Levels
2
,
4
,
8
{\displaystyle 2,4,8}
are related since they are just powers of the same prime. Define,
j
4
B
(
τ
)
=
j
2
A
(
2
τ
)
=
(
j
4
D
(
τ
)
+
8
j
4
D
(
τ
)
)
2
−
16
=
(
j
8
A
(
τ
)
−
4
j
8
A
(
τ
)
)
2
=
(
j
8
A
′
(
τ
)
+
4
j
8
A
′
(
τ
)
)
2
=
(
η
(
2
τ
)
η
(
4
τ
)
)
12
+
2
6
(
η
(
4
τ
)
η
(
2
τ
)
)
12
=
1
q
+
52
q
+
834
q
3
+
4760
q
5
+
24703
q
7
+
⋯
j
4
D
(
τ
)
=
(
η
(
2
τ
)
η
(
4
τ
)
)
12
=
1
q
−
12
q
+
66
q
3
−
232
q
5
+
639
q
7
−
1596
q
9
+
⋯
j
8
A
(
τ
)
=
(
η
(
2
τ
)
η
(
4
τ
)
η
(
τ
)
η
(
8
τ
)
)
8
=
1
q
+
8
+
36
q
+
128
q
2
+
386
q
3
+
1024
q
4
+
⋯
j
8
A
′
(
τ
)
=
(
η
(
τ
)
η
2
(
4
τ
)
η
2
(
2
τ
)
η
(
8
τ
)
)
8
=
1
q
−
8
+
36
q
−
128
q
2
+
386
q
3
−
1024
q
4
+
⋯
j
8
B
(
τ
)
=
(
η
2
(
4
τ
)
η
(
2
τ
)
η
(
8
τ
)
)
12
=
j
4
A
(
2
τ
)
=
1
q
+
12
q
+
66
q
3
+
232
q
5
+
639
q
7
+
⋯
j
8
E
(
τ
)
=
(
η
3
(
4
τ
)
η
(
2
τ
)
η
2
(
8
τ
)
)
4
=
1
q
+
4
q
+
2
q
3
−
8
q
5
−
q
7
+
20
q
9
−
2
q
11
−
40
q
13
+
⋯
{\displaystyle {\begin{aligned}j_{4B}(\tau )&={\sqrt {j_{2A}(2\tau )}}=\left({\sqrt {j_{4D}(\tau )}}+{\frac {8}{\sqrt {j_{4D}(\tau )}}}\right)^{2}-16=\left({\sqrt {j_{8A}(\tau )}}-{\frac {4}{\sqrt {j_{8A}(\tau )}}}\right)^{2}=\left({\sqrt {j_{8A'}(\tau )}}+{\frac {4}{\sqrt {j_{8A'}(\tau )}}}\right)^{2}\\&=\left({\frac {\eta (2\tau )}{\eta (4\tau )}}\right)^{12}+2^{6}\left({\frac {\eta (4\tau )}{\eta (2\tau )}}\right)^{12}={\frac {1}{q}}+52q+834q^{3}+4760q^{5}+24703q^{7}+\cdots \\j_{4D}(\tau )&=\left({\frac {\eta (2\tau )}{\eta (4\tau )}}\right)^{12}={\frac {1}{q}}-12q+66q^{3}-232q^{5}+639q^{7}-1596q^{9}+\cdots \\j_{8A}(\tau )&=\left({\frac {\eta (2\tau )\,\eta (4\tau )}{\eta (\tau )\,\eta (8\tau )}}\right)^{8}={\frac {1}{q}}+8+36q+128q^{2}+386q^{3}+1024q^{4}+\cdots \\j_{8A'}(\tau )&=\left({\frac {\eta (\tau )\,\eta ^{2}(4\tau )}{\eta ^{2}(2\tau )\,\eta (8\tau )}}\right)^{8}={\frac {1}{q}}-8+36q-128q^{2}+386q^{3}-1024q^{4}+\cdots \\j_{8B}(\tau )&=\left({\frac {\eta ^{2}(4\tau )}{\eta (2\tau )\,\eta (8\tau )}}\right)^{12}={\sqrt {j_{4A}(2\tau )}}={\frac {1}{q}}+12q+66q^{3}+232q^{5}+639q^{7}+\cdots \\j_{8E}(\tau )&=\left({\frac {\eta ^{3}(4\tau )}{\eta (2\tau )\,\eta ^{2}(8\tau )}}\right)^{4}={\frac {1}{q}}+4q+2q^{3}-8q^{5}-q^{7}+20q^{9}-2q^{11}-40q^{13}+\cdots \end{aligned}}}
Just like for level 6, five of these functions have a linear relationship,
j
4
B
−
j
4
D
−
j
8
A
−
j
8
A
′
+
2
j
8
E
=
0
{\displaystyle j_{4B}-j_{4D}-j_{8A}-j_{8A'}+2j_{8E}=0}
But this is not one of the nine Conway-Norton-Atkin linear dependencies since
j
8
A
′
{\displaystyle j_{8A'}}
is not a moonshine function. However, it is related to one as,
j
8
A
′
(
τ
)
=
−
j
8
A
(
τ
+
1
2
)
{\displaystyle j_{8A'}(\tau )=-j_{8A}{\Big (}\tau +{\tfrac {1}{2}}{\Big )}}
