Jump to content

Hyperlocomotion

From Wikipedia, the free encyclopedia

Hyperlocomotion, also known as locomotor hyperactivity, hyperactivity, or increased locomotor activity, is an effect of certain drugs in animals in which locomotor activity is increased.[1] It is induced by certain drugs like psychostimulants and NMDA receptor antagonists and is reversed by certain other drugs like antipsychotics and certain antidepressants.[1][2][3][4]

Drugs inducing and reversing hyperlocomotion

[edit]

Hyperlocomotion is an effect induced by dopamine releasing agents and psychostimulants like amphetamine and methamphetamine and by NMDA receptor antagonists and dissociative hallucinogens like dizocilpine (MK-801) and phencyclidine (PCP).[1][2][3][5] Stimulation of locomotor activity is thought to be mediated by increased signaling in the nucleus accumbens.[6][7]

Drug-induced hyperlocomotion can be reversed by various drugs, such as antipsychotics acting as dopamine D2 receptor antagonists.[1][3] Reversal of drug-induced hyperlocomotion has been used as an animal test of drug antipsychotic-like activity.[1][3] Amphetamines and NMDA receptor antagonists likewise induce stereotypies, and reversal of these stereotypies is also employed as a test of drug antipsychotic-like activity.[1][3]

Certain antidepressants, including the dopamine reuptake inhibitors amineptine, bupropion, and nomifensine, also increase spontaneous locomotor activity in animals.[4][8] Conversely, most other antidepressants do not do so, and instead often actually show behavioral sedation in this test.[4][6][9] The dopamine reuptake inhibitor cocaine increases locomotor activity similarly to amphetamines.[5] Atypical dopamine reuptake inhibitors like modafinil do not produce hyperlocomotion in animals.[5] Direct dopamine receptor agonists like apomorphine show biphasic effects, decreasing locomotor activity at low doses and increasing locomotor activity at high doses.[6]

Serotonin 5-HT2A receptor antagonists like volinanserin (MDL-100907) counteract the hyperactivity induced by amphetamine, cocaine, and NMDA receptor antagonists in animals.[10][11][12] Certain non-selective serotonin 5-HT2A receptor antagonists, like trazodone, have been found to decrease locomotor and behavioral activity and to inhibit amphetamine-induced hyperactivity in animals similarly.[13][14][15][16][4] In addition to serotonin 5-HT2A receptor antagonists, serotonin 5-HT2A receptor biased agonists that selectively activate the β-arrestin pathway but not the Gq pathway, like 25N-N1-Nap, have been found to antagonize PCP-induced locomotor hyperactivity in rodents.[10]

Certain serotonin releasing agents, like MDMA and MDAI, though notably not others, like chlorphentermine, fenfluramine, and MMAI,[17][18][19] induce locomotor hyperactivity in animals.[20][21][22][23] This is dependent on serotonin release allowed for by the serotonin transporter (SERT) and serotonin 5-HT2B receptor.[24][21][22][25][26] SERT knockout, pretreatment with serotonin reuptake inhibitors (which block MDMA-induced SERT-mediated serotonin release), or serotonin 5-HT2B receptor knockout (which likewise blocks MDMA-induced serotonin release) all completely block MDMA-induced locomotor hyperactivity.[24][21][22][25][26] In addition, locomotor hyperactivity produced by MDMA is partially attenuated by serotonin 5-HT1B receptor antagonism (or knockout)[24][27][28] or by serotonin 5-HT2A receptor antagonism.[29][30][31] The locomotor hyperactivity produced by MDMA is fully attenuated by combined serotonin 5-HT1B and 5-HT2A receptor antagonism.[30] Conversely, the serotonin 5-HT1A receptor is not involved in MDMA-induced hyperlocomotion.[21] Serotonin 5-HT2C receptor activation appears to inhibit MDMA-induced hyperlocomotion and antagonism of this receptor has been reported to markedly enhance the locomotor hyperactivity induced by MDMA.[31][30][32][33] Activation of the serotonin 5-HT2C receptor is known to strongly inhibit dopamine release in the mesolimbic pathway as well as inhibit dopamine release in the nigrostriatal and mesocortical pathways.[34][35][31][36] The reasons for the differences in locomotor activity with different serotonin releasing agents are unclear.[31]

Non-selective muscarinic acetylcholine receptor antagonists, or antimuscarinics, such as atropine, hyoscyamine, and scopolamine, produce robust hyperactivity in animals, but also produce deliriant effects such as amnesia and hallucinations in both animals and humans.[37][38]

