For more elaboration on these equations see: thermodynamic equations .
The following page is a concise list of common thermodynamic equations and quantities:
List
Other conventional variables
w
Work
q
Heat
The following equations are classified by subject.
d
U
=
δ
q
−
δ
w
{\displaystyle ~dU=\delta q-\delta w~}
Note that the symbol
δ
{\displaystyle \delta }
represents the fact that because q and w are not state functions,
δ
q
{\displaystyle \delta q}
and
δ
w
{\displaystyle \delta w}
are inexact differentials .
In some fields such as physical chemistry , positive work is conventionally considered work done on the system
rather than by the system, and the law is expressed as
d
U
=
δ
q
+
δ
w
{\displaystyle dU=\delta q+\delta w}
.
S
=
k
(
ln
Ω
)
{\displaystyle ~S=k(\ln \Omega )~}
Δ
S
=
Δ
q
T
{\displaystyle ~\Delta S={\frac {\Delta q}{T}}~}
, only for reversible processes
Quantum Properties
U
=
N
k
B
T
2
(
∂
ln
Z
∂
T
)
V
{\displaystyle ~U=Nk_{B}T^{2}({\frac {\partial \ln Z}{\partial T}})_{V}~}
S
=
U
T
+
N
k
B
ln
Z
{\displaystyle ~S={\frac {U}{T}}+Nk_{B}\ln Z~}
Distinguishable Particles
S
=
U
T
+
N
k
B
ln
Z
−
N
k
ln
N
+
N
k
{\displaystyle ~S={\frac {U}{T}}+Nk_{B}\ln Z-Nk\ln N+Nk~}
Indistinguishable Particles
Z
t
=
(
2
π
m
k
B
T
)
3
2
V
h
3
{\displaystyle ~Z_{t}={\frac {(2\pi mk_{B}T)^{\frac {3}{2}}V}{h^{3}}}~}
Z
v
=
1
1
−
e
−
h
ω
2
π
k
B
T
{\displaystyle ~Z_{v}={\frac {1}{1-e^{\frac {-h\omega }{2\pi k_{B}T}}}}~}
Z
r
=
2
I
k
B
T
σ
(
h
2
π
)
2
{\displaystyle ~Z_{r}={\frac {2Ik_{B}T}{\sigma ({\frac {h}{2\pi }})^{2}}}~}
σ
=
1
{\displaystyle ~\sigma =1~}
heteronuclear
σ
=
2
{\displaystyle ~\sigma =2~}
homonuclear
N is Number of Particles, Z is the Partition Function, h is Planck's Constant, I is Moment of Inertia, Zt is Ztranslation , Zv is Zvibration , Zr is Zrotation
d
Q
=
C
p
d
T
+
l
v
d
v
=
d
U
+
P
d
V
=
T
d
S
{\displaystyle ~dQ=C_{p}dT+l_{v}d_{v}=dU+PdV=TdS~}
C
p
=
(
∂
U
∂
T
)
p
+
p
(
∂
V
∂
T
)
p
=
(
∂
H
∂
T
)
p
=
T
(
∂
S
∂
T
)
p
{\displaystyle ~C_{p}=\left({\partial U \over \partial T}\right)_{p}+p\left({\partial V \over \partial T}\right)_{p}=\left({\partial H \over \partial T}\right)_{p}=T\left({\partial S \over \partial T}\right)_{p}~}
C
V
=
(
∂
U
∂
T
)
V
=
T
(
∂
S
∂
T
)
V
{\displaystyle ~C_{V}=\left({\partial U \over \partial T}\right)_{V}=T\left({\partial S \over \partial T}\right)_{V}~}
Fundamental Equation of Thermodynamics
U
=
T
S
−
p
V
+
μ
N
{\displaystyle ~U=TS-pV+\mu N}
H
≡
U
+
p
V
=
μ
N
+
T
S
{\displaystyle ~H\equiv U+pV=\mu N+TS~}
A
≡
U
−
T
S
=
μ
N
−
p
V
{\displaystyle ~A\equiv U-TS=\mu N-pV~}
G
≡
U
+
p
V
−
T
S
=
H
−
T
S
=
μ
N
{\displaystyle ~G\equiv U+pV-TS=H-TS=\mu N~}
(
∂
T
∂
V
)
S
,
N
=
−
(
∂
p
∂
S
)
V
,
N
{\displaystyle ~\left({\partial T \over \partial V}\right)_{S,N}=-\left({\partial p \over \partial S}\right)_{V,N}~}
