PostgreSQL Source Code git master
setrefs.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * setrefs.c
4 * Post-processing of a completed plan tree: fix references to subplan
5 * vars, compute regproc values for operators, etc
6 *
7 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
9 *
10 *
11 * IDENTIFICATION
12 * src/backend/optimizer/plan/setrefs.c
13 *
14 *-------------------------------------------------------------------------
15 */
16#include "postgres.h"
17
18#include "access/transam.h"
19#include "catalog/pg_type.h"
20#include "nodes/makefuncs.h"
21#include "nodes/nodeFuncs.h"
22#include "optimizer/optimizer.h"
23#include "optimizer/pathnode.h"
24#include "optimizer/planmain.h"
25#include "optimizer/planner.h"
26#include "optimizer/subselect.h"
27#include "optimizer/tlist.h"
30#include "tcop/utility.h"
31#include "utils/syscache.h"
32
33
34typedef enum
35{
36 NRM_EQUAL, /* expect exact match of nullingrels */
37 NRM_SUBSET, /* actual Var may have a subset of input */
38 NRM_SUPERSET, /* actual Var may have a superset of input */
40
41typedef struct
42{
43 int varno; /* RT index of Var */
44 AttrNumber varattno; /* attr number of Var */
45 AttrNumber resno; /* TLE position of Var */
46 Bitmapset *varnullingrels; /* Var's varnullingrels */
48
49typedef struct
50{
51 List *tlist; /* underlying target list */
52 int num_vars; /* number of plain Var tlist entries */
53 bool has_ph_vars; /* are there PlaceHolderVar entries? */
54 bool has_non_vars; /* are there other entries? */
55 tlist_vinfo vars[FLEXIBLE_ARRAY_MEMBER]; /* has num_vars entries */
57
58typedef struct
59{
62 double num_exec;
64
65typedef struct
66{
73 double num_exec;
75
76typedef struct
77{
83 double num_exec;
85
86typedef struct
87{
92
93/* Context info for flatten_rtes_walker() */
94typedef struct
95{
99
100/*
101 * Selecting the best alternative in an AlternativeSubPlan expression requires
102 * estimating how many times that expression will be evaluated. For an
103 * expression in a plan node's targetlist, the plan's estimated number of
104 * output rows is clearly what to use, but for an expression in a qual it's
105 * far less clear. Since AlternativeSubPlans aren't heavily used, we don't
106 * want to expend a lot of cycles making such estimates. What we use is twice
107 * the number of output rows. That's not entirely unfounded: we know that
108 * clause_selectivity() would fall back to a default selectivity estimate
109 * of 0.5 for any SubPlan, so if the qual containing the SubPlan is the last
110 * to be applied (which it likely would be, thanks to order_qual_clauses()),
111 * this matches what we could have estimated in a far more laborious fashion.
112 * Obviously there are many other scenarios, but it's probably not worth the
113 * trouble to try to improve on this estimate, especially not when we don't
114 * have a better estimate for the selectivity of the SubPlan qual itself.
115 */
116#define NUM_EXEC_TLIST(parentplan) ((parentplan)->plan_rows)
117#define NUM_EXEC_QUAL(parentplan) ((parentplan)->plan_rows * 2.0)
118
119/*
120 * Check if a Const node is a regclass value. We accept plain OID too,
121 * since a regclass Const will get folded to that type if it's an argument
122 * to oideq or similar operators. (This might result in some extraneous
123 * values in a plan's list of relation dependencies, but the worst result
124 * would be occasional useless replans.)
125 */
126#define ISREGCLASSCONST(con) \
127 (((con)->consttype == REGCLASSOID || (con)->consttype == OIDOID) && \
128 !(con)->constisnull)
129
130#define fix_scan_list(root, lst, rtoffset, num_exec) \
131 ((List *) fix_scan_expr(root, (Node *) (lst), rtoffset, num_exec))
132
133static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing);
134static void flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte);
136static void add_rte_to_flat_rtable(PlannerGlobal *glob, List *rteperminfos,
137 RangeTblEntry *rte);
138static Plan *set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset);
141 int rtoffset);
144 int rtoffset);
145static Plan *clean_up_removed_plan_level(Plan *parent, Plan *child);
147 ForeignScan *fscan,
148 int rtoffset);
150 CustomScan *cscan,
151 int rtoffset);
153 Append *aplan,
154 int rtoffset);
156 MergeAppend *mplan,
157 int rtoffset);
158static void set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset);
159static Relids offset_relid_set(Relids relids, int rtoffset);
160static Node *fix_scan_expr(PlannerInfo *root, Node *node,
161 int rtoffset, double num_exec);
163static bool fix_scan_expr_walker(Node *node, fix_scan_expr_context *context);
164static void set_join_references(PlannerInfo *root, Join *join, int rtoffset);
165static void set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset);
167static Node *convert_combining_aggrefs(Node *node, void *context);
168static void set_dummy_tlist_references(Plan *plan, int rtoffset);
169static indexed_tlist *build_tlist_index(List *tlist);
171 indexed_tlist *itlist,
172 int newvarno,
173 int rtoffset,
174 NullingRelsMatch nrm_match);
176 indexed_tlist *itlist,
177 int newvarno,
178 NullingRelsMatch nrm_match);
180 indexed_tlist *itlist,
181 int newvarno);
183 Index sortgroupref,
184 indexed_tlist *itlist,
185 int newvarno);
187 List *clauses,
188 indexed_tlist *outer_itlist,
189 indexed_tlist *inner_itlist,
190 Index acceptable_rel,
191 int rtoffset,
192 NullingRelsMatch nrm_match,
193 double num_exec);
194static Node *fix_join_expr_mutator(Node *node,
195 fix_join_expr_context *context);
197 Node *node,
198 indexed_tlist *subplan_itlist,
199 int newvarno,
200 int rtoffset,
201 NullingRelsMatch nrm_match,
202 double num_exec);
203static Node *fix_upper_expr_mutator(Node *node,
204 fix_upper_expr_context *context);
206 List *rlist,
207 Plan *topplan,
208 Index resultRelation,
209 int rtoffset);
211 List *runcondition,
212 Plan *plan);
213
214
215/*****************************************************************************
216 *
217 * SUBPLAN REFERENCES
218 *
219 *****************************************************************************/
220
221/*
222 * set_plan_references
223 *
224 * This is the final processing pass of the planner/optimizer. The plan
225 * tree is complete; we just have to adjust some representational details
226 * for the convenience of the executor:
227 *
228 * 1. We flatten the various subquery rangetables into a single list, and
229 * zero out RangeTblEntry fields that are not useful to the executor.
230 *
231 * 2. We adjust Vars in scan nodes to be consistent with the flat rangetable.
232 *
233 * 3. We adjust Vars in upper plan nodes to refer to the outputs of their
234 * subplans.
235 *
236 * 4. Aggrefs in Agg plan nodes need to be adjusted in some cases involving
237 * partial aggregation or minmax aggregate optimization.
238 *
239 * 5. PARAM_MULTIEXPR Params are replaced by regular PARAM_EXEC Params,
240 * now that we have finished planning all MULTIEXPR subplans.
241 *
242 * 6. AlternativeSubPlan expressions are replaced by just one of their
243 * alternatives, using an estimate of how many times they'll be executed.
244 *
245 * 7. We compute regproc OIDs for operators (ie, we look up the function
246 * that implements each op).
247 *
248 * 8. We create lists of specific objects that the plan depends on.
249 * This will be used by plancache.c to drive invalidation of cached plans.
250 * Relation dependencies are represented by OIDs, and everything else by
251 * PlanInvalItems (this distinction is motivated by the shared-inval APIs).
252 * Currently, relations, user-defined functions, and domains are the only
253 * types of objects that are explicitly tracked this way.
254 *
255 * 9. We assign every plan node in the tree a unique ID.
256 *
257 * We also perform one final optimization step, which is to delete
258 * SubqueryScan, Append, and MergeAppend plan nodes that aren't doing
259 * anything useful. The reason for doing this last is that
260 * it can't readily be done before set_plan_references, because it would
261 * break set_upper_references: the Vars in the child plan's top tlist
262 * wouldn't match up with the Vars in the outer plan tree. A SubqueryScan
263 * serves a necessary function as a buffer between outer query and subquery
264 * variable numbering ... but after we've flattened the rangetable this is
265 * no longer a problem, since then there's only one rtindex namespace.
266 * Likewise, Append and MergeAppend buffer between the parent and child vars
267 * of an appendrel, but we don't need to worry about that once we've done
268 * set_plan_references.
269 *
270 * set_plan_references recursively traverses the whole plan tree.
271 *
272 * The return value is normally the same Plan node passed in, but can be
273 * different when the passed-in Plan is a node we decide isn't needed.
274 *
275 * The flattened rangetable entries are appended to root->glob->finalrtable.
276 * Also, rowmarks entries are appended to root->glob->finalrowmarks, and the
277 * RT indexes of ModifyTable result relations to root->glob->resultRelations,
278 * and flattened AppendRelInfos are appended to root->glob->appendRelations.
279 * Plan dependencies are appended to root->glob->relationOids (for relations)
280 * and root->glob->invalItems (for everything else).
281 *
282 * Notice that we modify Plan nodes in-place, but use expression_tree_mutator
283 * to process targetlist and qual expressions. We can assume that the Plan
284 * nodes were just built by the planner and are not multiply referenced, but
285 * it's not so safe to assume that for expression tree nodes.
286 */
287Plan *
289{
290 Plan *result;
291 PlannerGlobal *glob = root->glob;
292 int rtoffset = list_length(glob->finalrtable);
293 ListCell *lc;
294
295 /*
296 * Add all the query's RTEs to the flattened rangetable. The live ones
297 * will have their rangetable indexes increased by rtoffset. (Additional
298 * RTEs, not referenced by the Plan tree, might get added after those.)
299 */
301
302 /*
303 * Adjust RT indexes of PlanRowMarks and add to final rowmarks list
304 */
305 foreach(lc, root->rowMarks)
306 {
308 PlanRowMark *newrc;
309
310 /* sanity check on existing row marks */
311 Assert(root->simple_rel_array[rc->rti] != NULL &&
312 root->simple_rte_array[rc->rti] != NULL);
313
314 /* flat copy is enough since all fields are scalars */
315 newrc = (PlanRowMark *) palloc(sizeof(PlanRowMark));
316 memcpy(newrc, rc, sizeof(PlanRowMark));
317
318 /* adjust indexes ... but *not* the rowmarkId */
319 newrc->rti += rtoffset;
320 newrc->prti += rtoffset;
321
322 glob->finalrowmarks = lappend(glob->finalrowmarks, newrc);
323 }
324
325 /*
326 * Adjust RT indexes of AppendRelInfos and add to final appendrels list.
327 * We assume the AppendRelInfos were built during planning and don't need
328 * to be copied.
329 */
330 foreach(lc, root->append_rel_list)
331 {
333
334 /* adjust RT indexes */
335 appinfo->parent_relid += rtoffset;
336 appinfo->child_relid += rtoffset;
337
338 /*
339 * Rather than adjust the translated_vars entries, just drop 'em.
