A neutron star merger is the stellar collision of neutron stars. When two neutron stars fall into mutual orbit, they gradually spiral inward due to the loss of energy emitted as gravitational radiation.[1] When they finally meet, their merger leads to the formation of either a more massive neutron star, or—if the mass of the remnant exceeds the Tolman–Oppenheimer–Volkoff limit—a black hole. The merger can create a magnetic field that is trillions of times stronger than that of Earth in a matter of one or two milliseconds.[2] The immediate event creates a short gamma-ray burst visible over hundreds of millions, or even billions of light years.[3]

Artist's impression of neutron stars merging, producing gravitational waves and resulting in a kilonova
Artist's impression of neutron stars merging, producing gravitational waves and resulting in a kilonova

The merger of neutron stars momentarily creates an environment of such extreme neutron flux that the r-process can occur. This reaction accounts for the nucleosynthesis of around half of the isotopes in elements heavier than iron.[4]

The mergers also produce kilonovae,[5] which are transient sources of isotropic longer wave electromagnetic radiation due to the radioactive decay of heavy r-process nuclei that are produced and ejected during the merger process.[6] Kilonovae had been discussed as a possible r-process site since the reaction was first proposed in 1999, but the mechanism became widely accepted after multi-messenger event GW170817 was observed in 2017.

Observed mergers

edit
17 August 2017: Gravitational wave (GW170817) detected from merger of two neutron stars (00:23 video; artist concept).

On 17 August 2017, the LIGO and Virgo interferometers observed GW170817,[7] a gravitational wave associated with the merger of two neutron stars in NGC 4993, an elliptical galaxy in the constellation Hydra about 140 million light years away.[8] GW170817 co-occurred with a short (roughly 2-second long) gamma-ray burst, GRB 170817A, first detected 1.7 seconds after the GW merger signal, and a visible light observational event first observed 11 hours afterwards, SSS17a.[9][10][11][12][13]

The co-occurrence of GW170817 with GRB 170817A in both space and time strongly implies that neutron star mergers create short gamma-ray bursts. The subsequent detection of Swope Supernova Survey event 2017a (SSS17a)[14] in the area where GW170817 and GRB 170817A were known to have occurred—and its having the expected characteristics of a kilonova—strongly imply that neutron star mergers are responsible for kilonovae as well.[15]

In February 2018, the Zwicky Transient Facility began to track neutron star events via gravitational wave observation,[16] as evidenced by "systematic samples of tidal disruption events".[17] Later that year, astronomers reported that GRB 150101B, a gamma-ray burst event detected in 2015, may be directly related to GW170817 and associated with the merger of two neutron stars. The similarities between the two events, in terms of gamma ray, optical and x-ray emissions, as well as to the nature of the associated host galaxies, are "striking", suggesting the two separate events may both be the result of the merger of neutron stars, and both may be a kilonova, which may be more common in the universe than previously understood, according to the researchers.[18][19][20][21]

Also in October 2018, scientists presented a new way to use information from gravitational wave events (especially those involving the merger of neutron stars like GW170817) to determine the Hubble constant, which establishes the rate of expansion of the universe.[22][23] The two earlier methods for finding the Hubble constant—one based on redshifts and another based on the cosmic distance ladder—disagree by about 10%. This difference, the Hubble tension, might be reconciled by using kilonovae as another type of standard candle.[24]

In April 2019, the LIGO and Virgo gravitational wave observatories announced the detection of a candidate event that is, with a probability 99.94%, the merger of two neutron stars. Despite extensive follow-up observations, no electromagnetic counterpart could be identified.[25][26][27]

In 2023, an observation of the kilonova GRB 230307A was published, including likely observations of the spectra of tellurium and lanthanide elements.[28]

XT2 (magnetar)

edit

In 2019, analysis of data from the Chandra X-ray Observatory revealed another binary neutron star merger at a distance of 6.6 billion light years, an x-ray signal called XT2. The merger produced a magnetar; its emissions could be detected for several hours.[29]

Effect on Earth

edit

Neutron star mergers emit an unusually diverse range of radiations which can be harmful to life on earth, including the initial short gamma-ray burst (sGRB), emission from the radioactive decay of heavy elements scattered by the sGRB cocoon,[30][31] the sGRB afterglow itself,[32] and cosmic rays accelerated by the blast. In order of arrival, the sGRB and afterglow photons arrive first after the (harmless) gravitational waves, with the cosmic ray particles arriving hundreds to thousands of years later. The lethal zone of the highly directional sGRB component extends hundreds of parsecs along the focus of its beam.[33] These high-energy gamma ray photons would extinguish life directly, through thermal stress, molecular breakdown, and terminal radiation damage to both plants and animals.