s
4
B
(
k
)
=
(
2
k
k
)
∑
j
=
0
k
4
k
−
2
j
(
k
2
j
)
(
2
j
j
)
2
=
(
2
k
k
)
∑
j
=
0
k
(
k
j
)
(
2
k
−
2
j
k
−
j
)
(
2
j
j
)
=
1
,
8
,
120
,
2240
,
47320
,
…
{\displaystyle s_{4B}(k)={\binom {2k}{k}}\sum _{j=0}^{k}4^{k-2j}{\binom {k}{2j}}{\binom {2j}{j}}^{2}={\binom {2k}{k}}\sum _{j=0}^{k}{\binom {k}{j}}{\binom {2k-2j}{k-j}}{\binom {2j}{j}}=1,8,120,2240,47320,\ldots }
s
4
D
(
k
)
=
(
2
k
k
)
3
=
1
,
8
,
216
,
8000
,
343000
,
…
{\displaystyle s_{4D}(k)={\binom {2k}{k}}^{3}=1,8,216,8000,343000,\ldots }
s
8
A
(
k
)
=
∑
j
=
0
k
(
k
j
)
2
(
2
j
k
)
2
=
1
,
4
,
40
,
544
,
8536
,
…
{\displaystyle s_{8A}(k)=\sum _{j=0}^{k}{\binom {k}{j}}^{2}{\binom {2j}{k}}^{2}=1,4,40,544,8536,\ldots }
(OEIS : A290575 )
s
8
B
(
k
)
=
∑
j
=
0
k
(
2
j
j
)
3
(
2
k
−
4
j
k
−
2
j
)
=
1
,
2
,
14
,
36
,
334
,
…
{\displaystyle s_{8B}(k)=\sum _{j=0}^{k}{\binom {2j}{j}}^{3}{\binom {2k-4j}{k-2j}}=1,2,14,36,334,\ldots }
where the first is the product[ 2] of the central binomial coefficient and a sequence related to an arithmetic-geometric mean (OEIS : A081085 ).
The modular functions can be related as,
±
∑
k
=
0
∞
s
4
B
(
k
)
1
(
j
4
B
(
τ
)
+
16
)
k
+
1
2
=
∑
k
=
0
∞
s
4
D
(
k
)
1
(
j
4
D
(
τ
)
)
2
k
+
1
2
=
∑
k
=
0
∞
s
8
A
(
k
)
1
(
j
8
A
(
τ
)
)
k
+
1
2
=
∑
k
=
0
∞
(
−
1
)
k
s
8
A
(
k
)
1
(
j
8
A
′
(
τ
)
)
k
+
1
2
{\displaystyle \pm \sum _{k=0}^{\infty }s_{4B}(k)\,{\frac {1}{\left(j_{4B}(\tau )+16\right)^{k+{\frac {1}{2}}}}}=\sum _{k=0}^{\infty }s_{4D}(k)\,{\frac {1}{\left(j_{4D}(\tau )\right)^{2k+{\frac {1}{2}}}}}=\sum _{k=0}^{\infty }s_{8A}(k)\,{\frac {1}{\left(j_{8A}(\tau )\right)^{k+{\frac {1}{2}}}}}=\sum _{k=0}^{\infty }(-1)^{k}s_{8A}(k)\,{\frac {1}{\left(j_{8A'}(\tau )\right)^{k+{\frac {1}{2}}}}}}
if the series converges and signs chosen appropriately. Note also the different exponent of
(
j
4
D
(
τ
)
)
2
k
+
1
2
{\displaystyle \left(j_{4D}(\tau )\right)^{2k+{\frac {1}{2}}}}
from the others.
Recall that
j
2
A
(
−
58
2
)
=
396
4
,
{\displaystyle j_{2A}\left({\tfrac {\sqrt {-58}}{2}}\right)=396^{4},}
while
j
4
B
(
−
58
4
)
=
396
2
{\displaystyle j_{4B}\left({\tfrac {\sqrt {-58}}{4}}\right)=396^{2}}
. Hence,
1
π
=
2
2
13
∑
k
=
0
∞
s
4
B
(
k
)
70
⋅
99
k
+
579
(
396
2
+
16
)
k
+
1
2
,
j
4
B
(
−
58
4
)
=
396
2
{\displaystyle {\frac {1}{\pi }}={\frac {2{\sqrt {2}}}{13}}\,\sum _{k=0}^{\infty }s_{4B}(k)\,{\frac {70\cdot 99\,k+579}{\left(396^{2}+16\right)^{k+{\frac {1}{2}}}}},\qquad j_{4B}\left({\frac {\sqrt {-58}}{4}}\right)=396^{2}}
1
π
=
2
2
∑
k
=
0
∞
s
8
A
(
k
)
−
222
+
70
58
(
k
+
1
2
)
(
4
(
99
+
13
58
)
2
)
k
+
1
2
,
j
8
A
(
−
58
4
)
=
4
(
99
+
13
58
)
2
=
4
U
58
2