(
∂
T
∂
p
)
S
,
N
=
(
∂
V
∂
S
)
p
,
N
{\displaystyle ~\left({\partial T \over \partial p}\right)_{S,N}=\left({\partial V \over \partial S}\right)_{p,N}~}
(
∂
T
∂
V
)
p
,
N
=
−
(
∂
p
∂
S
)
T
,
N
{\displaystyle ~\left({\partial T \over \partial V}\right)_{p,N}=-\left({\partial p \over \partial S}\right)_{T,N}~}
(
∂
T
∂
p
)
V
,
N
=
(
∂
V
∂
S
)
T
,
N
{\displaystyle ~\left({\partial T \over \partial p}\right)_{V,N}=\left({\partial V \over \partial S}\right)_{T,N}~}
Incremental processes
d
U
=
T
d
S
−
p
d
V
+
μ
d
N
{\displaystyle ~dU=T\,dS-p\,dV+\mu \,dN~}
d
A
=
−
S
d
T
−
p
d
V
+
μ
d
N
{\displaystyle ~dA=-S\,dT-p\,dV+\mu \,dN~}
d
G
=
−
S
d
T
+
V
d
p
+
μ
d
N
=
μ
d
N
+
N
d
μ
{\displaystyle ~dG=-S\,dT+V\,dp+\mu \,dN=\mu \,dN+N\,d\mu ~}
d
H
=
T
d
S
+
V
d
p
+
μ
d
N
{\displaystyle ~dH=T\,dS+V\,dp+\mu \,dN~}
K
T
=
−
1
V
(
∂
V
∂
p
)
T
,
N
{\displaystyle ~K_{T}=-{1 \over V}\left({\partial V \over \partial p}\right)_{T,N}~}
More relations
(
∂
S
∂
U
)
V
,
N
=
1
T
{\displaystyle ~\left({\partial S \over \partial U}\right)_{V,N}={1 \over T}~}
(
∂
S
∂
V
)
N
,
U
=
p
T
{\displaystyle ~\left({\partial S \over \partial V}\right)_{N,U}={p \over T}~}
(
∂
S
∂
N
)
V
,
U
=
−
μ
T
{\displaystyle ~\left({\partial S \over \partial N}\right)_{V,U}=-{\mu \over T}~}
(
∂
T
∂
S
)
V
=
T
C
V
{\displaystyle ~\left({\partial T \over \partial S}\right)_{V}={T \over C_{V}}~}
(
∂
T
∂
S
)
p
=
T
C
p
{\displaystyle ~\left({\partial T \over \partial S}\right)_{p}={T \over C_{p}}~}
−
(
∂
p
∂
V
)
T
=
1
V
K
T
{\displaystyle ~-\left({\partial p \over \partial V}\right)_{T}={1 \over {VK_{T}}}~}
Equation Table for an Ideal Gas (
P
V
m
=
c
o
n
s
t
a
n
t
{\displaystyle PV^{m}=constant}
)
Constant Pressure
Constant Volume
Isothermal
Adiabatic
Variable
Δ
p
=
0
{\displaystyle \Delta p=0\;}
Δ
V
=
0
{\displaystyle \Delta V=0\;}
Δ
T
=
0
{\displaystyle \Delta T=0\;}
q
=
0
{\displaystyle q=0\;}
m
{\displaystyle m\;}
0
{\displaystyle 0\;}
∞
{\displaystyle \infty \;}
1
{\displaystyle 1\;}
γ
=
C
p
C
V
{\displaystyle \gamma ={\frac {C_{p}}{C_{V}}}\;}
Work
w
=
−
∫
V
1
V
2
p
d
V
{\displaystyle {\begin{matrix}w=-\int _{V_{1}}^{V_{2}}pdV\end{matrix}}}
−
p
(
V
2
−
V
1
)
{\displaystyle -p\left(V_{2}-V_{1}\right)\;}
0
{\displaystyle 0\;}
−
n
R
T
ln
V
2
V
1
{\displaystyle -nRT\ln {\frac {V_{2}}{V_{1}}}\;}
C
V
(
T
2
−
T
1
)
{\displaystyle C_{V}\left(T_{2}-T_{1}\right)\;}
Heat Capacity,
C
{\displaystyle C\;}
C
p
=
(
5
/
2
)
n
R
{\displaystyle C_{p}=(5/2)nR\;}
C
V
=
(
3
/
2
)
n
R
{\displaystyle C_{V}=(3/2)nR\;}
C
p
{\displaystyle C_{p}\;}
or
C
V
{\displaystyle C_{V}\;}
C
p
{\displaystyle C_{p}\;}
or
C
V
{\displaystyle C_{V}\;}
Internal Energy,
Δ
U
=
3
/
2
∗
n
R
Δ
T
{\displaystyle \Delta U=3/2*nR\Delta T\;}
q
+
w
{\displaystyle q+w\;}
q
p
+
p
Δ