340 * Neither the executor nor EXPLAIN currently need that data.
341 */
342 appinfo->translated_vars = NIL;
343
344 glob->appendRelations = lappend(glob->appendRelations, appinfo);
345 }
346
347 /* If needed, create workspace for processing AlternativeSubPlans */
348 if (root->hasAlternativeSubPlans)
349 {
350 root->isAltSubplan = (bool *)
351 palloc0(list_length(glob->subplans) * sizeof(bool));
352 root->isUsedSubplan = (bool *)
353 palloc0(list_length(glob->subplans) * sizeof(bool));
354 }
355
356 /* Now fix the Plan tree */
357 result = set_plan_refs(root, plan, rtoffset);
358
359 /*
360 * If we have AlternativeSubPlans, it is likely that we now have some
361 * unreferenced subplans in glob->subplans. To avoid expending cycles on
362 * those subplans later, get rid of them by setting those list entries to
363 * NULL. (Note: we can't do this immediately upon processing an
364 * AlternativeSubPlan, because there may be multiple copies of the
365 * AlternativeSubPlan, and they can get resolved differently.)
366 */
367 if (root->hasAlternativeSubPlans)
368 {
369 foreach(lc, glob->subplans)
370 {
371 int ndx = foreach_current_index(lc);
372
373 /*
374 * If it was used by some AlternativeSubPlan in this query level,
375 * but wasn't selected as best by any AlternativeSubPlan, then we
376 * don't need it. Do not touch subplans that aren't parts of
377 * AlternativeSubPlans.
378 */
379 if (root->isAltSubplan[ndx] && !root->isUsedSubplan[ndx])
380 lfirst(lc) = NULL;
381 }
382 }
383
384 return result;
385}
386
387/*
388 * Extract RangeTblEntries from the plan's rangetable, and add to flat rtable
389 *
390 * This can recurse into subquery plans; "recursing" is true if so.
391 *
392 * This also seems like a good place to add the query's RTEPermissionInfos to
393 * the flat rteperminfos.
394 */
395static void
397{
398 PlannerGlobal *glob = root->glob;
399 Index rti;
400 ListCell *lc;
401
402 /*
403 * Add the query's own RTEs to the flattened rangetable.
404 *
405 * At top level, we must add all RTEs so that their indexes in the
406 * flattened rangetable match up with their original indexes. When
407 * recursing, we only care about extracting relation RTEs (and subquery
408 * RTEs that were once relation RTEs).
409 */
410 foreach(lc, root->parse->rtable)
411 {
412 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
413
414 if (!recursing || rte->rtekind == RTE_RELATION ||
415 (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)))
416 add_rte_to_flat_rtable(glob, root->parse->rteperminfos, rte);
417 }
418
419 /*
420 * If there are any dead subqueries, they are not referenced in the Plan
421 * tree, so we must add RTEs contained in them to the flattened rtable
422 * separately. (If we failed to do this, the executor would not perform
423 * expected permission checks for tables mentioned in such subqueries.)
424 *
425 * Note: this pass over the rangetable can't be combined with the previous
426 * one, because that would mess up the numbering of the live RTEs in the
427 * flattened rangetable.
428 */
429 rti = 1;
430 foreach(lc, root->parse->rtable)
431 {
432 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
433
434 /*
435 * We should ignore inheritance-parent RTEs: their contents have been
436 * pulled up into our rangetable already. Also ignore any subquery
437 * RTEs without matching RelOptInfos, as they likewise have been
438 * pulled up.
439 */
440 if (rte->rtekind == RTE_SUBQUERY && !rte->inh &&
441 rti < root->simple_rel_array_size)
442 {
443 RelOptInfo *rel = root->simple_rel_array[rti];
444
445 if (rel != NULL)
446 {
447 Assert(rel->relid == rti); /* sanity check on array */
448
449 /*
450 * The subquery might never have been planned at all, if it
451 * was excluded on the basis of self-contradictory constraints
452 * in our query level. In this case apply
453 * flatten_unplanned_rtes.
454 *
455 * If it was planned but the result rel is dummy, we assume
456 * that it has been omitted from our plan tree (see
457 * set_subquery_pathlist), and recurse to pull up its RTEs.
458 *
459 * Otherwise, it should be represented by a SubqueryScan node
460 * somewhere in our plan tree, and we'll pull up its RTEs when
461 * we process that plan node.
462 *
463 * However, if we're recursing, then we should pull up RTEs
464 * whether the subquery is dummy or not, because we've found
465 * that some upper query level is treating this one as dummy,
466 * and so we won't scan this level's plan tree at all.
467 */
468 if (rel->subroot == NULL)
469 flatten_unplanned_rtes(glob, rte);
470 else if (recursing ||
472 UPPERREL_FINAL, NULL)))
474 }
475 }
476 rti++;
477 }
478}
479
480/*
481 * Extract RangeTblEntries from a subquery that was never planned at all
482 */
483
484static void
486{
487 flatten_rtes_walker_context cxt = {glob, rte->subquery};
488
489 /* Use query_tree_walker to find all RTEs in the parse tree */
490 (void) query_tree_walker(rte->subquery,
492 &cxt,
494}
495
496static bool
498{
499 if (node == NULL)
500 return false;
501 if (IsA(node, RangeTblEntry))
502 {
503 RangeTblEntry *rte = (RangeTblEntry *) node;
504
505 /* As above, we need only save relation RTEs and former relations */
506 if (rte->rtekind == RTE_RELATION ||
507 (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)))
508 add_rte_to_flat_rtable(cxt->glob, cxt->query->rteperminfos, rte);
509 return false;
510 }
511 if (IsA(node, Query))
512 {
513 /*
514 * Recurse into subselects. Must update cxt->query to this query so
515 * that the rtable and rteperminfos correspond with each other.
516 */
517 Query *save_query = cxt->query;
518 bool result;
519
520 cxt->query = (Query *) node;
521 result = query_tree_walker((Query *) node,
523 cxt,
525 cxt->query = save_query;
526 return result;
527 }
529}
530
531/*
532 * Add (a copy of) the given RTE to the final rangetable and also the
533 * corresponding RTEPermissionInfo, if any, to final rteperminfos.
534 *
535 * In the flat rangetable, we zero out substructure pointers that are not
536 * needed by the executor; this reduces the storage space and copying cost
537 * for cached plans. We keep only the ctename, alias, eref Alias fields,
538 * which are needed by EXPLAIN, and perminfoindex which is needed by the
539 * executor to fetch the RTE's RTEPermissionInfo.
540 */
541static void
543 RangeTblEntry *rte)
544{
545 RangeTblEntry *newrte;
546
547 /* flat copy to duplicate all the scalar fields */
548 newrte = (RangeTblEntry *) palloc(sizeof(RangeTblEntry));
549 memcpy(newrte, rte, sizeof(RangeTblEntry));
550
551 /* zap unneeded sub-structure */
552 newrte->tablesample = NULL;
553 newrte->subquery = NULL;
554 newrte->joinaliasvars = NIL;
555 newrte->joinleftcols = NIL;
556 newrte->joinrightcols = NIL;
557 newrte->join_using_alias = NULL;
558 newrte->functions = NIL;
559 newrte->tablefunc = NULL;
560 newrte->values_lists = NIL;
561 newrte->coltypes = NIL;
562 newrte->coltypmods = NIL;
563 newrte->colcollations = NIL;
564 newrte->groupexprs = NIL;
565 newrte->securityQuals = NIL;
566
567 glob->finalrtable = lappend(glob->finalrtable, newrte);
568
569 /*
570 * If it's a plain relation RTE (or a subquery that was once a view
571 * reference), add the relation OID to relationOids. Also add its new RT
572 * index to the set of relations to be potentially accessed during
573 * execution.
574 *
575 * We do this even though the RTE might be unreferenced in the plan tree;
576 * this would correspond to cases such as views that were expanded, child
577 * tables that were eliminated by constraint exclusion, etc. Schema
578 * invalidation on such a rel must still force rebuilding of the plan.
579 *
580 * Note we don't bother to avoid making duplicate list entries. We could,
581 * but it would probably cost more cycles than it would save.
582 */
583 if (newrte->rtekind == RTE_RELATION ||
584 (newrte->rtekind == RTE_SUBQUERY && OidIsValid(newrte->relid)))
585 {
586 glob->relationOids = lappend_oid(glob->relationOids, newrte->relid);
587 glob->allRelids = bms_add_member(glob->allRelids,
588 list_length(glob->finalrtable));
589 }
590
591 /*
592 * Add a copy of the RTEPermissionInfo, if any, corresponding to this RTE
593 * to the flattened global list.
594 */
595 if (rte->perminfoindex > 0)
596 {
597 RTEPermissionInfo *perminfo;
598 RTEPermissionInfo *newperminfo;
599
600 /* Get the existing one from this query's rteperminfos. */
601 perminfo = getRTEPermissionInfo(rteperminfos, newrte);
602
603 /*
604 * Add a new one to finalrteperminfos and copy the contents of the
605 * existing one into it. Note that addRTEPermissionInfo() also
606 * updates newrte->perminfoindex to point to newperminfo in
607 * finalrteperminfos.
