In enzymology, a cysteine desulfurase (EC 2.8.1.7) is an enzyme that catalyzes the chemical reaction

cysteine desulfurase
Identifiers
EC no.2.8.1.7
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins
L-cysteine + [enzyme]-cysteine L-alanine + [enzyme]-S-sulfanylcysteine

Thus, the two substrates of this enzyme are L-cysteine and [enzyme]-cysteine], whereas its two products are L-alanine and [enzyme]-S-sulfanylcysteine. One group of authors has given it the acronym hapE, for hydrogen sulfide, alanine, and pyruvate producing enzyme.[1]

This enzyme belongs to the family of transferases, specifically the sulfurtransferases, which transfer sulfur-containing groups. The systematic name of this enzyme class is L-cysteine:[enzyme cysteine] sulfurtransferase. Other names in common use include IscS, NIFS, NifS, SufS, and cysteine desulfurylase.

Function

edit

Bacteria contain cysteine desulfurases to form iron sulfur clusters in proteins.[2] However recently it has been shown that the enzyme, which produces hydrogen sulfide from cysteine, is also a virulence factor, namely for M.pneumoniae, in that it causes both α-hemolysis and β-haemolysis of red blood cells.[1]

In mammals, the enzyme participates in thiamine metabolism.

Structural studies

edit

As of late 2007, only one structure had been solved for this class of enzymes, with the PDB accession code 1T3I.

References

edit
  1. ^ a b Großhennig, Stephanie; Ischebeck, Till; Gibhardt, Johannes; Busse, Julia; Feussner, Ivo; Stülke, Jörg (April 2016). "Hydrogen sulfide is a novel potential virulence factor of M ycoplasma pneumoniae : characterization of the unusual cysteine desulfurase/desulfhydrase HapE". Molecular Microbiology. 100 (1): 42–54. doi:10.1111/mmi.13300. ISSN 0950-382X.
  2. ^ Mihara H, Esaki N (2002). "Bacterial cysteine desulfurases: their function and mechanisms". Appl. Microbiol. Biotechnol. 60 (1–2): 12–23. doi:10.1007/s00253-002-1107-4. PMID 12382038. S2CID 23172939.