{\displaystyle {\frac {1}{\pi }}=2{\sqrt {2}}\,\sum _{k=0}^{\infty }s_{8A}(k)\,{\frac {-222+70{\sqrt {58}}\,\left(k+{\frac {1}{2}}\right)}{\left(4\left(99+13{\sqrt {58}}\right)^{2}\right)^{k+{\frac {1}{2}}}}},\qquad j_{8A}\left({\frac {\sqrt {-58}}{4}}\right)=4\left(99+13{\sqrt {58}}\right)^{2}=4U_{58}^{2}}
1
π
=
2
∑
k
=
0
∞
(
−
1
)
k
s
8
A
(
k
)
−
222
2
+
13
×
58
(
k
+
1
2
)
(
4
(
1
+
2
)
12
)
k
+
1
2
,
j
8
A
′
(
−
58
4
)
=
4
(
1
+
2
)
12
=
4
U
2
12
,
{\displaystyle {\frac {1}{\pi }}=2\,\sum _{k=0}^{\infty }(-1)^{k}s_{8A}(k)\,{\frac {-222{\sqrt {2}}+13\times 58\,\left(k+{\frac {1}{2}}\right)}{\left(4\left(1+{\sqrt {2}}\right)^{12}\right)^{k+{\frac {1}{2}}}}},\qquad j_{8A'}\left({\frac {\sqrt {-58}}{4}}\right)=4\left(1+{\sqrt {2}}\right)^{12}=4U_{2}^{12},}
For another level 8 example,
1
π
=
1
16
3
5
∑
k
=
0
∞
s
8
B
(
k
)
210
k
+
43
(
64
)
k
+
1
2
,
j
8
B
(
−
7
4
)
=
2
6
=
64
{\displaystyle {\frac {1}{\pi }}={\frac {1}{16}}{\sqrt {\frac {3}{5}}}\,\sum _{k=0}^{\infty }s_{8B}(k)\,{\frac {210k+43}{(64)^{k+{\frac {1}{2}}}}},\qquad j_{8B}\left({\frac {\sqrt {-7}}{4}}\right)=2^{6}=64}
Define,
j
3
C
(
τ
)
=
(
j
(
3
τ
)
)
1
3
=
−
6
+
(
η
2
(
3
τ
)
η
(
τ
)
η
(
9
τ
)
)
6
−
27
(
η
(
τ
)
η
(
9
τ
)
η
2
(
3
τ
)
)
6
=
1
q
+
248
q
2
+
4124
q
5
+
34752
q
8
+
⋯
j
9
A
(
τ
)
=
(
η
2
(
3
τ
)
η
(
τ
)
η
(
9
τ
)
)
6
=
1
q
+
6
+
27
q
+
86
q
2
+
243
q
3
+
594
q
4
+
⋯
{\displaystyle {\begin{aligned}j_{3C}(\tau )&=\left(j(3\tau )\right)^{\frac {1}{3}}=-6+\left({\frac {\eta ^{2}(3\tau )}{\eta (\tau )\,\eta (9\tau )}}\right)^{6}-27\left({\frac {\eta (\tau )\,\eta (9\tau )}{\eta ^{2}(3\tau )}}\right)^{6}={\frac {1}{q}}+248q^{2}+4124q^{5}+34752q^{8}+\cdots \\j_{9A}(\tau )&=\left({\frac {\eta ^{2}(3\tau )}{\eta (\tau )\,\eta (9\tau )}}\right)^{6}={\frac {1}{q}}+6+27q+86q^{2}+243q^{3}+594q^{4}+\cdots \\\end{aligned}}}
The expansion of the first is the McKay–Thompson series of class 3C (and related to the cube root of the j-function ), while the second is that of class 9A. Let,
s
3
C
(
k
)
=
(
2
k
k
)
∑
j
=
0
k
(
−
3
)
k
−
3
j
(
k
j
)
(
k
−
j
j
)
(
k
−
2
j
j
)
=
(
2
k
k
)
∑
j
=
0
k
(
−
3
)
k
−
3
j
(
k
3
j
)
(
2
j
j
)
(
3
j
j
)
=
1
,
−
6
,
54
,
−
420
,
630
,
…
{\displaystyle s_{3C}(k)={\binom {2k}{k}}\sum _{j=0}^{k}(-3)^{k-3j}{\binom {k}{j}}{\binom {k-j}{j}}{\binom {k-2j}{j}}={\binom {2k}{k}}\sum _{j=0}^{k}(-3)^{k-3j}{\binom {k}{3j}}{\binom {2j}{j}}{\binom {3j}{j}}=1,-6,54,-420,630,\ldots }
s
9
A
(
k
)
=
∑
j
=
0
k
(
k
j
)
2
∑
m
=
0
j
(
k
m
)
(
j
m
)
(
j
+
m
k
)
=
1
,
3
,
27
,
309
,
4059
,
…
{\displaystyle s_{9A}(k)=\sum _{j=0}^{k}{\binom {k}{j}}^{2}\sum _{m=0}^{j}{\binom {k}{m}}{\binom {j}{m}}{\binom {j+m}{k}}=1,3,27,309,4059,\ldots }
where the first is the product of the central binomial coefficients and OEIS : A006077 (though with different signs).