608 */
609 newrte->perminfoindex = 0; /* expected by addRTEPermissionInfo() */
610 newperminfo = addRTEPermissionInfo(&glob->finalrteperminfos, newrte);
611 memcpy(newperminfo, perminfo, sizeof(RTEPermissionInfo));
612 }
613}
614
615/*
616 * set_plan_refs: recurse through the Plan nodes of a single subquery level
617 */
618static Plan *
620{
621 ListCell *l;
622
623 if (plan == NULL)
624 return NULL;
625
626 /* Assign this node a unique ID. */
627 plan->plan_node_id = root->glob->lastPlanNodeId++;
628
629 /*
630 * Plan-type-specific fixes
631 */
632 switch (nodeTag(plan))
633 {
634 case T_SeqScan:
635 {
636 SeqScan *splan = (SeqScan *) plan;
637
638 splan->scan.scanrelid += rtoffset;
639 splan->scan.plan.targetlist =
640 fix_scan_list(root, splan->scan.plan.targetlist,
641 rtoffset, NUM_EXEC_TLIST(plan));
642 splan->scan.plan.qual =
643 fix_scan_list(root, splan->scan.plan.qual,
644 rtoffset, NUM_EXEC_QUAL(plan));
645 }
646 break;
647 case T_SampleScan:
648 {
649 SampleScan *splan = (SampleScan *) plan;
650
651 splan->scan.scanrelid += rtoffset;
652 splan->scan.plan.targetlist =
653 fix_scan_list(root, splan->scan.plan.targetlist,
654 rtoffset, NUM_EXEC_TLIST(plan));
655 splan->scan.plan.qual =
656 fix_scan_list(root, splan->scan.plan.qual,
657 rtoffset, NUM_EXEC_QUAL(plan));
658 splan->tablesample = (TableSampleClause *)
660 rtoffset, 1);
661 }
662 break;
663 case T_IndexScan:
664 {
665 IndexScan *splan = (IndexScan *) plan;
666
667 splan->scan.scanrelid += rtoffset;
668 splan->scan.plan.targetlist =
669 fix_scan_list(root, splan->scan.plan.targetlist,
670 rtoffset, NUM_EXEC_TLIST(plan));
671 splan->scan.plan.qual =
672 fix_scan_list(root, splan->scan.plan.qual,
673 rtoffset, NUM_EXEC_QUAL(plan));
674 splan->indexqual =
676 rtoffset, 1);
677 splan->indexqualorig =
679 rtoffset, NUM_EXEC_QUAL(plan));
680 splan->indexorderby =
682 rtoffset, 1);
683 splan->indexorderbyorig =
685 rtoffset, NUM_EXEC_QUAL(plan));
686 }
687 break;
688 case T_IndexOnlyScan:
689 {
690 IndexOnlyScan *splan = (IndexOnlyScan *) plan;
691
692 return set_indexonlyscan_references(root, splan, rtoffset);
693 }
694 break;
695 case T_BitmapIndexScan:
696 {
698
699 splan->scan.scanrelid += rtoffset;
700 /* no need to fix targetlist and qual */
701 Assert(splan->scan.plan.targetlist == NIL);
702 Assert(splan->scan.plan.qual == NIL);
703 splan->indexqual =
704 fix_scan_list(root, splan->indexqual, rtoffset, 1);
705 splan->indexqualorig =
707 rtoffset, NUM_EXEC_QUAL(plan));
708 }
709 break;
710 case T_BitmapHeapScan:
711 {
713
714 splan->scan.scanrelid += rtoffset;
715 splan->scan.plan.targetlist =
716 fix_scan_list(root, splan->scan.plan.targetlist,
717 rtoffset, NUM_EXEC_TLIST(plan));
718 splan->scan.plan.qual =
719 fix_scan_list(root, splan->scan.plan.qual,
720 rtoffset, NUM_EXEC_QUAL(plan));
721 splan->bitmapqualorig =
723 rtoffset, NUM_EXEC_QUAL(plan));
724 }
725 break;
726 case T_TidScan:
727 {
728 TidScan *splan = (TidScan *) plan;
729
730 splan->scan.scanrelid += rtoffset;
731 splan->scan.plan.targetlist =
732 fix_scan_list(root, splan->scan.plan.targetlist,
733 rtoffset, NUM_EXEC_TLIST(plan));
734 splan->scan.plan.qual =
735 fix_scan_list(root, splan->scan.plan.qual,
736 rtoffset, NUM_EXEC_QUAL(plan));
737 splan->tidquals =
739 rtoffset, 1);
740 }
741 break;
742 case T_TidRangeScan:
743 {
744 TidRangeScan *splan = (TidRangeScan *) plan;
745
746 splan->scan.scanrelid += rtoffset;
747 splan->scan.plan.targetlist =
748 fix_scan_list(root, splan->scan.plan.targetlist,
749 rtoffset, NUM_EXEC_TLIST(plan));
750 splan->scan.plan.qual =
751 fix_scan_list(root, splan->scan.plan.qual,
752 rtoffset, NUM_EXEC_QUAL(plan));
753 splan->tidrangequals =
755 rtoffset, 1);
756 }
757 break;
758 case T_SubqueryScan:
759 /* Needs special treatment, see comments below */
761 (SubqueryScan *) plan,
762 rtoffset);
763 case T_FunctionScan:
764 {
765 FunctionScan *splan = (FunctionScan *) plan;
766
767 splan->scan.scanrelid += rtoffset;
768 splan->scan.plan.targetlist =
769 fix_scan_list(root, splan->scan.plan.targetlist,
770 rtoffset, NUM_EXEC_TLIST(plan));
771 splan->scan.plan.qual =
772 fix_scan_list(root, splan->scan.plan.qual,
773 rtoffset, NUM_EXEC_QUAL(plan));
774 splan->functions =
775 fix_scan_list(root, splan->functions, rtoffset, 1);
776 }
777 break;
778 case T_TableFuncScan:
779 {
780 TableFuncScan *splan = (TableFuncScan *) plan;
781
782 splan->scan.scanrelid += rtoffset;
783 splan->scan.plan.targetlist =
784 fix_scan_list(root, splan->scan.plan.targetlist,
785 rtoffset, NUM_EXEC_TLIST(plan));
786 splan->scan.plan.qual =
787 fix_scan_list(root, splan->scan.plan.qual,
788 rtoffset, NUM_EXEC_QUAL(plan));
789 splan->tablefunc = (TableFunc *)
790 fix_scan_expr(root, (Node *) splan->tablefunc,
791 rtoffset, 1);
792 }
793 break;
794 case T_ValuesScan:
795 {
796 ValuesScan *splan = (ValuesScan *) plan;
797
798 splan->scan.scanrelid += rtoffset;
799 splan->scan.plan.targetlist =
800 fix_scan_list(root, splan->scan.plan.targetlist,
801 rtoffset, NUM_EXEC_TLIST(plan));
802 splan->scan.plan.qual =
803 fix_scan_list(root, splan->scan.plan.qual,
804 rtoffset, NUM_EXEC_QUAL(plan));
805 splan->values_lists =
807 rtoffset, 1);
808 }
809 break;
810 case T_CteScan:
811 {
812 CteScan *splan = (CteScan *) plan;
813
814 splan->scan.scanrelid += rtoffset;
815 splan->scan.plan.targetlist =
816 fix_scan_list(root, splan->scan.plan.targetlist,
817 rtoffset, NUM_EXEC_TLIST(plan));
818 splan->scan.plan.qual =
819 fix_scan_list(root, splan->scan.plan.qual,
820 rtoffset, NUM_EXEC_QUAL(plan));
821 }
822 break;
823 case T_NamedTuplestoreScan:
824 {
826
827 splan->scan.scanrelid += rtoffset;
828 splan->scan.plan.targetlist =
829 fix_scan_list(root, splan->scan.plan.targetlist,
830 rtoffset, NUM_EXEC_TLIST(plan));
831 splan->scan.plan.qual =
832 fix_scan_list(root, splan->scan.plan.qual,
833 rtoffset, NUM_EXEC_QUAL(plan));
834 }
835 break;
836 case T_WorkTableScan:
837 {
838 WorkTableScan *splan = (WorkTableScan *) plan;
839
840 splan->scan.scanrelid += rtoffset;
841 splan->scan.plan.targetlist =
842 fix_scan_list(root, splan->scan.plan.targetlist,
843 rtoffset, NUM_EXEC_TLIST(plan));
844 splan->scan.plan.qual =
845 fix_scan_list(root, splan->scan.plan.qual,
846 rtoffset, NUM_EXEC_QUAL(plan));
847 }
848 break;
849 case T_ForeignScan:
851 break;
852 case T_CustomScan:
854 break;
855
856 case T_NestLoop:
857 case T_MergeJoin:
858 case T_HashJoin:
859 set_join_references(root, (Join *) plan, rtoffset);
860 break;
861
862 case T_Gather:
863 case T_GatherMerge:
864 {
865 set_upper_references(root, plan, rtoffset);
867 }
868 break;
869
870 case T_Hash:
871 set_hash_references(root, plan, rtoffset);
872 break;
873
874 case T_Memoize:
875 {
876 Memoize *mplan = (Memoize *) plan;
877
878 /*
879 * Memoize does not evaluate its targetlist. It just uses the
880 * same targetlist from its outer subnode.
881 */
883
884 mplan->param_exprs = fix_scan_list(root, mplan->param_exprs,
885 rtoffset,
887 break;
888 }
889
890 case T_Material:
891 case T_Sort:
892 case T_IncrementalSort:
893 case T_Unique:
894 case T_SetOp:
895
896 /*
897 * These plan types don't actually bother to evaluate their
898 * targetlists, because they just return their unmodified input
899 * tuples. Even though the targetlist won't be used by the
900 * executor, we fix it up for possible use by EXPLAIN (not to
901 * mention ease of debugging --- wrong varnos are very confusing).
902 */
904
905 /*
906 * Since these plan types don't check quals either, we should not
907 * find any qual expression attached to them.
908 */
909 Assert(plan->qual == NIL);
910 break;
911 case T_LockRows:
912 {
913 LockRows *splan = (LockRows *) plan;
914
915 /*
916 * Like the plan types above, LockRows doesn't evaluate its
917 * tlist or quals. But we have to fix up the RT indexes in
918 * its rowmarks.
919 */
921 Assert(splan->plan.qual == NIL);
922
923 foreach(l, splan->rowMarks)
924 {
925 PlanRowMark *rc = (PlanRowMark *) lfirst(l);
926
927 rc->rti += rtoffset;
928 rc->prti += rtoffset;
929 }
930 }
931 break;
932 case T_Limit:
933 {
934 Limit *splan = (Limit *) plan;
935
936 /*
937 * Like the plan types above, Limit doesn't evaluate its tlist
938 * or quals. It does have live expressions for limit/offset,
939 * however; and those cannot contain subplan variable refs, so
940 * fix_scan_expr works for them.
941 */
943 Assert(splan->plan.qual == NIL);
944
945 splan->limitOffset =
946 fix_scan_expr(root, splan->limitOffset, rtoffset, 1);
947 splan->limitCount =
948 fix_scan_expr(root, splan->limitCount, rtoffset, 1);
949 }
950 break;
951 case T_Agg:
952 {
953 Agg *agg = (Agg *) plan;
954
955 /*
956 * If this node is combining partial-aggregation results, we
957 * must convert its Aggrefs to contain references to the
958 * partial-aggregate subexpressions that will be available
959 * from the child plan node.
960 */
962 {
963 plan->targetlist = (List *)
964 convert_combining_aggrefs((Node *) plan->targetlist,
965 NULL);
966 plan->qual = (List *)
968 NULL);
969 }
970
971 set_upper_references(root, plan, rtoffset);
972 }
973 break;
974 case T_Group:
975 set_upper_references(root, plan, rtoffset);
976 break;
977 case T_WindowAgg:
978 {
979 WindowAgg *wplan = (WindowAgg *) plan;
980
981 /*
982 * Adjust the WindowAgg's run conditions by swapping the
983 * WindowFuncs references out to instead reference the Var in
984 * the scan slot so that when the executor evaluates the
985 * runCondition, it receives the WindowFunc's value from the
986 * slot that the result has just been stored into rather than
987 * evaluating the WindowFunc all over again.
988 */
990 wplan->runCondition,
991 (Plan *) wplan);
992
993 set_upper_references(root, plan, rtoffset);
994
995 /*
996 * Like Limit node limit/offset expressions, WindowAgg has
997 * frame offset expressions, which cannot contain subplan
998 * variable refs, so fix_scan_expr works for them.