Similar effects

[edit]

Other similar effects include stereotypy, exploratory behavior, climbing behavior, and jumping behavior.[39][2][3] Amphetamines induce stereotypies in addition to hyperlocomotion.[2][3] Apomorphine induces stereotypy and climbing behavior.[2] The dopamine precursor levodopa (L-DOPA) induces jumping behavior.[2] These effects can all be reversed by antipsychotics.[2]

See also

[edit]

References

[edit]
  1. ^ a b c d e f Castagné, Vincent; Moser, Paul C.; Porsolt, Roger D. (2009). "Preclinical Behavioral Models for Predicting Antipsychotic Activity". Advances in Pharmacology. Vol. 57. Elsevier. pp. 381–418. doi:10.1016/s1054-3589(08)57010-4. ISBN 978-0-12-378642-5. ISSN 1054-3589. PMID 20230767.
  2. ^ a b c d e f g Ayyar P, Ravinder JR (June 2023). "Animal models for the evaluation of antipsychotic agents". Fundam Clin Pharmacol. 37 (3): 447–460. doi:10.1111/fcp.12855. PMID 36410728.
  3. ^ a b c d e f g Yee BK, Singer P (October 2013). "A conceptual and practical guide to the behavioural evaluation of animal models of the symptomatology and therapy of schizophrenia". Cell Tissue Res. 354 (1): 221–246. doi:10.1007/s00441-013-1611-0. PMC 3791321. PMID 23579553.
  4. ^ a b c d Tucker JC, File SE (1986). "The effects of tricyclic and 'atypical' antidepressants on spontaneous locomotor activity in rodents". Neurosci Biobehav Rev. 10 (2): 115–121. doi:10.1016/0149-7634(86)90022-9. PMID 3737024.
  5. ^ a b c Nishino, Seiji; Kotorii, Nozomu (2016). "Modes of Action of Drugs Related to Narcolepsy: Pharmacology of Wake-Promoting Compounds and Anticataplectics". Narcolepsy. Cham: Springer International Publishing. pp. 307–329. doi:10.1007/978-3-319-23739-8_22. ISBN 978-3-319-23738-1.
  6. ^ a b c D'Aquila PS, Collu M, Gessa GL, Serra G (September 2000). "The role of dopamine in the mechanism of action of antidepressant drugs". Eur J Pharmacol. 405 (1–3): 365–373. doi:10.1016/s0014-2999(00)00566-5. PMID 11033341.
  7. ^ Ikemoto S, Panksepp J (December 1999). "The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking". Brain Res Brain Res Rev. 31 (1): 6–41. doi:10.1016/s0165-0173(99)00023-5. PMID 10611493.
  8. ^ Rampello, Liborio; Nicoletti, Ferdinando; Nicoletti, Francesco (2000). "Dopamine and Depression". CNS Drugs. 13 (1). Springer Science and Business Media LLC: 35–45. doi:10.2165/00023210-200013010-00004. ISSN 1172-7047.
  9. ^ File SE, Tucker JC (1986). "Behavioral consequences of antidepressant treatment in rodents". Neurosci Biobehav Rev. 10 (2): 123–134. doi:10.1016/0149-7634(86)90023-0. PMID 3526203.
  10. ^ a b Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, Hennessey JJ, Bock HA, Anderson EI, Sherwood AM, Morris H, de Klein R, Klein AK, Cuccurazzu B, Gamrat J, Fannana T, Zauhar R, Halberstadt AL, McCorvy JD (December 2023). "Identification of 5-HT2A receptor signaling pathways associated with psychedelic potential". Nat Commun. 14 (1): 8221. doi:10.1038/s41467-023-44016-1. PMC 10724237. PMID 38102107.
  11. ^ Carlsson ML (1995). "The selective 5-HT2A receptor antagonist MDL 100,907 counteracts the psychomotor stimulation ensuing manipulations with monoaminergic, glutamatergic or muscarinic neurotransmission in the mouse--implications for psychosis". J Neural Transm Gen Sect. 100 (3): 225–237. doi:10.1007/BF01276460. PMID 8748668.
  12. ^ O'Neill MF, Heron-Maxwell CL, Shaw G (June 1999). "5-HT2 receptor antagonism reduces hyperactivity induced by amphetamine, cocaine, and MK-801 but not D1 agonist C-APB". Pharmacol Biochem Behav. 63 (2): 237–243. doi:10.1016/s0091-3057(98)00240-8. PMID 10371652.