Examples:
1
π
=
−
i
9
∑
k
=
0
∞
s
3
C
(
k
)
602
k
+
85
(
−
960
−
12
)
k
+
1
2
,
j
3
C
(
3
+
−
43
6
)
=
−
960
{\displaystyle {\frac {1}{\pi }}={\frac {-{\boldsymbol {i}}}{9}}\sum _{k=0}^{\infty }s_{3C}(k)\,{\frac {602k+85}{\left(-960-12\right)^{k+{\frac {1}{2}}}}},\quad j_{3C}\left({\frac {3+{\sqrt {-43}}}{6}}\right)=-960}
1
π
=
6
i
∑
k
=
0
∞
s
9
A
(
k
)
4
−
129
(
k
+
1
2
)
(
−
3
3
U
129
)
k
+
1
2
,
j
9
A
(
3
+
−
43
6
)
=
−
3
3
(
53
3
+
14
43
)
=
−
3
3
U
129
{\displaystyle {\frac {1}{\pi }}=6\,{\boldsymbol {i}}\,\sum _{k=0}^{\infty }s_{9A}(k)\,{\frac {4-{\sqrt {129}}\,\left(k+{\frac {1}{2}}\right)}{\left(-3{\sqrt {3U_{129}}}\right)^{k+{\frac {1}{2}}}}},\quad j_{9A}\left({\frac {3+{\sqrt {-43}}}{6}}\right)=-3{\sqrt {3}}\left(53{\sqrt {3}}+14{\sqrt {43}}\right)=-3{\sqrt {3U_{129}}}}
Define,
j
10
A
(
τ
)
=
(
j
10
D
(
τ
)
−
1
j
10
D
(
τ
)
)
2
=
(
j
6
B
(
τ
)
+
4
j
10
B
(
τ
)
)
2
=
(
j
10
C
(
τ
)
+
5
j
10
C
(
τ
)
)
2
−
4
=
1
q
+
4
+
22
q
+
56
q
2
+
⋯
{\displaystyle {\begin{aligned}j_{10A}(\tau )&=\left({\sqrt {j_{10D}(\tau )}}-{\frac {1}{\sqrt {j_{10D}(\tau )}}}\right)^{2}=\left({\sqrt {j_{6B}(\tau )}}+{\frac {4}{\sqrt {j_{10B}(\tau )}}}\right)^{2}=\left({\sqrt {j_{10C}(\tau )}}+{\frac {5}{\sqrt {j_{10C}(\tau )}}}\right)^{2}-4={\frac {1}{q}}+4+22q+56q^{2}+\cdots \end{aligned}}}
j
10
B
(
τ
)
=
(
η
(
τ
)
η
(
5
τ
)
η
(
2
τ
)
η
(
10
τ
)
)
4
=
1
q
−
4
+
6
q
−
8
q
2
+
17
q
3
−
32
q
4
+
⋯
{\displaystyle {\begin{aligned}j_{10B}(\tau )&=\left({\frac {\eta (\tau )\eta (5\tau )}{\eta (2\tau )\eta (10\tau )}}\right)^{4}={\frac {1}{q}}-4+6q-8q^{2}+17q^{3}-32q^{4}+\cdots \end{aligned}}}
j
10
C
(
τ
)
=
(
η
(
τ
)
η
(
2
τ
)
η
(
5
τ
)
η
(
10
τ
)
)
2
=
1
q
−
2
−
3
q
+
6
q
2
+
2
q
3
+
2
q
4
+
⋯
{\displaystyle {\begin{aligned}j_{10C}(\tau )&=\left({\frac {\eta (\tau )\eta (2\tau )}{\eta (5\tau )\eta (10\tau )}}\right)^{2}={\frac {1}{q}}-2-3q+6q^{2}+2q^{3}+2q^{4}+\cdots \end{aligned}}}
j
10
D
(
τ
)
=
(
η
(
2
τ
)
η
(
5
τ
)
η
(
τ
)
η
(
10
τ
)
)
6
=
1
q
+
6
+
21
q
+
62
q
2
+
162
q
3
+
⋯
{\displaystyle {\begin{aligned}j_{10D}(\tau )&=\left({\frac {\eta (2\tau )\eta (5\tau )}{\eta (\tau )\eta (10\tau )}}\right)^{6}={\frac {1}{q}}+6+21q+62q^{2}+162q^{3}+\cdots \end{aligned}}}
j
10
E
(
τ
)
=
(
η
(
2
τ
)
η
5
(
5
τ
)
η
(
τ
)
η
5
(
10
τ
)
)
=
1
q
+
1
+
q
+
2
q
2
+
2
q
3
−
2
q
4
+
⋯
{\displaystyle {\begin{aligned}j_{10E}(\tau )&=\left({\frac {\eta (2\tau )\eta ^{5}(5\tau )}{\eta (\tau )\eta ^{5}(10\tau )}}\right)={\frac {1}{q}}+1+q+2q^{2}+2q^{3}-2q^{4}+\cdots \end{aligned}}}
Just like
j
6
A
{\displaystyle j_{6A}}
, the function
j
10
A
{\displaystyle j_{10A}}
is a square or a near-square of the others. Furthermore, there are also linear relations between these,
T
10
A
−
T
10
B
−
T
10
C
−
T
10
D
+
2
T
10
E
=
0
{\displaystyle T_{10A}-T_{10B}-T_{10C}-T_{10D}+2T_{10E}=0}
or using the above eta quotients j n ,
j
10
A
−
j
10
B
−
j
10
C
−
j
10
D
+
2
j
10
E
=
6
{\displaystyle j_{10A}-j_{10B}-j_{10C}-j_{10D}+2j_{10E}=6}
Let,
β
1
(
k
)
=
∑
j
=
0
k
(
k
j
)
4
=
1
,
2
,
18
,
164
,
1810
,
…
{\displaystyle \beta _{1}(k)=\sum _{j=0}^{k}{\binom {k}{j}}^{4}=1,2,18,164,1810,\ldots }
(OEIS : A005260 , labeled as s 10 in Cooper's paper)