V
{\displaystyle q_{p}+p\Delta V\;}
q
{\displaystyle q\;}
C
V
(
T
2
−
T
1
)
{\displaystyle C_{V}\left(T_{2}-T_{1}\right)\;}
0
{\displaystyle 0\;}
q
=
−
w
{\displaystyle q=-w\;}
w
{\displaystyle w\;}
C
V
(
T
2
−
T
1
)
{\displaystyle C_{V}\left(T_{2}-T_{1}\right)\;}
Enthalpy,
Δ
H
{\displaystyle \Delta H\;}
H
=
U
+
p
V
{\displaystyle H=U+pV\;}
C
p
(
T
2
−
T
1
)
{\displaystyle C_{p}\left(T_{2}-T_{1}\right)\;}
q
V
+
V
Δ
P
{\displaystyle q_{V}+V\Delta P\;}
0
{\displaystyle 0\;}
C
p
(
T
2
−
T
1
)
{\displaystyle C_{p}\left(T_{2}-T_{1}\right)\;}
Entropy
Δ
S
=
−
∫
T
1
T
2
C
T
d
T
{\displaystyle {\begin{matrix}\Delta S=-\int _{T_{1}}^{T_{2}}{\frac {C}{T}}dT\end{matrix}}}
C
p
ln
T
2
T
1
{\displaystyle C_{p}\ln {\frac {T_{2}}{T_{1}}}\;}
C
V
ln
T
2
T
1
{\displaystyle C_{V}\ln {\frac {T_{2}}{T_{1}}}\;}
n
R
ln
V
2
V
1
{\displaystyle nR\ln {\frac {V_{2}}{V_{1}}}\;}
q
T
{\displaystyle {\frac {q}{T}}\;}
0
{\displaystyle 0\;}
Other useful identities
Δ
U
=
q
b
y
+
w
o
n
=
q
b
y
−
∫
p
e
x
t
d
V
=
q
b
y
−
p
e
x
t
Δ
V
{\displaystyle \Delta U=q_{by}+w_{on}=q_{by}-\int p_{ext}dV=q_{by}-p_{ext}\Delta V}
H
=
U
+
p
V
{\displaystyle H=U+pV\,\!}
A
=
U
−
T
S
{\displaystyle A=U-TS\,\!}
G
=
H
−
T
S
=
∑
i
μ
i
N
i
{\displaystyle G=H-TS=\sum _{i}\mu _{i}N_{i}\,\!}
d
U
(
S
,
V
,
n
i
)
=
T
d
S
−
p
d
V
+
∑
i
μ
i
d
N
i
{\displaystyle dU\left(S,V,{n_{i}}\right)=TdS-pdV+\sum _{i}\mu _{i}dN_{i}}
d
H
(
S
,
p
,
n
i
)
=
T
d
S
+
V
d
p
+
∑
i
μ
i
d
N
i
{\displaystyle dH\left(S,p,n_{i}\right)=TdS+Vdp+\sum _{i}\mu _{i}dN_{i}}
d
A
(
T
,
V
,
n
i
)
=
−
S
d
T
−
p
d
V
+
∑
i
μ
i
d
N
i
{\displaystyle dA\left(T,V,n_{i}\right)=-SdT-pdV+\sum _{i}\mu _{i}dN_{i}}
d
G
(
T
,
p
,
n
i
)
=
−
S
d
T
+
V
d
p
+
∑
i
μ
i
d
N
i
{\displaystyle dG\left(T,p,n_{i}\right)=-SdT+Vdp+\sum _{i}\mu _{i}dN_{i}}
C
V
=
(
∂
U
∂
T
)
V
=
T
(
∂
S
∂
T
)
V
{\displaystyle C_{V}=\left({\frac {\partial U}{\partial T}}\right)_{V}=T\left({\frac {\partial S}{\partial T}}\right)_{V}}
C
p
=
(
∂
H
∂
T
)
p
{\displaystyle C_{p}=\left({\frac {\partial H}{\partial T}}\right)_{p}}
μ
J
T
=
(
∂
T
∂
p
)
H
{\displaystyle \mu _{JT}=\left({\frac {\partial T}{\partial p}}\right)_{H}}
κ
T
=
−
1
V
(
∂
V
∂
p
)
T
{\displaystyle \kappa _{T}=-{\frac {1}{V}}\left({\frac {\partial V}{\partial p}}\right)_{T}}
α
p
=
1
V
(
∂
V
∂
T
)
p
{\displaystyle \alpha _{p}={\frac {1}{V}}\left({\frac {\partial V}{\partial T}}\right)_{p}}
(
∂
H
∂
p
)
T
=
V
−
T
(
∂
V
∂
T
)
p
{\displaystyle \left({\frac {\partial H}{\partial p}}\right)_{T}=V-T\left({\frac {\partial V}{\partial T}}\right)_{p}}
(
∂
U
∂
V
)
T
=
T
(
∂
p
∂
T
)
V
−
p
{\displaystyle \left({\frac {\partial U}{\partial V}}\right)_{T}=T\left({\frac {\partial p}{\partial T}}\right)_{V}-p}
H
=
−
T
2
(
∂
(
G
/
T
)
∂
T
)
p
{\displaystyle H=-T^{2}\left({\frac {\partial \left(G/T\right)}{\partial T}}\right)_{p}}