Apart from an unlucky hit by a focused beam, any neutron star merger occurring within 10 parsecs of Earth would also result in conclusive human extinction.[34] The ejected material sweeps up the interstellar medium and creates a supernova-remnant-like bubble holding a lethal dose of cosmic rays. If the Earth were to be engulfed by the remnant, these cosmic rays would destroy the ozone layer, exposing Earth's biome to fatal levels of UVB radiation from the Sun. They could also interact with the atmosphere, yielding weakly-interacting muons. The flux density of these generated particles would be sufficient to sterilize the planet, penetrating even deep into caves and underwater. The danger to life lies in the particles' ability to disrupt DNA, causing birth defects and mutations.[35][36]

Relative to supernovae, binary neutron star (BNS) mergers influence about the same volume of space, but are thought to be much rarer, and their most dangerous sGRB component requires that the beam be precisely oriented towards the Earth. Accordingly, the overall threat of a BNS event to human extinction is extremely low.[34]

Distribution of Heavy Metals

edit

Neutron star mergers are rare, so most stars will form out of gas clouds which have few r-process metals. Our own solar system, however, did form from a gas cloud enriched with heavy metals.[citation needed] This suggests that metals heavier than iron, such as the platinum group metals, the rare earth elements, and the radioactive elements will be rarer in most solar systems as compared to our own.