β
2
(
k
)
=
(
2
k
k
)
∑
j
=
0
k
(
2
j
j
)
−
1
(
k
j
)
∑
m
=
0
j
(
j
m
)
4
=
1
,
4
,
36
,
424
,
5716
,
…
{\displaystyle \beta _{2}(k)={\binom {2k}{k}}\sum _{j=0}^{k}{\binom {2j}{j}}^{-1}{\binom {k}{j}}\sum _{m=0}^{j}{\binom {j}{m}}^{4}=1,4,36,424,5716,\ldots }
β
3
(
k
)
=
(
2
k
k
)
∑
j
=
0
k
(
2
j
j
)
−
1
(
k
j
)
(
−
4
)
k
−
j
∑
m
=
0
j
(
j
m
)
4
=
1
,
−
6
,
66
,
−
876
,
12786
,
…
{\displaystyle \beta _{3}(k)={\binom {2k}{k}}\sum _{j=0}^{k}{\binom {2j}{j}}^{-1}{\binom {k}{j}}(-4)^{k-j}\sum _{m=0}^{j}{\binom {j}{m}}^{4}=1,-6,66,-876,12786,\ldots }
their complements,
β
2
′
(
k
)
=
(
2
k
k
)
∑
j
=
0
k
(
2
j
j
)
−
1
(
k
j
)
(
−
1
)
k
−
j
∑
m
=
0
j
(
j
m
)
4
=
1
,
0
,
12
,
24
,
564
,
2784
,
…
{\displaystyle \beta _{2}'(k)={\binom {2k}{k}}\sum _{j=0}^{k}{\binom {2j}{j}}^{-1}{\binom {k}{j}}(-1)^{k-j}\sum _{m=0}^{j}{\binom {j}{m}}^{4}=1,0,12,24,564,2784,\ldots }
β
3
′
(
k
)
=
(
2
k
k
)
∑
j
=
0
k
(
2
j
j
)
−
1
(
k
j
)
(
4
)
k
−
j
∑
m
=
0
j
(
j
m
)
4
=
1
,
10
,
162
,
3124
,
66994
,
…
{\displaystyle \beta _{3}'(k)={\binom {2k}{k}}\sum _{j=0}^{k}{\binom {2j}{j}}^{-1}{\binom {k}{j}}(4)^{k-j}\sum _{m=0}^{j}{\binom {j}{m}}^{4}=1,10,162,3124,66994,\ldots }
and,
s
10
B
(
k
)
=
1
,
−
2
,
10
,
−
68
,
514
,
−
4100
,
33940
,
…
{\displaystyle s_{10B}(k)=1,-2,10,-68,514,-4100,33940,\ldots }
s
10
C
(
k
)
=
1
,
−
1
,
1
,
−
1
,
1
,
23
,
−
263
,
1343
,
−
2303
,
…
{\displaystyle s_{10C}(k)=1,-1,1,-1,1,23,-263,1343,-2303,\ldots }
s
10
D
(
k
)
=
1
,
3
,
25
,
267
,
3249
,
42795
,
594145
,
…
{\displaystyle s_{10D}(k)=1,3,25,267,3249,42795,594145,\ldots }
though closed forms are not yet known for the last three sequences.
The modular functions can be related as,[ 15]
U
=
∑
k
=
0
∞
β
1
(
k
)
1
(
j
10
A
(
τ
)
)
k
+
1
2
=
∑
k
=
0
∞
β
2
(
k
)
1
(
j
10
A
(
τ
)
+
4
)
k
+
1
2
=
∑
k
=
0
∞
β
3
(
k
)
1
(
j
10
A
(
τ
)
−
16
)
k
+
1
2
{\displaystyle U=\sum _{k=0}^{\infty }\beta _{1}(k)\,{\frac {1}{\left(j_{10A}(\tau )\right)^{k+{\frac {1}{2}}}}}=\sum _{k=0}^{\infty }\beta _{2}(k)\,{\frac {1}{\left(j_{10A}(\tau )+4\right)^{k+{\frac {1}{2}}}}}=\sum _{k=0}^{\infty }\beta _{3}(k)\,{\frac {1}{\left(j_{10A}(\tau )-16\right)^{k+{\frac {1}{2}}}}}}
V
=
∑
k
=
0
∞
s
10
B
(
k
)
1
(
j
10
B
(
τ
)
)
k
+
1
2
=
∑
k
=
0
∞
s
10
C
(
k
)
1
(
j
10
C
(
τ
)
)
k
+
1
2
=
∑
k
=
0
∞
s
10
D
(
k
)
1
(
j
10
D
(
τ
)
)
k
+
1
2
{\displaystyle V=\sum _{k=0}^{\infty }s_{10B}(k)\,{\frac {1}{\left(j_{10B}(\tau )\right)^{k+{\frac {1}{2}}}}}=\sum _{k=0}^{\infty }s_{10C}(k)\,{\frac {1}{\left(j_{10C}(\tau )\right)^{k+{\frac {1}{2}}}}}=\sum _{k=0}^{\infty }s_{10D}(k)\,{\frac {1}{\left(j_{10D}(\tau )\right)^{k+{\frac {1}{2}}}}}}
if the series converges. In fact, it can also be observed that,
U
=
V
=
∑
k
=
0
∞
β
2
′
(
k
)
1
(
j
10
A
(
τ
)
−
4
)
k
+
1
2
=
∑
k
=
0
∞
β
3
′
(
k
)
1
(
j
10
A
(
τ
)
+
16
)
k
+
1
2
{\displaystyle U=V=\sum _{k=0}^{\infty }\beta _{2}'(k)\,{\frac {1}{\left(j_{10A}(\tau )-4\right)^{k+{\frac {1}{2}}}}}=\sum _{k=0}^{\infty }\beta _{3}'(k)\,{\frac {1}{\left(j_{10A}(\tau )+16\right)^{k+{\frac {1}{2}}}}}}
Since the exponent has a fractional part, the sign of the square root must be chosen appropriately though it is less an issue when j n is positive.
