Material nonimplication

Material nonimplication or abjunction (Latin ab = "away", junctio= "to join") is a term referring to a logic operation used in generic circuits and Boolean algebra.[1] It is the negation of material implication. That is to say that for any two propositions and , the material nonimplication from to is true if and only if the negation of the material implication from to is true. This is more naturally stated as that the material nonimplication from to is true only if is true and is false.

Venn diagram of

It may be written using logical notation as , , or "Lpq" (in Bocheński notation), and is logically equivalent to , and .

Definition

edit

Truth table

edit
   
FFF
FTF
TFT
TTF

Logical Equivalences

edit

Material nonimplication may be defined as the negation of material implication.

         
           

In classical logic, it is also equivalent to the negation of the disjunction of   and  , and also the conjunction of   and  

                           
                            

Properties

edit

falsehood-preserving: The interpretation under which all variables are assigned a truth value of "false" produces a truth value of "false" as a result of material nonimplication.

Symbol

edit

The symbol for material nonimplication is simply a crossed-out material implication symbol. Its Unicode symbol is 219B16 (8603 decimal): ↛.

Natural language

edit

Grammatical

edit

"p minus q."

"p without q."

Rhetorical

edit

"p but not q."

"q is false, in spite of p."

Computer science

edit

Bitwise operation: A&(~B)

Logical operation: A&&(!B)

See also

edit

References

edit
  1. ^ Berco, Dan; Ang, Diing Shenp; Kalaga, Pranav Sairam (2020). "Programmable Photoelectric Memristor Gates for In Situ Image Compression". Advanced Intelligent Systems. 2 (9): 5. doi:10.1002/aisy.202000079.
edit