999 */
1000 wplan->startOffset =
1001 fix_scan_expr(root, wplan->startOffset, rtoffset, 1);
1002 wplan->endOffset =
1003 fix_scan_expr(root, wplan->endOffset, rtoffset, 1);
1005 wplan->runCondition,
1006 rtoffset,
1009 wplan->runConditionOrig,
1010 rtoffset,
1012 }
1013 break;
1014 case T_Result:
1015 {
1016 Result *splan = (Result *) plan;
1017
1018 /*
1019 * Result may or may not have a subplan; if not, it's more
1020 * like a scan node than an upper node.
1021 */
1022 if (splan->plan.lefttree != NULL)
1023 set_upper_references(root, plan, rtoffset);
1024 else
1025 {
1026 /*
1027 * The tlist of a childless Result could contain
1028 * unresolved ROWID_VAR Vars, in case it's representing a
1029 * target relation which is completely empty because of
1030 * constraint exclusion. Replace any such Vars by null
1031 * constants, as though they'd been resolved for a leaf
1032 * scan node that doesn't support them. We could have
1033 * fix_scan_expr do this, but since the case is only
1034 * expected to occur here, it seems safer to special-case
1035 * it here and keep the assertions that ROWID_VARs
1036 * shouldn't be seen by fix_scan_expr.
1037 *
1038 * We also must handle the case where set operations have
1039 * been short-circuited resulting in a dummy Result node.
1040 * prepunion.c uses varno==0 for the set op targetlist.
1041 * See generate_setop_tlist() and generate_setop_tlist().
1042 * Here we rewrite these to use varno==1, which is the
1043 * varno of the first set-op child. Without this, EXPLAIN
1044 * will have trouble displaying targetlists of dummy set
1045 * operations.
1046 */
1047 foreach(l, splan->plan.targetlist)
1048 {
1049 TargetEntry *tle = (TargetEntry *) lfirst(l);
1050 Var *var = (Var *) tle->expr;
1051
1052 if (var && IsA(var, Var))
1053 {
1054 if (var->varno == ROWID_VAR)
1055 tle->expr = (Expr *) makeNullConst(var->vartype,
1056 var->vartypmod,
1057 var->varcollid);
1058 else if (var->varno == 0)
1059 tle->expr = (Expr *) makeVar(1,
1060 var->varattno,
1061 var->vartype,
1062 var->vartypmod,
1063 var->varcollid,
1064 var->varlevelsup);
1065 }
1066 }
1067
1068 splan->plan.targetlist =
1070 rtoffset, NUM_EXEC_TLIST(plan));
1071 splan->plan.qual =
1072 fix_scan_list(root, splan->plan.qual,
1073 rtoffset, NUM_EXEC_QUAL(plan));
1074 }
1075 /* resconstantqual can't contain any subplan variable refs */
1076 splan->resconstantqual =
1077 fix_scan_expr(root, splan->resconstantqual, rtoffset, 1);
1078 /* adjust the relids set */
1079 splan->relids = offset_relid_set(splan->relids, rtoffset);
1080 }
1081 break;
1082 case T_ProjectSet:
1083 set_upper_references(root, plan, rtoffset);
1084 break;
1085 case T_ModifyTable:
1086 {
1087 ModifyTable *splan = (ModifyTable *) plan;
1088 Plan *subplan = outerPlan(splan);
1089
1090 Assert(splan->plan.targetlist == NIL);
1091 Assert(splan->plan.qual == NIL);
1092
1093 splan->withCheckOptionLists =
1095 rtoffset, 1);
1096
1097 if (splan->returningLists)
1098 {
1099 List *newRL = NIL;
1100 ListCell *lcrl,
1101 *lcrr;
1102
1103 /*
1104 * Pass each per-resultrel returningList through
1105 * set_returning_clause_references().
1106 */
1108 forboth(lcrl, splan->returningLists,
1109 lcrr, splan->resultRelations)
1110 {
1111 List *rlist = (List *) lfirst(lcrl);
1112 Index resultrel = lfirst_int(lcrr);
1113
1115 rlist,
1116 subplan,
1117 resultrel,
1118 rtoffset);
1119 newRL = lappend(newRL, rlist);
1120 }
1121 splan->returningLists = newRL;
1122
1123 /*
1124 * Set up the visible plan targetlist as being the same as
1125 * the first RETURNING list. This is mostly for the use
1126 * of EXPLAIN; the executor won't execute that targetlist,
1127 * although it does use it to prepare the node's result
1128 * tuple slot. We postpone this step until here so that
1129 * we don't have to do set_returning_clause_references()
1130 * twice on identical targetlists.
1131 */
1132 splan->plan.targetlist = copyObject(linitial(newRL));
1133 }
1134
1135 /*
1136 * We treat ModifyTable with ON CONFLICT as a form of 'pseudo
1137 * join', where the inner side is the EXCLUDED tuple.
1138 * Therefore use fix_join_expr to setup the relevant variables
1139 * to INNER_VAR. We explicitly don't create any OUTER_VARs as
1140 * those are already used by RETURNING and it seems better to
1141 * be non-conflicting.
1142 */
1143 if (splan->onConflictSet)
1144 {
1145 indexed_tlist *itlist;
1146
1147 itlist = build_tlist_index(splan->exclRelTlist);
1148
1149 splan->onConflictSet =
1151 NULL, itlist,
1153 rtoffset, NRM_EQUAL, NUM_EXEC_QUAL(plan));
1154
1155 splan->onConflictWhere = (Node *)
1157 NULL, itlist,
1159 rtoffset, NRM_EQUAL, NUM_EXEC_QUAL(plan));
1160
1161 pfree(itlist);
1162
1163 splan->exclRelTlist =
1164 fix_scan_list(root, splan->exclRelTlist, rtoffset, 1);
1165 }
1166
1167 /*
1168 * The MERGE statement produces the target rows by performing
1169 * a right join between the target relation and the source
1170 * relation (which could be a plain relation or a subquery).
1171 * The INSERT and UPDATE actions of the MERGE statement
1172 * require access to the columns from the source relation. We
1173 * arrange things so that the source relation attributes are
1174 * available as INNER_VAR and the target relation attributes
1175 * are available from the scan tuple.
1176 */
1177 if (splan->mergeActionLists != NIL)
1178 {
1179 List *newMJC = NIL;
1180 ListCell *lca,
1181 *lcj,
1182 *lcr;
1183
1184 /*
1185 * Fix the targetList of individual action nodes so that
1186 * the so-called "source relation" Vars are referenced as
1187 * INNER_VAR. Note that for this to work correctly during
1188 * execution, the ecxt_innertuple must be set to the tuple
1189 * obtained by executing the subplan, which is what
1190 * constitutes the "source relation".
1191 *
1192 * We leave the Vars from the result relation (i.e. the
1193 * target relation) unchanged i.e. those Vars would be
1194 * picked from the scan slot. So during execution, we must
1195 * ensure that ecxt_scantuple is setup correctly to refer
1196 * to the tuple from the target relation.
1197 */
1198 indexed_tlist *itlist;
1199
1200 itlist = build_tlist_index(subplan->targetlist);
1201
1203 lcj, splan->mergeJoinConditions,
1204 lcr, splan->resultRelations)
1205 {
1206 List *mergeActionList = lfirst(lca);
1207 Node *mergeJoinCondition = lfirst(lcj);
1208 Index resultrel = lfirst_int(lcr);
1209
1210 foreach(l, mergeActionList)
1211 {
1213
1214 /* Fix targetList of each action. */
1215 action->targetList = fix_join_expr(root,
1216 action->targetList,
1217 NULL, itlist,
1218 resultrel,
1219 rtoffset,
1220 NRM_EQUAL,
1222
1223 /* Fix quals too. */
1224 action->qual = (Node *) fix_join_expr(root,
1225 (List *) action->qual,
1226 NULL, itlist,
1227 resultrel,
1228 rtoffset,
1229 NRM_EQUAL,
1231 }
1232
1233 /* Fix join condition too. */
1234 mergeJoinCondition = (Node *)
1236 (List *) mergeJoinCondition,
1237 NULL, itlist,
1238 resultrel,
1239 rtoffset,
1240 NRM_EQUAL,
1242 newMJC = lappend(newMJC, mergeJoinCondition);
1243 }
1244 splan->mergeJoinConditions = newMJC;
1245 }
1246
1247 splan->nominalRelation += rtoffset;
1248 if (splan->rootRelation)
1249 splan->rootRelation += rtoffset;
1250 splan->exclRelRTI += rtoffset;
1251
1252 foreach(l, splan->resultRelations)
1253 {
1254 lfirst_int(l) += rtoffset;
1255 }
1256 foreach(l, splan->rowMarks)
1257 {
1258 PlanRowMark *rc = (PlanRowMark *) lfirst(l);
1259
1260 rc->rti += rtoffset;
1261 rc->prti += rtoffset;
1262 }
1263
1264 /*
1265 * Append this ModifyTable node's final result relation RT
1266 * index(es) to the global list for the plan.
1267 */
1268 root->glob->resultRelations =
1269 list_concat(root->glob->resultRelations,
1270 splan->resultRelations);
1271 if (splan->rootRelation)
1272 {
1273 root->glob->resultRelations =
1274 lappend_int(root->glob->resultRelations,
1275 splan->rootRelation);
1276 }
1277 }
1278 break;
1279 case T_Append:
1280 /* Needs special treatment, see comments below */
1282 (Append *) plan,
1283 rtoffset);
1284 case T_MergeAppend:
1285 /* Needs special treatment, see comments below */
1287 (MergeAppend *) plan,
1288 rtoffset);
1289 case T_RecursiveUnion:
1290 /* This doesn't evaluate targetlist or check quals either */
1292 Assert(plan->qual == NIL);
1293 break;
1294 case T_BitmapAnd:
1295 {
1296 BitmapAnd *splan = (BitmapAnd *) plan;
1297
1298 /* BitmapAnd works like Append, but has no tlist */
1299 Assert(splan->plan.targetlist == NIL);
1300 Assert(splan->plan.qual == NIL);
1301 foreach(l, splan->bitmapplans)
1302 {
1304 (Plan *) lfirst(l),
1305 rtoffset);
1306 }
1307 }
1308 break;
1309 case T_BitmapOr:
1310 {
1311 BitmapOr *splan = (BitmapOr *) plan;
1312
1313 /* BitmapOr works like Append, but has no tlist */
1314 Assert(splan->plan.targetlist == NIL);
1315 Assert(splan->plan.qual == NIL);
1316 foreach(l, splan->bitmapplans)
1317 {
1319 (Plan *) lfirst(l),
1320 rtoffset);
1321 }
1322 }
1323 break;
1324 default:
1325 elog(ERROR, "unrecognized node type: %d",
1326 (int) nodeTag(plan));
1327 break;
1328 }
1329
1330 /*
1331 * Now recurse into child plans, if any
1332 *
1333 * NOTE: it is essential that we recurse into child plans AFTER we set
1334 * subplan references in this plan's tlist and quals. If we did the
1335 * reference-adjustments bottom-up, then we would fail to match this
1336 * plan's var nodes against the already-modified nodes of the children.