Just like level 6, the level 10 function j 10A can be used in three ways. Starting with,
j
10
A
(
−
19
10
)
=
76
2
=
5776
{\displaystyle j_{10A}\left({\sqrt {\frac {-19}{10}}}\right)=76^{2}=5776}
and noting that
5
⋅
19
=
95
{\displaystyle 5\cdot 19=95}
then,
1
π
=
5
95
∑
k
=
0
∞
β
1
(
k
)
408
k
+
47
(
76
2
)
k
+
1
2
1
π
=
1
17
95
∑
k
=
0
∞
β
2
(
k
)
19
⋅
1824
k
+
3983
(
76
2
+
4
)
k
+
1
2
1
π
=
1
6
95
∑
k
=
0
∞
β
3
(
k
)
19
⋅
646
k
+
1427
(
76
2
−
16
)
k
+
1
2
{\displaystyle {\begin{aligned}{\frac {1}{\pi }}&={\frac {5}{\sqrt {95}}}\,\sum _{k=0}^{\infty }\beta _{1}(k)\,{\frac {408k+47}{\left(76^{2}\right)^{k+{\frac {1}{2}}}}}\\{\frac {1}{\pi }}&={\frac {1}{17{\sqrt {95}}}}\,\sum _{k=0}^{\infty }\beta _{2}(k)\,{\frac {19\cdot 1824k+3983}{\left(76^{2}+4\right)^{k+{\frac {1}{2}}}}}\\{\frac {1}{\pi }}&={\frac {1}{6{\sqrt {95}}}}\,\,\sum _{k=0}^{\infty }\beta _{3}(k)\,\,{\frac {19\cdot 646k+1427}{\left(76^{2}-16\right)^{k+{\frac {1}{2}}}}}\\\end{aligned}}}
as well as,
1
π
=
5
481
95
∑
k
=
0
∞
β
2
′
(
k
)
19
⋅
10336
k
+
22675
(
76
2
−
4
)
k
+
1
2
1
π
=
5
181
95
∑
k
=
0
∞
β
3
′
(
k
)
19
⋅
3876
k
+
8405
(
76
2
+
16
)
k
+
1
2
{\displaystyle {\begin{aligned}{\frac {1}{\pi }}&={\frac {5}{481{\sqrt {95}}}}\,\sum _{k=0}^{\infty }\beta _{2}'(k)\,{\frac {19\cdot 10336k+22675}{\left(76^{2}-4\right)^{k+{\frac {1}{2}}}}}\\{\frac {1}{\pi }}&={\frac {5}{181{\sqrt {95}}}}\,\sum _{k=0}^{\infty }\beta _{3}'(k)\,{\frac {19\cdot 3876k+8405}{\left(76^{2}+16\right)^{k+{\frac {1}{2}}}}}\end{aligned}}}
though the ones using the complements do not yet have a rigorous proof. A conjectured formula using one of the last three sequences is,
1
π
=
i
5
∑
k
=
0
∞
s
10
C
(
k
)
10
k
+
3
(
−
5
2
)
k
+
1
2
,
j
10
C
(
1
+
i
2
)
=
−
5
2
{\displaystyle {\frac {1}{\pi }}={\frac {\boldsymbol {i}}{\sqrt {5}}}\,\sum _{k=0}^{\infty }s_{10C}(k){\frac {10k+3}{\left(-5^{2}\right)^{k+{\frac {1}{2}}}}},\quad j_{10C}\left({\frac {1+\,{\boldsymbol {i}}}{2}}\right)=-5^{2}}
which implies there might be examples for all sequences of level 10.
Define the McKay–Thompson series of class 11A,
j
11
A
(
τ
)
=
(
1
+
3
F
)
3
+
(
1
F
+
3
F
)
2
=
1
q
+
6
+
17
q
+
46
q
2
+
116
q
3
+
⋯
{\displaystyle j_{11A}(\tau )=(1+3F)^{3}+\left({\frac {1}{\sqrt {F}}}+3{\sqrt {F}}\right)^{2}={\frac {1}{q}}+6+17q+46q^{2}+116q^{3}+\cdots }
or sequence (OEIS : A128525 ) and where,
F
=
η
(
3
τ
)
η
(
33
τ
)
η
(
τ
)
η
(
11
τ
)
{\displaystyle F={\frac {\eta (3\tau )\,\eta (33\tau )}{\eta (\tau )\,\eta (11\tau )}}}
and,
s
11
A
(
k
)
=
1
,
4
,
28
,
268
,
3004
,
36784
,
476476
,
…
{\displaystyle s_{11A}(k)=1,4,28,268,3004,36784,476476,\ldots }
(OEIS : A284756 )
No closed form in terms of binomial coefficients is yet known for the sequence but it obeys the recurrence relation ,
(
k
+
1
)
3
s
k
+
1
=
2
(
2
k
+
1
)
(
5
k
2
+
5
k
+
2
)
s
k
−
8
k
(
7
k
2
+
1
)
s
k
−
1
+
22
k
(
k
−
1
)
(
2
k
−
1
)
s
k
−
2
{\displaystyle (k+1)^{3}s_{k+1}=2(2k+1)\left(5k^{2}+5k+2\right)s_{k}-8k\left(7k^{2}+1\right)s_{k-1}+22k(k-1)(2k-1)s_{k-2}}
with initial conditions s (0) = 1, s (1) = 4.