  13. ^ Ayd FJ, Settle EC (1982). "Trazodone: a novel, broad-spectrum antidepressant". Mod Probl Pharmacopsychiatry. Modern Trends in Pharmacopsychiatry. 18: 49–69. doi:10.1159/000406236. ISBN 978-3-8055-3428-4. PMID 6124884.
  14. ^ Rawls WN (January 1982). "Trazodone (Desyrel, Mead-Johnson Pharmaceutical Division)". Drug Intell Clin Pharm. 16 (1): 7–13. doi:10.1177/106002808201600102. PMID 7032872.
  15. ^ Al-Yassiri MM, Ankier SI, Bridges PK (June 1981). "Trazodone--a new antidepressant". Life Sci. 28 (22): 2449–2458. doi:10.1016/0024-3205(81)90586-5. PMID 7019617.
  16. ^ Baran L, Maj J, Rogóz Z, Skuza G (1979). "On the central antiserotonin action of trazodone". Pol J Pharmacol Pharm. 31 (1): 25–33. PMID 482164.
  17. ^ Rothman RB, Blough BE, Baumann MH (December 2006). "Dual dopamine-5-HT releasers: potential treatment agents for cocaine addiction". Trends Pharmacol Sci. 27 (12): 612–618. doi:10.1016/j.tips.2006.10.006. PMID 17056126.
  18. ^ Rothman RB, Baumann MH (August 2006). "Balance between dopamine and serotonin release modulates behavioral effects of amphetamine-type drugs". Ann N Y Acad Sci. 1074: 245–260. doi:10.1196/annals.1369.064. PMID 17105921.
  19. ^ Callaway CW, Wing LL, Nichols DE, Geyer MA (1993). "Suppression of behavioral activity by norfenfluramine and related drugs in rats is not mediated by serotonin release". Psychopharmacology (Berl). 111 (2): 169–178. doi:10.1007/BF02245519. PMID 7870948.
  20. ^ Callaway, C. W.; Nichols, D. E.; Paulus, M. P.; Geyer, M. A. (1991). "Serotonin Release is Responsible for the Locomotor Hyperactivity in Rats Induced by Derivatives of Amphetamine Related to MDMA". Serotonin: Molecular Biology, Receptors and Functional Effects. Basel: Birkhäuser Basel. p. 491–505. doi:10.1007/978-3-0348-7259-1_49. ISBN 978-3-0348-7261-4.
  21. ^ a b c d Stove CP, De Letter EA, Piette MH, Lambert WE (August 2010). "Mice in ecstasy: advanced animal models in the study of MDMA". Curr Pharm Biotechnol. 11 (5): 421–433. doi:10.2174/138920110791591508. PMID 20420576.
  22. ^ a b c Aguilar MA, García-Pardo MP, Parrott AC (January 2020). "Of mice and men on MDMA: A translational comparison of the neuropsychobiological effects of 3,4-methylenedioxymethamphetamine ('Ecstasy')". Brain Res. 1727: 146556. doi:10.1016/j.brainres.2019.146556. PMID 31734398.
  23. ^ Fantegrossi WE, Godlewski T, Karabenick RL, Stephens JM, Ullrich T, Rice KC, Woods JH (March 2003). "Pharmacological characterization of the effects of 3,4-methylenedioxymethamphetamine ("ecstasy") and its enantiomers on lethality, core temperature, and locomotor activity in singly housed and crowded mice". Psychopharmacology (Berl). 166 (3): 202–211. doi:10.1007/s00213-002-1261-5. PMID 12563544.
  24. ^ a b c Martinez-Price, Diana; Krebs-Thomson, Kirsten; Geyer, Mark (1 January 2002). "Behavioral Psychopharmacology of MDMA and MDMA-Like Drugs: A Review of Human and Animal Studies". Addiction Research & Theory. 10 (1). Informa UK Limited: 43–67. doi:10.1080/16066350290001704. ISSN 1606-6359.
  25. ^ a b Fox MA, Andrews AM, Wendland JR, Lesch KP, Holmes A, Murphy DL (December 2007). "A pharmacological analysis of mice with a targeted disruption of the serotonin transporter". Psychopharmacology (Berl). 195 (2): 147–166. doi:10.1007/s00213-007-0910-0. PMID 17712549.
  26. ^ a b Doly S, Valjent E, Setola V, Callebert J, Hervé D, Launay JM, Maroteaux L (March 2008). "Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro". J Neurosci. 28 (11): 2933–2940. doi:10.1523/JNEUROSCI.5723-07.2008. PMC 6670669. PMID 18337424.