U
=
−
T
2
(
∂
(
A
/
T
)
∂
T
)
V
{\displaystyle U=-T^{2}\left({\frac {\partial \left(A/T\right)}{\partial T}}\right)_{V}}
Proof #1
An example using the above methods is:
(
∂
T
∂
p
)
H
=
−
1
C
p
(
∂
H
∂
p
)
T
{\displaystyle \left({\frac {\partial T}{\partial p}}\right)_{H}=-{\frac {1}{C_{p}}}\left({\frac {\partial H}{\partial p}}\right)_{T}}
(
∂
T
∂
p
)
H
(
∂
p
∂
H
)
T
(
∂
H
∂
T
)
p
=
−
1
{\displaystyle \left({\frac {\partial T}{\partial p}}\right)_{H}\left({\frac {\partial p}{\partial H}}\right)_{T}\left({\frac {\partial H}{\partial T}}\right)_{p}=-1}
(
∂
T
∂
p
)
H
=
−
(
∂
H
∂
p
)
T
(
∂
T
∂
H
)
P
{\displaystyle \left({\frac {\partial T}{\partial p}}\right)_{H}=-\left({\frac {\partial H}{\partial p}}\right)_{T}\left({\frac {\partial T}{\partial H}}\right)_{P}}
=
−
1
(
∂
H
∂
T
)
p
(
∂
H
∂
p
)
T
{\displaystyle ={\frac {-1}{\left({\frac {\partial H}{\partial T}}\right)_{p}}}\left({\frac {\partial H}{\partial p}}\right)_{T}}
;
C
p
=
(
∂
H
∂
T
)
p
{\displaystyle C_{p}=\left({\frac {\partial H}{\partial T}}\right)_{p}}
⇒
(
∂
T
∂
p
)
H
=
−
1
C
p
(
∂
H
∂
p
)
T
{\displaystyle \Rightarrow \left({\frac {\partial T}{\partial p}}\right)_{H}=-{\frac {1}{C_{p}}}\left({\frac {\partial H}{\partial p}}\right)_{T}}
Proof #2
Another example:
C
V
=
T
(
∂
S
∂
T
)
V
{\displaystyle C_{V}=T\left({\frac {\partial S}{\partial T}}\right)_{V}}
U
=
q
+
w
{\displaystyle U=q+w\,\!}
d
U
=
d
q
r
e
v
+
w
r
e
v
;
d
S
=
d
q
r
e
v
T
,
w
r
e
v
=
−
p
d
V
{\displaystyle dU=dq_{rev}+w_{rev};dS={\frac {dq_{rev}}{T}},w_{rev}=-pdV\,\!}
=
T
d
S
−
p
d
V
{\displaystyle =TdS-pdV\,\!}
(
∂
U
∂
T
)
V
=
T
(
∂
S
∂
T
)
V
−
p
(
∂
V
∂
T
)
V
;
C
V
=
(
∂
U
∂
T
)
V
{\displaystyle \left({\frac {\partial U}{\partial T}}\right)_{V}=T\left({\frac {\partial S}{\partial T}}\right)_{V}-p\left({\frac {\partial V}{\partial T}}\right)_{V};C_{V}=\left({\frac {\partial U}{\partial T}}\right)_{V}}
⇒
C
V
=
T
(
∂
S
∂
T
)
V
{\displaystyle \Rightarrow C_{V}=T\left({\frac {\partial S}{\partial T}}\right)_{V}}
References
Atkins, Peter and de Paula, Julio Physical Chemistry , 7th edition, W.H. Freeman and Company, 2002 [ISBN 0-7167-3539-3].
Chapters 1 - 10, Part 1: Equilibrium .
Bridgman, P.W., Phys. Rev. , 3, 273 (1914).
Landsberg, Peter T. Thermodynamics and Statistical Mechanics . New York: Dover Publications, Inc., 1990. (reprinted from Oxford University Press, 1978) .
Lewis, G.N., and Randall, M., "Thermodynamics", 2nd Edition, McGraw-Hill Book Company, New York, 1961.
Reichl, L.E., "A Modern Course in Statistical Physics", 2nd edition, New York: John Wiley & Sons, 1998.
Schroeder, Daniel V. Thermal Physics . San Francisco: Addison Wesley Longman, 2000 [ISBN 0-201-38027-7].
Silbey, Robert J., et al. Physical Chemistry . 4th ed. New Jersey: Wiley, 2004.