Example:[ 16]
1
π
=
i
22
∑
k
=
0
∞
s
11
A
(
k
)
221
k
+
67
(
−
44
)
k
+
1
2
,
j
11
A
(
1
+
−
17
11
2
)
=
−
44
{\displaystyle {\frac {1}{\pi }}={\frac {\boldsymbol {i}}{22}}\sum _{k=0}^{\infty }s_{11A}(k)\,{\frac {221k+67}{(-44)^{k+{\frac {1}{2}}}}},\quad j_{11A}\left({\frac {1+{\sqrt {\frac {-17}{11}}}}{2}}\right)=-44}
As pointed out by Cooper,[ 16] there are analogous sequences for certain higher levels.
R. Steiner found examples using Catalan numbers
C
k
{\displaystyle C_{k}}
,
1
π
=
∑
k
=
0
∞
(
2
C
k
−
n
)
2
(
4
z
)
k
+
(
4
2
n
−
3
−
(
4
n
−
3
)
z
)
16
k
z
∈
Z
,
n
≥
2
,
n
∈
N
{\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }\left(2C_{k-n}\right)^{2}{\frac {(4z)k+\left(4^{2n-3}-(4n-3)z\right)}{16^{k}}}\qquad z\in \mathbb {Z} ,\quad n\geq 2,\quad n\in \mathbb {N} }
and for this a modular form with a second periodic for k exists:
k
=
(
−
20
−
12
i
)
+
16
n
16
,
k
=
(
−
20
+
12
i
)
+
16
n
16
{\displaystyle k={\frac {(-20-12{\boldsymbol {i}})+16n}{16}},\qquad k={\frac {(-20+12{\boldsymbol {i}})+16n}{16}}}
Other similar series are
1
π
=
∑
k
=
0
∞
(
2
C
k
−
2
)
2
3
k
+
1
4
16
k
{\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }\left(2C_{k-2}\right)^{2}{\frac {3k+{\frac {1}{4}}}{16^{k}}}}
1
π
=
∑
k
=
0
∞
(
2
C
k
−
1
)
2
(
4
z
+
1
)
k
−
z
16
k
z
∈
Z
{\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }\left(2C_{k-1}\right)^{2}{\frac {(4z+1)k-z}{16^{k}}}\qquad z\in \mathbb {Z} }
1
π
=
∑
k
=
0
∞
(
2
C
k
−
1
)
2
−
1
k
+
1
2
16
k
{\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }\left(2C_{k-1}\right)^{2}{\frac {-1k+{\frac {1}{2}}}{16^{k}}}}
1
π
=
∑
k
=
0
∞
(
2
C
k
−
1
)
2
0
k
+
1
4
16
k
{\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }\left(2C_{k-1}\right)^{2}{\frac {0k+{\frac {1}{4}}}{16^{k}}}}
1
π
=
∑
k
=
0
∞
(
2
C
k
−
1
)
2
k
5
+
1
5
16
k
{\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }\left(2C_{k-1}\right)^{2}{\frac {{\frac {k}{5}}+{\frac {1}{5}}}{16^{k}}}}
1
π
=
∑
k
=
0
∞
(
2
C
k
−
1
)
2
k
3
+
1
6
16
k
{\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }\left(2C_{k-1}\right)^{2}{\frac {{\frac {k}{3}}+{\frac {1}{6}}}{16^{k}}}}
1
π
=
∑
k
=
0
∞
(
2
C
k
−
1
)
2
k
2
+
1
8
16
k
{\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }\left(2C_{k-1}\right)^{2}{\frac {{\frac {k}{2}}+{\frac {1}{8}}}{16^{k}}}}
1
π
=
∑
k
=
0
∞
(
2
C
k
−
1
)
2
2
k
−
1
4
16
k
{\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }\left(2C_{k-1}\right)^{2}{\frac {2k-{\frac {1}{4}}}{16^{k}}}}
1
π
=
∑
k
=
0
∞
(
2
C
k
−
1
)
2
3
k
−
1
2
16
k
{\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }\left(2C_{k-1}\right)^{2}{\frac {3k-{\frac {1}{2}}}{16^{k}}}}
1
π
=
∑
k
=
0
∞
(
2
C
k
)
2
k
16
+
1
16
16
k
{\displaystyle {\frac {1}{\pi }}=\sum _{k=0}^{\infty }\left(2C_{k}\right)^{2}{\frac {{\frac {k}{16}}+{\frac {1}{16}}}{16^{k}}}}
with the last (comments in OEIS : A013709 ) found by using a linear combination of higher parts of Wallis -Lambert series for
4
π
{\displaystyle {\tfrac {4}{\pi }}}
and Euler series for the circumference of an ellipse .