1337 */
1338 plan->lefttree = set_plan_refs(root, plan->lefttree, rtoffset);
1339 plan->righttree = set_plan_refs(root, plan->righttree, rtoffset);
1340
1341 return plan;
1342}
1343
1344/*
1345 * set_indexonlyscan_references
1346 * Do set_plan_references processing on an IndexOnlyScan
1347 *
1348 * This is unlike the handling of a plain IndexScan because we have to
1349 * convert Vars referencing the heap into Vars referencing the index.
1350 * We can use the fix_upper_expr machinery for that, by working from a
1351 * targetlist describing the index columns.
1352 */
1353static Plan *
1356 int rtoffset)
1357{
1358 indexed_tlist *index_itlist;
1359 List *stripped_indextlist;
1360 ListCell *lc;
1361
1362 /*
1363 * Vars in the plan node's targetlist, qual, and recheckqual must only
1364 * reference columns that the index AM can actually return. To ensure
1365 * this, remove non-returnable columns (which are marked as resjunk) from
1366 * the indexed tlist. We can just drop them because the indexed_tlist
1367 * machinery pays attention to TLE resnos, not physical list position.
1368 */
1369 stripped_indextlist = NIL;
1370 foreach(lc, plan->indextlist)
1371 {
1372 TargetEntry *indextle = (TargetEntry *) lfirst(lc);
1373
1374 if (!indextle->resjunk)
1375 stripped_indextlist = lappend(stripped_indextlist, indextle);
1376 }
1377
1378 index_itlist = build_tlist_index(stripped_indextlist);
1379
1380 plan->scan.scanrelid += rtoffset;
1381 plan->scan.plan.targetlist = (List *)
1383 (Node *) plan->scan.plan.targetlist,
1384 index_itlist,
1385 INDEX_VAR,
1386 rtoffset,
1387 NRM_EQUAL,
1388 NUM_EXEC_TLIST((Plan *) plan));
1389 plan->scan.plan.qual = (List *)
1391 (Node *) plan->scan.plan.qual,
1392 index_itlist,
1393 INDEX_VAR,
1394 rtoffset,
1395 NRM_EQUAL,
1396 NUM_EXEC_QUAL((Plan *) plan));
1397 plan->recheckqual = (List *)
1399 (Node *) plan->recheckqual,
1400 index_itlist,
1401 INDEX_VAR,
1402 rtoffset,
1403 NRM_EQUAL,
1404 NUM_EXEC_QUAL((Plan *) plan));
1405 /* indexqual is already transformed to reference index columns */
1406 plan->indexqual = fix_scan_list(root, plan->indexqual,
1407 rtoffset, 1);
1408 /* indexorderby is already transformed to reference index columns */
1409 plan->indexorderby = fix_scan_list(root, plan->indexorderby,
1410 rtoffset, 1);
1411 /* indextlist must NOT be transformed to reference index columns */
1412 plan->indextlist = fix_scan_list(root, plan->indextlist,
1413 rtoffset, NUM_EXEC_TLIST((Plan *) plan));
1414
1415 pfree(index_itlist);
1416
1417 return (Plan *) plan;
1418}
1419
1420/*
1421 * set_subqueryscan_references
1422 * Do set_plan_references processing on a SubqueryScan
1423 *
1424 * We try to strip out the SubqueryScan entirely; if we can't, we have
1425 * to do the normal processing on it.
1426 */
1427static Plan *
1430 int rtoffset)
1431{
1432 RelOptInfo *rel;
1433 Plan *result;
1434
1435 /* Need to look up the subquery's RelOptInfo, since we need its subroot */
1436 rel = find_base_rel(root, plan->scan.scanrelid);
1437
1438 /* Recursively process the subplan */
1439 plan->subplan = set_plan_references(rel->subroot, plan->subplan);
1440
1442 {
1443 /*
1444 * We can omit the SubqueryScan node and just pull up the subplan.
1445 */
1446 result = clean_up_removed_plan_level((Plan *) plan, plan->subplan);
1447 }
1448 else
1449 {
1450 /*
1451 * Keep the SubqueryScan node. We have to do the processing that
1452 * set_plan_references would otherwise have done on it. Notice we do
1453 * not do set_upper_references() here, because a SubqueryScan will
1454 * always have been created with correct references to its subplan's
1455 * outputs to begin with.
1456 */
1457 plan->scan.scanrelid += rtoffset;
1458 plan->scan.plan.targetlist =
1459 fix_scan_list(root, plan->scan.plan.targetlist,
1460 rtoffset, NUM_EXEC_TLIST((Plan *) plan));
1461 plan->scan.plan.qual =
1462 fix_scan_list(root, plan->scan.plan.qual,
1463 rtoffset, NUM_EXEC_QUAL((Plan *) plan));
1464
1465 result = (Plan *) plan;
1466 }
1467
1468 return result;
1469}
1470
1471/*
1472 * trivial_subqueryscan
1473 * Detect whether a SubqueryScan can be deleted from the plan tree.
1474 *
1475 * We can delete it if it has no qual to check and the targetlist just
1476 * regurgitates the output of the child plan.
1477 *
1478 * This can be called from mark_async_capable_plan(), a helper function for
1479 * create_append_plan(), before set_subqueryscan_references(), to determine
1480 * triviality of a SubqueryScan that is a child of an Append node. So we
1481 * cache the result in the SubqueryScan node to avoid repeated computation.
1482 *
1483 * Note: when called from mark_async_capable_plan(), we determine the result
1484 * before running finalize_plan() on the SubqueryScan node (if needed) and
1485 * set_plan_references() on the subplan tree, but this would be safe, because
1486 * 1) finalize_plan() doesn't modify the tlist or quals for the SubqueryScan
1487 * node (or that for any plan node in the subplan tree), and
1488 * 2) set_plan_references() modifies the tlist for every plan node in the
1489 * subplan tree, but keeps const/resjunk columns as const/resjunk ones and
1490 * preserves the length and order of the tlist, and
1491 * 3) set_plan_references() might delete the topmost plan node like an Append
1492 * or MergeAppend from the subplan tree and pull up the child plan node,
1493 * but in that case, the tlist for the child plan node exactly matches the
1494 * parent.
1495 */
1496bool
1498{
1499 int attrno;
1500 ListCell *lp,
1501 *lc;
1502
1503 /* We might have detected this already; in which case reuse the result */
1504 if (plan->scanstatus == SUBQUERY_SCAN_TRIVIAL)
1505 return true;
1506 if (plan->scanstatus == SUBQUERY_SCAN_NONTRIVIAL)
1507 return false;
1508 Assert(plan->scanstatus == SUBQUERY_SCAN_UNKNOWN);
1509 /* Initially, mark the SubqueryScan as non-deletable from the plan tree */
1510 plan->scanstatus = SUBQUERY_SCAN_NONTRIVIAL;
1511
1512 if (plan->scan.plan.qual != NIL)
1513 return false;
1514
1515 if (list_length(plan->scan.plan.targetlist) !=
1516 list_length(plan->subplan->targetlist))
1517 return false; /* tlists not same length */
1518
1519 attrno = 1;
1520 forboth(lp, plan->scan.plan.targetlist, lc, plan->subplan->targetlist)
1521 {
1522 TargetEntry *ptle = (TargetEntry *) lfirst(lp);
1523 TargetEntry *ctle = (TargetEntry *) lfirst(lc);
1524
1525 if (ptle->resjunk != ctle->resjunk)
1526 return false; /* tlist doesn't match junk status */
1527
1528 /*
1529 * We accept either a Var referencing the corresponding element of the
1530 * subplan tlist, or a Const equaling the subplan element. See
1531 * generate_setop_tlist() for motivation.
1532 */
1533 if (ptle->expr && IsA(ptle->expr, Var))
1534 {
1535 Var *var = (Var *) ptle->expr;
1536
1537 Assert(var->varno == plan->scan.scanrelid);
1538 Assert(var->varlevelsup == 0);
1539 if (var->varattno != attrno)
1540 return false; /* out of order */
1541 }
1542 else if (ptle->expr && IsA(ptle->expr, Const))
1543 {
1544 if (!equal(ptle->expr, ctle->expr))
1545 return false;
1546 }
1547 else
1548 return false;
1549
1550 attrno++;
1551 }
1552
1553 /* Re-mark the SubqueryScan as deletable from the plan tree */
1554 plan->scanstatus = SUBQUERY_SCAN_TRIVIAL;
1555
1556 return true;
1557}
1558
1559/*
1560 * clean_up_removed_plan_level
1561 * Do necessary cleanup when we strip out a SubqueryScan, Append, etc
1562 *
1563 * We are dropping the "parent" plan in favor of returning just its "child".
1564 * A few small tweaks are needed.
1565 */
1566static Plan *
1568{
1569 /*
1570 * We have to be sure we don't lose any initplans, so move any that were
1571 * attached to the parent plan to the child. If any are parallel-unsafe,
1572 * the child is no longer parallel-safe. As a cosmetic matter, also add
1573 * the initplans' run costs to the child's costs.
1574 */
1575 if (parent->initPlan)
1576 {
1577 Cost initplan_cost;
1578 bool unsafe_initplans;
1579
1581 &initplan_cost, &unsafe_initplans);
1582 child->startup_cost += initplan_cost;
1583 child->total_cost += initplan_cost;
1584 if (unsafe_initplans)
1585 child->parallel_safe = false;
1586
1587 /*
1588 * Attach plans this way so that parent's initplans are processed
1589 * before any pre-existing initplans of the child. Probably doesn't
1590 * matter, but let's preserve the ordering just in case.
1591 */
1592 child->initPlan = list_concat(parent->initPlan,
1593 child->initPlan);
1594 }
1595
1596 /*
1597 * We also have to transfer the parent's column labeling info into the
1598 * child, else columns sent to client will be improperly labeled if this
1599 * is the topmost plan level. resjunk and so on may be important too.
