Solar eclipse of March 30, 2052

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 30, 2052,[1] with a magnitude of 1.0466. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.5 days before perigee (on April 1, 2052, at 6:30 UTC), the Moon's apparent diameter will be larger.[2]

Solar eclipse of March 30, 2052
Map
Type of eclipse
NatureTotal
Gamma0.3238
Magnitude1.0466
Maximum eclipse
Duration248 s (4 min 8 s)
Coordinates22°24′N 102°30′W / 22.4°N 102.5°W / 22.4; -102.5
Max. width of band164 km (102 mi)
Times (UTC)
Greatest eclipse18:31:53
References
Saros130 (54 of 73)
Catalog # (SE5000)9623

The path of totality will be visible from parts of central Mexico, the extreme southern tip of Texas, southeastern Louisiana, southeastern Alabama, Florida, Georgia, and South Carolina. A partial solar eclipse will also be visible for parts of Hawaii, North America, Central America, the Caribbean, and northern South America.

This will be the 2nd total eclipse visible from the Florida panhandle and southwest Georgia in 6.6 years. It will also be the last total solar eclipse visible in the United States until May 11, 2078.

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

March 30, 2052 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2052 March 30 at 15:54:47.5 UTC
First Umbral External Contact 2052 March 30 at 16:52:13.4 UTC
First Central Line 2052 March 30 at 16:53:04.2 UTC
First Umbral Internal Contact 2052 March 30 at 16:53:55.0 UTC
First Penumbral Internal Contact 2052 March 30 at 17:57:37.9 UTC
Ecliptic Conjunction 2052 March 30 at 18:28:31.3 UTC
Greatest Eclipse 2052 March 30 at 18:31:52.9 UTC
Greatest Duration 2052 March 30 at 18:33:58.8 UTC
Equatorial Conjunction 2052 March 30 at 18:42:28.4 UTC
Last Penumbral Internal Contact 2052 March 30 at 19:05:51.6 UTC
Last Umbral Internal Contact 2052 March 30 at 20:09:40.8 UTC
Last Central Line 2052 March 30 at 20:10:33.4 UTC
Last Umbral External Contact 2052 March 30 at 20:11:25.9 UTC
Last Penumbral External Contact 2052 March 30 at 21:08:49.5 UTC
March 30, 2052 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 1.04664
Eclipse Obscuration 1.09545
Gamma 0.32385
Sun Right Ascension 00h39m33.8s
Sun Declination +04°15'25.9"
Sun Semi-Diameter 16'00.7"
Sun Equatorial Horizontal Parallax 08.8"
Moon Right Ascension 00h39m10.3s
Moon Declination +04°34'05.5"
Moon Semi-Diameter 16'29.6"
Moon Equatorial Horizontal Parallax 1°00'31.8"
ΔT 85.4 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of March–April 2052
March 30
Descending node (new moon)
April 14
Ascending node (full moon)
   
Total solar eclipse
Solar Saros 130
Penumbral lunar eclipse
Lunar Saros 142
edit

Eclipses in 2052

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 130

edit

Inex

edit

Triad

edit

Solar eclipses of 2051–2054

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipse on August 3, 2054 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 2051 to 2054
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
120 April 11, 2051
 
Partial
1.0169 125 October 4, 2051
 
Partial
−1.2094
130 March 30, 2052
 
Total
0.3238 135 September 22, 2052
 
Annular
−0.448
140 March 20, 2053
 
Annular
−0.4089 145 September 12, 2053
 
Total
0.314
150 March 9, 2054
 
Partial
−1.1711 155 September 2, 2054
 
Partial
1.0215

Saros 130

edit

This eclipse is a part of Saros series 130, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on August 20, 1096. It contains total eclipses from April 5, 1475 through July 18, 2232. There are no annular or hybrid eclipses in this set. The series ends at member 73 as a partial eclipse on October 25, 2394. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 30 at 6 minutes, 41 seconds on July 11, 1619. All eclipses in this series occur at the Moon’s descending node of orbit.[5]