  27. ^ Rempel NL, Callaway CW, Geyer MA (May 1993). "Serotonin1B receptor activation mimics behavioral effects of presynaptic serotonin release". Neuropsychopharmacology. 8 (3): 201–211. doi:10.1038/npp.1993.22. PMID 8099482.
  28. ^ Scearce-Levie K, Viswanathan SS, Hen R (January 1999). "Locomotor response to MDMA is attenuated in knockout mice lacking the 5-HT1B receptor". Psychopharmacology (Berl). 141 (2): 154–161. doi:10.1007/s002130050819. PMID 9952039.
  29. ^ Liechti ME, Vollenweider FX (December 2001). "Which neuroreceptors mediate the subjective effects of MDMA in humans? A summary of mechanistic studies". Hum Psychopharmacol. 16 (8): 589–598. doi:10.1002/hup.348. PMID 12404538.
  30. ^ a b c Bankson MG, Cunningham KA (January 2002). "Pharmacological studies of the acute effects of (+)-3,4-methylenedioxymethamphetamine on locomotor activity: role of 5-HT(1B/1D) and 5-HT(2) receptors". Neuropsychopharmacology. 26 (1): 40–52. doi:10.1016/S0893-133X(01)00345-1. PMID 11751031.
  31. ^ a b c d Baumann MH, Clark RD, Rothman RB (August 2008). "Locomotor stimulation produced by 3,4-methylenedioxymethamphetamine (MDMA) is correlated with dialysate levels of serotonin and dopamine in rat brain". Pharmacol Biochem Behav. 90 (2): 208–217. doi:10.1016/j.pbb.2008.02.018. PMC 2491560. PMID 18403002.
  32. ^ Conductier G, Crosson C, Hen R, Bockaert J, Compan V (June 2005). "3,4-N-methlenedioxymethamphetamine-induced hypophagia is maintained in 5-HT1B receptor knockout mice, but suppressed by the 5-HT2C receptor antagonist RS102221". Neuropsychopharmacology. 30 (6): 1056–1063. doi:10.1038/sj.npp.1300662. PMID 15668722.
  33. ^ Ball KT, Rebec GV (October 2005). "Role of 5-HT2A and 5-HT2C/B receptors in the acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on striatal single-unit activity and locomotion in freely moving rats". Psychopharmacology (Berl). 181 (4): 676–687. doi:10.1007/s00213-005-0038-z. PMID 16001122.
  34. ^ Rothman RB, Blough BE, Baumann MH (2008). "Dopamine/serotonin releasers as medications for stimulant addictions". Prog Brain Res. 172: 385–406. doi:10.1016/S0079-6123(08)00919-9. PMID 18772043.
  35. ^ Rothman RB, Blough BE, Baumann MH (December 2008). "Dual dopamine/serotonin releasers: potential treatment agents for stimulant addiction". Exp Clin Psychopharmacol. 16 (6): 458–474. doi:10.1037/a0014103. PMC 2683464. PMID 19086767.
  36. ^ Canal CE, Murnane KS (January 2017). "The serotonin 5-HT2C receptor and the non-addictive nature of classic hallucinogens". J Psychopharmacol. 31 (1): 127–143. doi:10.1177/0269881116677104. PMC 5445387. PMID 27903793.
  37. ^ Volgin AD, Yakovlev OA, Demin KA, Alekseeva PA, Kyzar EJ, Collins C, Nichols DE, Kalueff AV (January 2019). "Understanding Central Nervous System Effects of Deliriant Hallucinogenic Drugs through Experimental Animal Models". ACS Chem Neurosci. 10 (1): 143–154. doi:10.1021/acschemneuro.8b00433. PMID 30252437.
  38. ^ Lakstygal AM, Kolesnikova TO, Khatsko SL, Zabegalov KN, Volgin AD, Demin KA, Shevyrin VA, Wappler-Guzzetta EA, Kalueff AV (May 2019). "DARK Classics in Chemical Neuroscience: Atropine, Scopolamine, and Other Anticholinergic Deliriant Hallucinogens". ACS Chem Neurosci. 10 (5): 2144–2159. doi:10.1021/acschemneuro.8b00615. PMID 30566832.
  39. ^ McCarson KE (2020). "Strategies for Behaviorally Phenotyping the Transgenic Mouse". Transgenic Mouse. Methods Mol Biol. Vol. 2066. pp. 171–194. doi:10.1007/978-1-4939-9837-1_15. ISBN 978-1-4939-9836-4. PMID 31512217.