1600 */
1602
1603 return child;
1604}
1605
1606/*
1607 * set_foreignscan_references
1608 * Do set_plan_references processing on a ForeignScan
1609 */
1610static void
1612 ForeignScan *fscan,
1613 int rtoffset)
1614{
1615 /* Adjust scanrelid if it's valid */
1616 if (fscan->scan.scanrelid > 0)
1617 fscan->scan.scanrelid += rtoffset;
1618
1619 if (fscan->fdw_scan_tlist != NIL || fscan->scan.scanrelid == 0)
1620 {
1621 /*
1622 * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals to reference
1623 * foreign scan tuple
1624 */
1626
1627 fscan->scan.plan.targetlist = (List *)
1629 (Node *) fscan->scan.plan.targetlist,
1630 itlist,
1631 INDEX_VAR,
1632 rtoffset,
1633 NRM_EQUAL,
1634 NUM_EXEC_TLIST((Plan *) fscan));
1635 fscan->scan.plan.qual = (List *)
1637 (Node *) fscan->scan.plan.qual,
1638 itlist,
1639 INDEX_VAR,
1640 rtoffset,
1641 NRM_EQUAL,
1642 NUM_EXEC_QUAL((Plan *) fscan));
1643 fscan->fdw_exprs = (List *)
1645 (Node *) fscan->fdw_exprs,
1646 itlist,
1647 INDEX_VAR,
1648 rtoffset,
1649 NRM_EQUAL,
1650 NUM_EXEC_QUAL((Plan *) fscan));
1651 fscan->fdw_recheck_quals = (List *)
1653 (Node *) fscan->fdw_recheck_quals,
1654 itlist,
1655 INDEX_VAR,
1656 rtoffset,
1657 NRM_EQUAL,
1658 NUM_EXEC_QUAL((Plan *) fscan));
1659 pfree(itlist);
1660 /* fdw_scan_tlist itself just needs fix_scan_list() adjustments */
1661 fscan->fdw_scan_tlist =
1662 fix_scan_list(root, fscan->fdw_scan_tlist,
1663 rtoffset, NUM_EXEC_TLIST((Plan *) fscan));
1664 }
1665 else
1666 {
1667 /*
1668 * Adjust tlist, qual, fdw_exprs, fdw_recheck_quals in the standard
1669 * way
1670 */
1671 fscan->scan.plan.targetlist =
1672 fix_scan_list(root, fscan->scan.plan.targetlist,
1673 rtoffset, NUM_EXEC_TLIST((Plan *) fscan));
1674 fscan->scan.plan.qual =
1675 fix_scan_list(root, fscan->scan.plan.qual,
1676 rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
1677 fscan->fdw_exprs =
1678 fix_scan_list(root, fscan->fdw_exprs,
1679 rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
1680 fscan->fdw_recheck_quals =
1681 fix_scan_list(root, fscan->fdw_recheck_quals,
1682 rtoffset, NUM_EXEC_QUAL((Plan *) fscan));
1683 }
1684
1685 fscan->fs_relids = offset_relid_set(fscan->fs_relids, rtoffset);
1686 fscan->fs_base_relids = offset_relid_set(fscan->fs_base_relids, rtoffset);
1687
1688 /* Adjust resultRelation if it's valid */
1689 if (fscan->resultRelation > 0)
1690 fscan->resultRelation += rtoffset;
1691}
1692
1693/*
1694 * set_customscan_references
1695 * Do set_plan_references processing on a CustomScan
1696 */
1697static void
1699 CustomScan *cscan,
1700 int rtoffset)
1701{
1702 ListCell *lc;
1703
1704 /* Adjust scanrelid if it's valid */
1705 if (cscan->scan.scanrelid > 0)
1706 cscan->scan.scanrelid += rtoffset;
1707
1708 if (cscan->custom_scan_tlist != NIL || cscan->scan.scanrelid == 0)
1709 {
1710 /* Adjust tlist, qual, custom_exprs to reference custom scan tuple */
1712
1713 cscan->scan.plan.targetlist = (List *)
1715 (Node *) cscan->scan.plan.targetlist,
1716 itlist,
1717 INDEX_VAR,
1718 rtoffset,
1719 NRM_EQUAL,
1720 NUM_EXEC_TLIST((Plan *) cscan));
1721 cscan->scan.plan.qual = (List *)
1723 (Node *) cscan->scan.plan.qual,
1724 itlist,
1725 INDEX_VAR,
1726 rtoffset,
1727 NRM_EQUAL,
1728 NUM_EXEC_QUAL((Plan *) cscan));
1729 cscan->custom_exprs = (List *)
1731 (Node *) cscan->custom_exprs,
1732 itlist,
1733 INDEX_VAR,
1734 rtoffset,
1735 NRM_EQUAL,
1736 NUM_EXEC_QUAL((Plan *) cscan));
1737 pfree(itlist);
1738 /* custom_scan_tlist itself just needs fix_scan_list() adjustments */
1739 cscan->custom_scan_tlist =
1740 fix_scan_list(root, cscan->custom_scan_tlist,
1741 rtoffset, NUM_EXEC_TLIST((Plan *) cscan));
1742 }
1743 else
1744 {
1745 /* Adjust tlist, qual, custom_exprs in the standard way */
1746 cscan->scan.plan.targetlist =
1747 fix_scan_list(root, cscan->scan.plan.targetlist,
1748 rtoffset, NUM_EXEC_TLIST((Plan *) cscan));
1749 cscan->scan.plan.qual =
1750 fix_scan_list(root, cscan->scan.plan.qual,
1751 rtoffset, NUM_EXEC_QUAL((Plan *) cscan));
1752 cscan->custom_exprs =
1753 fix_scan_list(root, cscan->custom_exprs,
1754 rtoffset, NUM_EXEC_QUAL((Plan *) cscan));
1755 }
1756
1757 /* Adjust child plan-nodes recursively, if needed */
1758 foreach(lc, cscan->custom_plans)
1759 {
1760 lfirst(lc) = set_plan_refs(root, (Plan *) lfirst(lc), rtoffset);
1761 }
1762
1763 cscan->custom_relids = offset_relid_set(cscan->custom_relids, rtoffset);
1764}
1765
1766/*
1767 * register_partpruneinfo
1768 * Subroutine for set_append_references and set_mergeappend_references
1769 *
1770 * Add the PartitionPruneInfo from root->partPruneInfos at the given index
1771 * into PlannerGlobal->partPruneInfos and return its index there.
1772 *
1773 * Also update the RT indexes present in PartitionedRelPruneInfos to add the
1774 * offset.
1775 *
1776 * Finally, if there are initial pruning steps, add the RT indexes of the
1777 * leaf partitions to the set of relations that are prunable at execution
1778 * startup time.
1779 */
1780static int
1781register_partpruneinfo(PlannerInfo *root, int part_prune_index, int rtoffset)
1782{
1783 PlannerGlobal *glob = root->glob;
1784 PartitionPruneInfo *pinfo;
1785 ListCell *l;
1786
1787 Assert(part_prune_index >= 0 &&
1788 part_prune_index < list_length(root->partPruneInfos));
1789 pinfo = list_nth_node(PartitionPruneInfo, root->partPruneInfos,
1790 part_prune_index);
1791
1792 pinfo->relids = offset_relid_set(pinfo->relids, rtoffset);
1793 foreach(l, pinfo->prune_infos)
1794 {
1795 List *prune_infos = lfirst(l);
1796 ListCell *l2;
1797
1798 foreach(l2, prune_infos)
1799 {
1800 PartitionedRelPruneInfo *prelinfo = lfirst(l2);
1801 int i;
1802
1803 prelinfo->rtindex += rtoffset;
1804 prelinfo->initial_pruning_steps =
1806 rtoffset, 1);
1807 prelinfo->exec_pruning_steps =
1809 rtoffset, 1);
1810
1811 for (i = 0; i < prelinfo->nparts; i++)
1812 {
1813 /*
1814 * Non-leaf partitions and partitions that do not have a
1815 * subplan are not included in this map as mentioned in
1816 * make_partitionedrel_pruneinfo().
1817 */
1818 if (prelinfo->leafpart_rti_map[i])
1819 {
1820 prelinfo->leafpart_rti_map[i] += rtoffset;
1821 if (prelinfo->initial_pruning_steps)
1823 prelinfo->leafpart_rti_map[i]);
1824 }
1825 }
1826 }
1827 }
1828
1829 glob->partPruneInfos = lappend(glob->partPruneInfos, pinfo);
1830
1831 return list_length(glob->partPruneInfos) - 1;
1832}
1833
1834/*
1835 * set_append_references
1836 * Do set_plan_references processing on an Append
1837 *
1838 * We try to strip out the Append entirely; if we can't, we have
1839 * to do the normal processing on it.
1840 */
1841static Plan *
1843 Append *aplan,
1844 int rtoffset)
1845{
1846 ListCell *l;
1847
1848 /*
1849 * Append, like Sort et al, doesn't actually evaluate its targetlist or
1850 * check quals. If it's got exactly one child plan, then it's not doing
1851 * anything useful at all, and we can strip it out.
1852 */
1853 Assert(aplan->plan.qual == NIL);
1854
1855 /* First, we gotta recurse on the children */
1856 foreach(l, aplan->appendplans)
1857 {
1858 lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset);
1859 }
1860
1861 /*
1862 * See if it's safe to get rid of the Append entirely. For this to be
1863 * safe, there must be only one child plan and that child plan's parallel
1864 * awareness must match the Append's. The reason for the latter is that
1865 * if the Append is parallel aware and the child is not, then the calling
1866 * plan may execute the non-parallel aware child multiple times. (If you
1867 * change these rules, update create_append_path to match.)
1868 */
1869 if (list_length(aplan->appendplans) == 1)
1870 {
1871 Plan *p = (Plan *) linitial(aplan->appendplans);
1872
1873 if (p->parallel_aware == aplan->plan.parallel_aware)
1874 return clean_up_removed_plan_level((Plan *) aplan, p);
1875 }
1876
1877 /*
1878 * Otherwise, clean up the Append as needed. It's okay to do this after
1879 * recursing to the children, because set_dummy_tlist_references doesn't
1880 * look at those.
1881 */
1882 set_dummy_tlist_references((Plan *) aplan, rtoffset);
1883
1884 aplan->apprelids = offset_relid_set(aplan->apprelids, rtoffset);
1885
1886 /*
1887 * Add PartitionPruneInfo, if any, to PlannerGlobal and update the index.
1888 * Also update the RT indexes present in it to add the offset.
1889 */
1890 if (aplan->part_prune_index >= 0)
1891 aplan->part_prune_index =
1892 register_partpruneinfo(root, aplan->part_prune_index, rtoffset);
1893
1894 /* We don't need to recurse to lefttree or righttree ... */
1895 Assert(aplan->plan.lefttree == NULL);
1896 Assert(aplan->plan.righttree == NULL);
1897
1898 return (Plan *) aplan;
1899}
1900
1901/*
1902 * set_mergeappend_references
1903 * Do set_plan_references processing on a MergeAppend
1904 *
1905 * We try to strip out the MergeAppend entirely; if we can't, we have
1906 * to do the normal processing on it.
1907 */
1908static Plan *
1910 MergeAppend *mplan,
1911 int rtoffset)
1912{
1913 ListCell *l;
1914
1915 /*
1916 * MergeAppend, like Sort et al, doesn't actually evaluate its targetlist
1917 * or check quals. If it's got exactly one child plan, then it's not
1918 * doing anything useful at all, and we can strip it out.
1919 */
1920 Assert(mplan->plan.qual == NIL);
1921
1922 /* First, we gotta recurse on the children */
1923 foreach(l, mplan->mergeplans)
1924 {
1925 lfirst(l) = set_plan_refs(root, (Plan *) lfirst(l), rtoffset);
1926 }
1927
1928 /*
1929 * See if it's safe to get rid of the MergeAppend entirely. For this to
1930 * be safe, there must be only one child plan and that child plan's
1931 * parallel awareness must match the MergeAppend's. The reason for the
1932 * latter is that if the MergeAppend is parallel aware and the child is
1933 * not, then the calling plan may execute the non-parallel aware child
1934 * multiple times. (If you change these rules, update
1935 * create_merge_append_path to match.)