See also

edit

References

edit
  1. ^ "Einstein Telescope: Unlocking a New Era in Astronomy From 250 Meters Underground".
  2. ^ "Nightmares of Neutron Stars". How the Universe Works. Season 7. Episode 1. 8 January 2019. Discovery+.
  3. ^ Rosswog, Stephan (2013). "Astrophysics: Radioactive glow as a smoking gun". Nature. 500 (7464): 535–6. Bibcode:2013Natur.500..535R. doi:10.1038/500535a. PMID 23985867. S2CID 4401544.
  4. ^ Stromberg, Joseph (16 July 2013). "All the Gold in the Universe Could Come from the Collisions of Neutron Stars". Smithsonian. Retrieved 27 April 2014.
  5. ^ Lea, Robert (21 February 2024). "James Webb Space Telescope finds neutron star mergers forge gold in the cosmos: 'It was thrilling'". Space.com.
  6. ^ Tanvir, N. R.; Levan, A. J.; Fruchter, A. S.; Hjorth, J.; Hounsell, R. A.; Wiersema, K.; Tunnicliffe, R. L. (2013). "A 'kilonova' associated with the short-duration γ-ray burst GRB 130603B". Nature. 500 (7464): 547–9. arXiv:1306.4971. Bibcode:2013Natur.500..547T. doi:10.1038/nature12505. PMID 23912055. S2CID 205235329.
  7. ^ Abbott, B. P.; et al. (LIGO Scientific Collaboration & Virgo Collaboration) (16 October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters. 119 (16): 161101. arXiv:1710.05832. Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID 29099225. S2CID 217163611.
  8. ^ Scharping, Nathaniel (18 October 2017). "Gravitational Waves Show How Fast The Universe is Expanding". Astronomy. Retrieved 18 October 2017.
  9. ^ Cho, Adrian (16 October 2017). "Merging neutron stars generate gravitational waves and a celestial light show". Science. Retrieved 16 October 2017.
  10. ^ Landau, Elizabeth; Chou, Felicia; Washington, Dewayne; Porter, Molly (16 October 2017). "NASA Missions Catch First Light from a Gravitational-Wave Event". NASA. Retrieved 16 October 2017.
  11. ^ Overbye, Dennis (16 October 2017). "LIGO Detects Fierce Collision of Neutron Stars for the First Time". The New York Times. Retrieved 16 October 2017.
  12. ^ Krieger, Lisa M. (16 October 2017). "A Bright Light Seen Across The Universe, Proving Einstein Right - Violent collisions source of our gold, silver". The Mercury News. Retrieved 16 October 2017.
  13. ^ Abbott, B. P.; et al. (LIGO, Virgo and other collaborations) (October 2017). "Multi-messenger Observations of a Binary Neutron Star Merger" (PDF). The Astrophysical Journal. 848 (2): L12. arXiv:1710.05833. Bibcode:2017ApJ...848L..12A. doi:10.3847/2041-8213/aa91c9. The optical and near-infrared spectra over these few days provided convincing arguments that this transient was unlike any other discovered in extensive optical wide-field surveys over the past decade.
  14. ^ Pan, Y.-C.; et al. (2017). "The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source". The Astrophysical Journal. 848 (2): L30. arXiv:1710.05439. Bibcode:2017ApJ...848L..30P. doi:10.3847/2041-8213/aa9116. S2CID 3516168.
  15. ^ "Kilonovae, short gamma-ray bursts & neutron star mergers". Nature Astronomy. 16 October 2017.
  16. ^ Pease, Roland (2 May 2019). "Gravitational waves hunt now in overdrive". BBC News.
  17. ^ Bellm, Eric C.; et al. (7 December 2018). "The Zwicky Transient Facility: System Overview, Performance, and First Results". Publications of the Astronomical Society of the Pacific. 131 (995): 018002. arXiv:1902.01932. doi:10.1088/1538-3873/aaecbe. ISSN 0004-6280.
  18. ^ "All in the family: Kin of gravitational wave source discovered". EurekAlert! (Press release). University of Maryland. 16 October 2018. Retrieved 17 October 2018.
  19. ^ Troja, E.; et al. (16 October 2018). "A luminous blue kilonova and an off-axis jet from a compact binary merger at z=0.1341". Nature Communications. 9 (1): 4089. arXiv:1806.10624. Bibcode:2018NatCo...9.4089T. doi:10.1038/s41467-018-06558-7. PMC 6191439. PMID 30327476.
  20. ^ Mohon, Lee (16 October 2018). "GRB 150101B: A Distant Cousin to GW170817". NASA. Retrieved 17 October 2018.
  21. ^ Wall, Mike (17 October 2018). "Powerful Cosmic Flash Is Likely Another Neutron-Star Merger". Space.com. Retrieved 17 October 2018.
  22. ^ Lerner, Louise (22 October 2018). "Gravitational waves could soon provide measure of universe's expansion". Phys.org. Retrieved 22 October 2018.