Series members 41–62 occur between 1801 and 2200:
41 42 43
 
November 9, 1817
 
November 20, 1835
 
November 30, 1853
44 45 46
 
December 12, 1871
 
December 22, 1889
 
January 3, 1908
47 48 49
 
January 14, 1926
 
January 25, 1944
 
February 5, 1962
50 51 52
 
February 16, 1980
 
February 26, 1998
 
March 9, 2016
53 54 55
 
March 20, 2034
 
March 30, 2052
 
April 11, 2070
56 57 58
 
April 21, 2088
 
May 3, 2106
 
May 14, 2124
59 60 61
 
May 25, 2142
 
June 4, 2160
 
June 16, 2178
62
 
June 26, 2196

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 12, 2029 and November 4, 2116
June 11–12 March 30–31 January 16 November 4–5 August 23–24
118 120 122 124 126
 
June 12, 2029
 
March 30, 2033
 
January 16, 2037
 
November 4, 2040
 
August 23, 2044
128 130 132 134 136
 
June 11, 2048
 
March 30, 2052
 
January 16, 2056
 
November 5, 2059
 
August 24, 2063
138 140 142 144 146
 
June 11, 2067
 
March 31, 2071
 
January 16, 2075
 
November 4, 2078
 
August 24, 2082
148 150 152 154 156
 
June 11, 2086
 
March 31, 2090
 
January 16, 2094
 
November 4, 2097
 
August 24, 2101
158 160 162 164
 
June 12, 2105
 
November 4, 2116

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
March 14, 1801
(Saros 107)
 
February 12, 1812
(Saros 108)
 
January 12, 1823
(Saros 109)
 
November 10, 1844
(Saros 111)
 
August 9, 1877
(Saros 114)
 
July 9, 1888
(Saros 115)
 
June 8, 1899
(Saros 116)
 
May 9, 1910
(Saros 117)
 
April 8, 1921
(Saros 118)
 
March 7, 1932
(Saros 119)
 
February 4, 1943
(Saros 120)
 
January 5, 1954
(Saros 121)
 
December 4, 1964
(Saros 122)
 
November 3, 1975
(Saros 123)
 
October 3, 1986
(Saros 124)
 
September 2, 1997
(Saros 125)
 
August 1, 2008
(Saros 126)
 
July 2, 2019
(Saros 127)
 
June 1, 2030
(Saros 128)
 
April 30, 2041
(Saros 129)
 
March 30, 2052
(Saros 130)
 
February 28, 2063
(Saros 131)
 
January 27, 2074
(Saros 132)
 
December 27, 2084
(Saros 133)
 
November 27, 2095
(Saros 134)
 
October 26, 2106
(Saros 135)
 
September 26, 2117
(Saros 136)
 
August 25, 2128
(Saros 137)
 
July 25, 2139
(Saros 138)
 
June 25, 2150
(Saros 139)
 
May 25, 2161
(Saros 140)
 
April 23, 2172
(Saros 141)
 
March 23, 2183
(Saros 142)
 
February 21, 2194
(Saros 143)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
September 7, 1820
(Saros 122)
 
August 18, 1849
(Saros 123)
 
July 29, 1878
(Saros 124)
 
July 10, 1907
(Saros 125)
 
June 19, 1936
(Saros 126)
 
May 30, 1965
(Saros 127)
 
May 10, 1994
(Saros 128)
 
April 20, 2023
(Saros 129)
 
March 30, 2052
(Saros 130)
 
March 10, 2081
(Saros 131)
 
February 18, 2110
(Saros 132)
 
January 30, 2139
(Saros 133)
 
January 10, 2168
(Saros 134)
 
December 19, 2196
(Saros 135)

Notes

edit
  1. ^ "March 30, 2052 Total Solar Eclipse". timeanddate. Retrieved 15 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 15 August 2024.
  3. ^ "Total Solar Eclipse of 2052 Mar 30". EclipseWise.com. Retrieved 15 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 130". eclipse.gsfc.nasa.gov.

References

edit