Using the definition of Catalan numbers with the gamma function the first and last for example give the identities
1
4
=
∑
k
=
0
∞
(
Γ
(
1
2
+
k
)
Γ
(
2
+
k
)
)
2
(
4
z
k
−
(
4
n
−
3
)
z
+
4
2
n
−
3
)
z
∈
Z
,
n
≥
2
,
n
∈
N
{\displaystyle {\frac {1}{4}}=\sum _{k=0}^{\infty }{\left({\frac {\Gamma ({\frac {1}{2}}+k)}{\Gamma (2+k)}}\right)}^{2}\left(4zk-(4n-3)z+4^{2n-3}\right)\qquad z\in \mathbb {Z} ,\quad n\geq 2,\quad n\in \mathbb {N} }
...
4
=
∑
k
=
0
∞
(
Γ
(
1
2
+
k
)
Γ
(
2
+
k
)
)
2
(
k
+
1
)
{\displaystyle 4=\sum _{k=0}^{\infty }{\left({\frac {\Gamma ({\frac {1}{2}}+k)}{\Gamma (2+k)}}\right)}^{2}(k+1)}
.
The last is also equivalent to,
1
π
=
1
4
∑
k
=
0
∞
(
2
k
k
)
2
k
+
1
1
16
k
{\displaystyle {\frac {1}{\pi }}={\frac {1}{4}}\sum _{k=0}^{\infty }{\frac {{\binom {2k}{k}}^{2}}{k+1}}\,{\frac {1}{16^{k}}}}
and is related to the fact that,
lim
k
→
∞
16
k
k
(
2
k
k
)
2
=
π
{\displaystyle \lim _{k\rightarrow \infty }{\frac {16^{k}}{k{\binom {2k}{k}}^{2}}}=\pi }
which is a consequence of Stirling's approximation .
^ a b Chan, Heng Huat; Chan, Song Heng; Liu, Zhiguo (2004). "Domb's numbers and Ramanujan–Sato type series for 1/π " . Advances in Mathematics . 186 (2): 396–410. doi :10.1016/j.aim.2003.07.012 .
^ a b c Almkvist, Gert; Guillera, Jesus (2013). "Ramanujan–Sato-Like Series". In Borwein, J.; Shparlinski, I.; Zudilin, W. (eds.). Number Theory and Related Fields . Springer Proceedings in Mathematics & Statistics. Vol. 43. New York: Springer. pp. 55–74. doi :10.1007/978-1-4614-6642-0_2 . ISBN 978-1-4614-6641-3 . S2CID 44875082 .
^ a b c Chan, H. H.; Cooper, S. (2012). "Rational analogues of Ramanujan's series for 1/π " (PDF) . Mathematical Proceedings of the Cambridge Philosophical Society . 153 (2): 361–383. doi :10.1017/S0305004112000254 . S2CID 76656590 . Archived from the original (PDF) on 2019-12-19.
^ Almkvist, G. (2012). "Some conjectured formulas for 1/π coming from polytopes, K3-surfaces and Moonshine". arXiv :1211.6563 [math.NT ].
^ Ramanujan, S. (1914). "Modular equations and approximations to π " . Quart. J. Math . 45 . Oxford: 350–372.
^ Chan; Tanigawa; Yang; Zudilin (2011). "New analogues of Clausen's identities arising from the theory of modular forms" . Advances in Mathematics . 228 (2): 1294–1314. doi :10.1016/j.aim.2011.06.011 . hdl :1959.13/934806 .
^ a b Sato, T. (2002). "Apéry numbers and Ramanujan's series for 1/π ". Abstract of a Talk Presented at the Annual Meeting of the Mathematical Society of Japan .
^ Chan, H.; Verrill, H. (2009). "The Apéry numbers, the Almkvist–Zudilin Numbers, and new series for 1/π" . Mathematical Research Letters . 16 (3): 405–420. doi :10.4310/MRL.2009.v16.n3.a3 .
^ a b Cooper, S. (2012). "Sporadic sequences, modular forms and new series for 1/π". Ramanujan Journal . 29 (1–3): 163–183. doi :10.1007/s11139-011-9357-3 . S2CID 122870693 .
^ a b Zagier, D. (2000). "Traces of Singular Moduli" (PDF) . pp. 15–16.
^ Chudnovsky, David V. ; Chudnovsky, Gregory V. (1989), "The Computation of Classical Constants", Proceedings of the National Academy of Sciences of the United States of America , 86 (21): 8178–8182, Bibcode :1989PNAS...86.8178C , doi :10.1073/pnas.86.21.8178 , ISSN 0027-8424 , JSTOR 34831 , PMC 298242 , PMID 16594075 .
^ Yee, Alexander; Kondo, Shigeru (2011), 10 Trillion Digits of Pi: A Case Study of summing Hypergeometric Series to high precision on Multicore Systems , Technical Report, Computer Science Department, University of Illinois, hdl :2142/28348 .
^ Borwein, J. M. ; Borwein, P. B. ; Bailey, D. H. (1989). "Ramanujan, modular equations, and approximations to pi; Or how to compute one billion digits of pi" (PDF) . Amer. Math. Monthly . 96 (3): 201–219. doi :10.1080/00029890.1989.11972169 .
^ Conway, J.; Norton, S. (1979). "Monstrous Moonshine". Bulletin of the London Mathematical Society . 11 (3): 308–339 [p. 319]. doi :10.1112/blms/11.3.308 .
^ S. Cooper, "Level 10 analogues of Ramanujan’s series for 1/π ", Theorem 4.3, p.85, J. Ramanujan Math. Soc. 27, No.1 (2012)
^ a b Cooper, S. (December 2013). "Ramanujan's theories of elliptic functions to alternative bases, and beyond" (PDF) . Askey 80 Conference .