  23. ^ Chen, Hsin-Yu; Fishbach, Maya; Holz, Daniel E. (17 October 2018). "A two per cent Hubble constant measurement from standard sirens within five years". Nature. 562 (7728): 545–547. arXiv:1712.06531. Bibcode:2018Natur.562..545C. doi:10.1038/s41586-018-0606-0. PMID 30333628. S2CID 52987203.
  24. ^ Wood, Charlie (13 December 2021). "Cosmologists Parry Attacks on the Vaunted Cosmological Principle". Quanta Magazine.
  25. ^ "Breaking: LIGO Detects Gravitational Waves From Another Neutron Star Merger". Discover Magazine. 25 April 2019.
  26. ^ "S190425z". GraceDB. Retrieved 13 August 2019.
  27. ^ Hosseinzadeh, G.; Cowperthwaite, P. S.; Gomez, S.; Villar, V. A. (18 July 2019). "Follow-up of the Neutron Star Bearing Gravitational Wave Candidate Events S190425z and S190426c with MMT and SOAR". Astrophys. J. 880 (1): L4. arXiv:1905.02186. Bibcode:2019ApJ...880L...4H. doi:10.3847/2041-8213/ab271c. hdl:10150/633863. S2CID 146121014.
  28. ^ Levan, Andrew; Gompertz, Benjamin P.; Salafia, Om Sharan; Bulla, Mattia; Burns, Eric; Hotokezaka, Kenta; Izzo, Luca; Lamb, Gavin P.; Malesani, Daniele B.; Oates, Samantha R.; Ravasio, Maria Edvige; Rouco Escorial, Alicia; Schneider, Benjamin; Sarin, Nikhil; Schulze, Steve (25 October 2023). "Heavy element production in a compact object merger observed by JWST". Nature. 626 (8000): 737–741. arXiv:2307.02098. doi:10.1038/s41586-023-06759-1. ISSN 0028-0836. PMC 10881391. PMID 37879361.
  29. ^ Klesman, Alison (18 April 2019). "A new neutron star merger is caught on X-ray camera". Astronomy. Retrieved 18 April 2019.
  30. ^ Wang, Xilu; et al. (N3AS and FIRE Collaboration) (November 2020). "MeV Gamma Rays from Fission: A Distinct Signature of Actinide Production in Neutron Star Mergers". The Astrophysical Journal. 903 (1): L3. arXiv:2008.03335. Bibcode:2020ApJ...903L...3W. doi:10.3847/2041-8213/abbe18. ISSN 0004-637X.
  31. ^ Kisaka, Shota; Ioka, Kunihito; Kashiyama, Kazumi; Nakamura, Takashi (1 November 2018). "Scattered Short Gamma-Ray Bursts as Electromagnetic Counterparts to Gravitational Waves and Implications of GW170817 and GRB 170817A". The Astrophysical Journal. 867 (1): 39. arXiv:1711.00243. Bibcode:2018ApJ...867...39K. doi:10.3847/1538-4357/aae30a. ISSN 0004-637X.
  32. ^ Makhathini, S.; Mooley, K. P.; Brightman, M.; Hotokezaka, K.; Nayana, A. J.; Intema, H. T.; Dobie, D.; Lenc, E.; Perley, D. A.; Fremling, C.; Moldòn, J.; Lazzati, D.; Kaplan, D. L.; Balasubramanian, A.; Brown, I. S. (1 December 2021). "The Panchromatic Afterglow of GW170817: The Full Uniform Data Set, Modeling, Comparison with Previous Results, and Implications". The Astrophysical Journal. 922 (2): 154. arXiv:2006.02382. Bibcode:2021ApJ...922..154M. doi:10.3847/1538-4357/ac1ffc. ISSN 0004-637X.
  33. ^ Melott, Adrian L.; Thomas, Brian C. (May 2011). "Astrophysical Ionizing Radiation and Earth: A Brief Review and Census of Intermittent Intense Sources". Astrobiology. 11 (4): 343–361. arXiv:1102.2830. Bibcode:2011AsBio..11..343M. doi:10.1089/ast.2010.0603. ISSN 1531-1074. PMID 21545268.
  34. ^ a b Perkins, Haille M. L.; Ellis, John; Fields, Brian D.; Hartmann, Dieter H.; Liu, Zhenghai; McLaughlin, Gail C.; Surman, Rebecca; Wang, Xilu (1 February 2024). "Could a Kilonova Kill: A Threat Assessment". The Astrophysical Journal. 961 (2): 170. arXiv:2310.11627. Bibcode:2024ApJ...961..170P. doi:10.3847/1538-4357/ad12b7. ISSN 0004-637X. We found that cosmic rays are ... potentially lethal out to ∼10 pc, similar to the typical value of 8−20 pc for [core-collapse supernovae] ... The rarity of [binary neutron star mergers] combined with a small range of lethality means that ... the mean recurrence time of lethal mergers [on Earth] is much larger than the age of the Universe.
  35. ^ Dar, Arnon; Laor, Ari; Shaviv, Nir J. (29 June 1998). "Life Extinctions by Cosmic Ray Jets". Physical Review Letters. 80 (26): 5813–5816. arXiv:astro-ph/9705008. Bibcode:1998PhRvL..80.5813D. doi:10.1103/PhysRevLett.80.5813. ISSN 0031-9007.
  36. ^ Juckett, David A. (November 2009). "A 17-year oscillation in cancer mortality birth cohorts on three continents – synchrony to cosmic ray modulations one generation earlier". International Journal of Biometeorology. 53 (6): 487–499. Bibcode:2009IJBm...53..487J. doi:10.1007/s00484-009-0237-0. ISSN 0020-7128. PMID 19506913.
edit