1936 */
1937 if (list_length(mplan->mergeplans) == 1)
1938 {
1939 Plan *p = (Plan *) linitial(mplan->mergeplans);
1940
1941 if (p->parallel_aware == mplan->plan.parallel_aware)
1942 return clean_up_removed_plan_level((Plan *) mplan, p);
1943 }
1944
1945 /*
1946 * Otherwise, clean up the MergeAppend as needed. It's okay to do this
1947 * after recursing to the children, because set_dummy_tlist_references
1948 * doesn't look at those.
1949 */
1950 set_dummy_tlist_references((Plan *) mplan, rtoffset);
1951
1952 mplan->apprelids = offset_relid_set(mplan->apprelids, rtoffset);
1953
1954 /*
1955 * Add PartitionPruneInfo, if any, to PlannerGlobal and update the index.
1956 * Also update the RT indexes present in it to add the offset.
1957 */
1958 if (mplan->part_prune_index >= 0)
1959 mplan->part_prune_index =
1960 register_partpruneinfo(root, mplan->part_prune_index, rtoffset);
1961
1962 /* We don't need to recurse to lefttree or righttree ... */
1963 Assert(mplan->plan.lefttree == NULL);
1964 Assert(mplan->plan.righttree == NULL);
1965
1966 return (Plan *) mplan;
1967}
1968
1969/*
1970 * set_hash_references
1971 * Do set_plan_references processing on a Hash node
1972 */
1973static void
1975{
1976 Hash *hplan = (Hash *) plan;
1977 Plan *outer_plan = plan->lefttree;
1978 indexed_tlist *outer_itlist;
1979
1980 /*
1981 * Hash's hashkeys are used when feeding tuples into the hashtable,
1982 * therefore have them reference Hash's outer plan (which itself is the
1983 * inner plan of the HashJoin).
1984 */
1985 outer_itlist = build_tlist_index(outer_plan->targetlist);
1986 hplan->hashkeys = (List *)
1988 (Node *) hplan->hashkeys,
1989 outer_itlist,
1990 OUTER_VAR,
1991 rtoffset,
1992 NRM_EQUAL,
1994
1995 /* Hash doesn't project */
1997
1998 /* Hash nodes don't have their own quals */
1999 Assert(plan->qual == NIL);
2000}
2001
2002/*
2003 * offset_relid_set
2004 * Apply rtoffset to the members of a Relids set.
2005 */
2006static Relids
2007offset_relid_set(Relids relids, int rtoffset)
2008{
2009 Relids result = NULL;
2010 int rtindex;
2011
2012 /* If there's no offset to apply, we needn't recompute the value */
2013 if (rtoffset == 0)
2014 return relids;
2015 rtindex = -1;
2016 while ((rtindex = bms_next_member(relids, rtindex)) >= 0)
2017 result = bms_add_member(result, rtindex + rtoffset);
2018 return result;
2019}
2020
2021/*
2022 * copyVar
2023 * Copy a Var node.
2024 *
2025 * fix_scan_expr and friends do this enough times that it's worth having
2026 * a bespoke routine instead of using the generic copyObject() function.
2027 */
2028static inline Var *
2030{
2031 Var *newvar = (Var *) palloc(sizeof(Var));
2032
2033 *newvar = *var;
2034 return newvar;
2035}
2036
2037/*
2038 * fix_expr_common
2039 * Do generic set_plan_references processing on an expression node
2040 *
2041 * This is code that is common to all variants of expression-fixing.
2042 * We must look up operator opcode info for OpExpr and related nodes,
2043 * add OIDs from regclass Const nodes into root->glob->relationOids, and
2044 * add PlanInvalItems for user-defined functions into root->glob->invalItems.
2045 * We also fill in column index lists for GROUPING() expressions.
2046 *
2047 * We assume it's okay to update opcode info in-place. So this could possibly
2048 * scribble on the planner's input data structures, but it's OK.
2049 */
2050static void
2052{
2053 /* We assume callers won't call us on a NULL pointer */
2054 if (IsA(node, Aggref))
2055 {
2057 ((Aggref *) node)->aggfnoid);
2058 }
2059 else if (IsA(node, WindowFunc))
2060 {
2062 ((WindowFunc *) node)->winfnoid);
2063 }
2064 else if (IsA(node, FuncExpr))
2065 {
2067 ((FuncExpr *) node)->funcid);
2068 }
2069 else if (IsA(node, OpExpr))
2070 {
2071 set_opfuncid((OpExpr *) node);
2073 ((OpExpr *) node)->opfuncid);
2074 }
2075 else if (IsA(node, DistinctExpr))
2076 {
2077 set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
2079 ((DistinctExpr *) node)->opfuncid);
2080 }
2081 else if (IsA(node, NullIfExpr))
2082 {
2083 set_opfuncid((OpExpr *) node); /* rely on struct equivalence */
2085 ((NullIfExpr *) node)->opfuncid);
2086 }
2087 else if (IsA(node, ScalarArrayOpExpr))
2088 {
2089 ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
2090
2091 set_sa_opfuncid(saop);
2092 record_plan_function_dependency(root, saop->opfuncid);
2093
2094 if (OidIsValid(saop->hashfuncid))
2095 record_plan_function_dependency(root, saop->hashfuncid);
2096
2097 if (OidIsValid(saop->negfuncid))
2098 record_plan_function_dependency(root, saop->negfuncid);
2099 }
2100 else if (IsA(node, Const))
2101 {
2102 Const *con = (Const *) node;
2103
2104 /* Check for regclass reference */
2105 if (ISREGCLASSCONST(con))
2106 root->glob->relationOids =
2107 lappend_oid(root->glob->relationOids,
2108 DatumGetObjectId(con->constvalue));
2109 }
2110 else if (IsA(node, GroupingFunc))
2111 {
2112 GroupingFunc *g = (GroupingFunc *) node;
2113 AttrNumber *grouping_map = root->grouping_map;
2114
2115 /* If there are no grouping sets, we don't need this. */
2116
2117 Assert(grouping_map || g->cols == NIL);
2118
2119 if (grouping_map)
2120 {
2121 ListCell *lc;
2122 List *cols = NIL;
2123
2124 foreach(lc, g->refs)
2125 {
2126 cols = lappend_int(cols, grouping_map[lfirst_int(lc)]);
2127 }
2128
2129 Assert(!g->cols || equal(cols, g->cols));
2130
2131 if (!g->cols)
2132 g->cols = cols;
2133 }
2134 }
2135}
2136
2137/*
2138 * fix_param_node
2139 * Do set_plan_references processing on a Param
2140 *
2141 * If it's a PARAM_MULTIEXPR, replace it with the appropriate Param from
2142 * root->multiexpr_params; otherwise no change is needed.
2143 * Just for paranoia's sake, we make a copy of the node in either case.
2144 */
2145static Node *
2147{
2148 if (p->paramkind == PARAM_MULTIEXPR)
2149 {
2150 int subqueryid = p->paramid >> 16;
2151 int colno = p->paramid & 0xFFFF;
2152 List *params;
2153
2154 if (subqueryid <= 0 ||
2155 subqueryid > list_length(root->multiexpr_params))
2156 elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d", p->paramid);
2157 params = (List *) list_nth(root->multiexpr_params, subqueryid - 1);
2158 if (colno <= 0 || colno > list_length(params))
2159 elog(ERROR, "unexpected PARAM_MULTIEXPR ID: %d", p->paramid);
2160 return copyObject(list_nth(params, colno - 1));
2161 }
2162 return (Node *) copyObject(p);
2163}
2164
2165/*
2166 * fix_alternative_subplan
2167 * Do set_plan_references processing on an AlternativeSubPlan
2168 *
2169 * Choose one of the alternative implementations and return just that one,
2170 * discarding the rest of the AlternativeSubPlan structure.
2171 * Note: caller must still recurse into the result!
2172 *
2173 * We don't make any attempt to fix up cost estimates in the parent plan
2174 * node or higher-level nodes.
2175 */
2176static Node *
2178 double num_exec)
2179{
2180 SubPlan *bestplan = NULL;
2181 Cost bestcost = 0;
2182 ListCell *lc;
2183
2184 /*
2185 * Compute the estimated cost of each subplan assuming num_exec
2186 * executions, and keep the cheapest one. In event of exact equality of
2187 * estimates, we prefer the later plan; this is a bit arbitrary, but in
2188 * current usage it biases us to break ties against fast-start subplans.
2189 */
2190 Assert(asplan->subplans != NIL);
2191
2192 foreach(lc, asplan->subplans)
2193 {
2194 SubPlan *curplan = (SubPlan *) lfirst(lc);
2195 Cost curcost;
2196
2197 curcost = curplan->startup_cost + num_exec * curplan->per_call_cost;
2198 if (bestplan == NULL || curcost <= bestcost)
2199 {
2200 bestplan = curplan;
2201 bestcost = curcost;
2202 }
2203
2204 /* Also mark all subplans that are in AlternativeSubPlans */
2205 root->isAltSubplan[curplan->plan_id - 1] = true;
2206 }
2207
2208 /* Mark the subplan we selected */
2209 root->isUsedSubplan[bestplan->plan_id - 1] = true;
2210
2211 return (Node *) bestplan;
2212}
2213
2214/*
2215 * fix_scan_expr
2216 * Do set_plan_references processing on a scan-level expression
2217 *
2218 * This consists of incrementing all Vars' varnos by rtoffset,
2219 * replacing PARAM_MULTIEXPR Params, expanding PlaceHolderVars,
2220 * replacing Aggref nodes that should be replaced by initplan output Params,
2221 * choosing the best implementation for AlternativeSubPlans,
2222 * looking up operator opcode info for OpExpr and related nodes,
2223 * and adding OIDs from regclass Const nodes into root->glob->relationOids.
2224 *
2225 * 'node': the expression to be modified
2226 * 'rtoffset': how much to increment varnos by
2227 * 'num_exec': estimated number of executions of expression
2228 *
2229 * The expression tree is either copied-and-modified, or modified in-place
2230 * if that seems safe.
2231 */
2232static Node *
2233fix_scan_expr(PlannerInfo *root, Node *node, int rtoffset, double num_exec)
2234{
2235 fix_scan_expr_context context;
2236
2237 context.root = root;
2238 context.rtoffset = rtoffset;
2239 context.num_exec = num_exec;
2240
2241 if (rtoffset != 0 ||
2242 root->multiexpr_params != NIL ||
2243 root->glob->lastPHId != 0 ||
2244 root->minmax_aggs != NIL ||
2245 root->hasAlternativeSubPlans)
2246 {
2247 return fix_scan_expr_mutator(node, &context);
2248 }
2249 else
2250 {
2251 /*
2252 * If rtoffset == 0, we don't need to change any Vars, and if there
2253 * are no MULTIEXPR subqueries then we don't need to replace
2254 * PARAM_MULTIEXPR Params, and if there are no placeholders anywhere
2255 * we won't need to remove them, and if there are no minmax Aggrefs we
2256 * won't need to replace them, and if there are no AlternativeSubPlans
2257 * we won't need to remove them. Then it's OK to just scribble on the
2258 * input node tree instead of copying (since the only change, filling
2259 * in any unset opfuncid fields, is harmless). This saves just enough
2260 * cycles to be noticeable on trivial queries.
2261 */
2262 (void) fix_scan_expr_walker(node, &context);
2263 return node;
2264 }
2265}
2266
2267static Node *
2269{
2270 if (node == NULL)
2271 return NULL;
2272 if (IsA(node, Var))
2273 {
2274 Var *var = copyVar((Var *) node);
2275
2276 Assert(var->varlevelsup == 0);
2277
2278 /*
2279 * We should not see Vars marked INNER_VAR, OUTER_VAR, or ROWID_VAR.
2280 * But an indexqual expression could contain INDEX_VAR Vars.
2281 */
2282 Assert(var->varno != INNER_VAR);
2283 Assert(var->varno != OUTER_VAR);
2284 Assert(var->varno != ROWID_VAR);
2285 if (!IS_SPECIAL_VARNO(var->varno))
2286 var->varno += context->rtoffset;
2287 if (var->varnosyn > 0)
2288 var->varnosyn += context->rtoffset;
2289 return (Node *) var;
2290 }
2291 if (IsA(node, Param))
2292 return fix_param_node(context->root, (Param *) node);
2293 if (IsA(node, Aggref))
2294 {
2295 Aggref *aggref = (Aggref *) node;
2296 Param *aggparam;
2297
2298 /* See if the Aggref should be replaced by a Param */
2299 aggparam = find_minmax_agg_replacement_param(context->root, aggref);
2300 if (aggparam != NULL)
2301 {
2302 /* Make a copy of the Param for paranoia's sake */
2303 return (Node *) copyObject(aggparam);
2304 }
2305 /* If no match, just fall through to process it normally */
2306 }
2307 if (IsA(node, CurrentOfExpr))
2308 {
2309 CurrentOfExpr *cexpr = (CurrentOfExpr *) copyObject(node);
2310
2311 Assert(!IS_SPECIAL_VARNO(cexpr->cvarno));
2312 cexpr->cvarno += context->rtoffset;
2313 return (Node *) cexpr;
2314 }
2315 if (IsA(node, PlaceHolderVar))
2316 {
2317 /* At scan level, we should always just evaluate the contained expr */
2318 PlaceHolderVar *phv = (PlaceHolderVar *) node;
2319
2320 /* XXX can we assert something about phnullingrels? */
2321 return fix_scan_expr_mutator((Node *) phv->phexpr, context);
2322 }
2323 if (IsA(node, AlternativeSubPlan))
2325 (AlternativeSubPlan *) node,
2326 context->num_exec),
2327 context);
2328 fix_expr_common(context->root, node);
2329 return expression_tree_mutator(node, fix_scan_expr_mutator, context);
2330}
2331
2332static bool
2334{
2335 if (node == NULL)
2336 return false;
2337 Assert(!(IsA(node, Var) && ((Var *) node)->varno == ROWID_VAR));
2338 Assert(!IsA(node, PlaceHolderVar));
2339 Assert(!IsA(node, AlternativeSubPlan));
2340 fix_expr_common(context->root, node);
2341 return expression_tree_walker(node, fix_scan_expr_walker, context);
2342}
2343
2344/*
2345 * set_join_references
2346 * Modify the target list and quals of a join node to reference its
2347 * subplans, by setting the varnos to OUTER_VAR or INNER_VAR and setting
2348 * attno values to the result domain number of either the corresponding
2349 * outer or inner join tuple item. Also perform opcode lookup for these
2350 * expressions, and add regclass OIDs to root->glob->relationOids.
2351 */
2352static void
2354{
2355 Plan *outer_plan = join->plan.lefttree;
2356 Plan *inner_plan = join->plan.righttree;
2357 indexed_tlist *outer_itlist;
2358 indexed_tlist *inner_itlist;
2359
2360 outer_itlist = build_tlist_index(outer_plan->targetlist);
2361 inner_itlist = build_tlist_index(inner_plan->targetlist);
2362
2363 /*
2364 * First process the joinquals (including merge or hash clauses). These
2365 * are logically below the join so they can always use all values
2366 * available from the input tlists. It's okay to also handle
2367 * NestLoopParams now, because those couldn't refer to nullable
2368 * subexpressions.
2369 */
2370 join->joinqual = fix_join_expr(root,
2371 join->joinqual,
2372 outer_itlist,
2373 inner_itlist,
2374 (Index) 0,
2375 rtoffset,
2376 NRM_EQUAL,
2377 NUM_EXEC_QUAL((Plan *) join));
2378
2379 /* Now do join-type-specific stuff */
2380 if (IsA(join, NestLoop))
2381 {
2382 NestLoop *nl = (NestLoop *) join;
2383 ListCell *lc;
2384
2385 foreach(lc, nl->nestParams)
2386 {
2387 NestLoopParam *nlp = (NestLoopParam *) lfirst(lc);
2388
2389 /*
2390 * Because we don't reparameterize parameterized paths to match
2391 * the outer-join level at which they are used, Vars seen in the
2392 * NestLoopParam expression may have nullingrels that are just a
2393 * subset of those in the Vars actually available from the outer
2394 * side. (Lateral references can also cause this, as explained in
2395 * the comments for identify_current_nestloop_params.) Not
2396 * checking this exactly is a bit grotty, but the work needed to
2397 * make things match up perfectly seems well out of proportion to
2398 * the value.
2399 */
2400 nlp->paramval = (Var *) fix_upper_expr(root,
2401 (Node *) nlp->paramval,
2402 outer_itlist,
2403 OUTER_VAR,
2404 rtoffset,
2405 NRM_SUBSET,
2406 NUM_EXEC_TLIST(outer_plan));
2407 /* Check we replaced any PlaceHolderVar with simple Var */
2408 if (!(IsA(nlp->paramval, Var) &&
2409 nlp->paramval->varno == OUTER_VAR))
2410 elog(ERROR, "NestLoopParam was not reduced to a simple Var");
2411 }
2412 }
2413 else if (IsA(join, MergeJoin))
2414 {
2415 MergeJoin *mj = (MergeJoin *) join;
2416
2418 mj->mergeclauses,
2419 outer_itlist,
2420 inner_itlist,
2421 (Index) 0,
2422 rtoffset,
2423 NRM_EQUAL,
2424 NUM_EXEC_QUAL((Plan *) join));
2425 }
2426 else if (IsA(join, HashJoin))
2427 {
2428 HashJoin *hj = (HashJoin *) join;
2429
2431 hj->hashclauses,
2432 outer_itlist,
2433 inner_itlist,
2434 (Index) 0,
2435 rtoffset,
2436 NRM_EQUAL,
2437 NUM_EXEC_QUAL((Plan *) join));
2438
2439 /*
2440 * HashJoin's hashkeys are used to look for matching tuples from its
2441 * outer plan (not the Hash node!) in the hashtable.
2442 */
2443 hj->hashkeys = (List *) fix_upper_expr(root,
2444 (Node *) hj->hashkeys,
2445 outer_itlist,
2446 OUTER_VAR,
2447 rtoffset,
2448 NRM_EQUAL,
2449 NUM_EXEC_QUAL((Plan *) join));
2450 }
2451
2452 /*
2453 * Now we need to fix up the targetlist and qpqual, which are logically
2454 * above the join. This means that, if it's not an inner join, any Vars
2455 * and PHVs appearing here should have nullingrels that include the
2456 * effects of the outer join, ie they will have nullingrels equal to the
2457 * input Vars' nullingrels plus the bit added by the outer join. We don't
2458 * currently have enough info available here to identify what that should
2459 * be, so we just tell fix_join_expr to accept superset nullingrels
2460 * matches instead of exact ones.
2461 */
2462 join->plan.targetlist = fix_join_expr(root,
2463 join->plan.targetlist,
2464 outer_itlist,
2465 inner_itlist,
2466 (Index) 0,
2467 rtoffset,
2469 NUM_EXEC_TLIST((Plan *) join));
2470 join->plan.qual = fix_join_expr(root,
2471 join->plan.qual,
2472 outer_itlist,
2473 inner_itlist,
2474 (Index) 0,
2475 rtoffset,
2477 NUM_EXEC_QUAL((Plan *) join));
2478
2479 pfree(outer_itlist);
2480 pfree(inner_itlist);
2481}
2482
2483/*
2484 * set_upper_references
2485 * Update the targetlist and quals of an upper-level plan node
2486 * to refer to the tuples returned by its lefttree subplan.
2487 * Also perform opcode lookup for these expressions, and
2488 * add regclass OIDs to root->glob->relationOids.
2489 *
2490 * This is used for single-input plan types like Agg, Group, Result.
2491 *
2492 * In most cases, we have to match up individual Vars in the tlist and
2493 * qual expressions with elements of the subplan's tlist (which was
2494 * generated by flattening these selfsame expressions, so it should have all
2495 * the required variables). There is an important exception, however:
2496 * depending on where we are in the plan tree, sort/group columns may have
2497 * been pushed into the subplan tlist unflattened. If these values are also
2498 * needed in the output then we want to reference the subplan tlist element
2499 * rather than recomputing the expression.
2500 */
2501static void
2503{
2504 Plan *subplan = plan->lefttree;
2505 indexed_tlist *subplan_itlist;
2506 List *output_targetlist;
2507 ListCell *l;
2508
2509 subplan_itlist = build_tlist_index(subplan->targetlist);
2510
2511 /*
2512 * If it's a grouping node with grouping sets, any Vars and PHVs appearing
2513 * in the targetlist and quals should have nullingrels that include the
2514 * effects of the grouping step, ie they will have nullingrels equal to
2515 * the input Vars/PHVs' nullingrels plus the RT index of the grouping
2516 * step. In order to perform exact nullingrels matches, we remove the RT
2517 * index of the grouping step first.
2518 */
2519 if (IsA(plan, Agg) &&
2520 root->group_rtindex > 0 &&
2521 ((Agg *) plan)->groupingSets)
2522 {
2523 plan->targetlist = (List *)
2524 remove_nulling_relids((Node *) plan->targetlist,
2525 bms_make_singleton(root->group_rtindex),
2526 NULL);
2527 plan->qual = (List *)
2529 bms_make_singleton(root->group_rtindex),
2530 NULL);
2531 }
2532
2533 output_targetlist = NIL;
2534 foreach(l, plan->targetlist)
2535 {
2536 TargetEntry *tle = (TargetEntry *) lfirst(l);
2537 Node *newexpr;
2538
2539 /* If it's a sort/group item, first try to match by sortref */
2540 if (tle->ressortgroupref != 0)
2541 {
2542 newexpr = (Node *)
2544 tle->ressortgroupref,
2545 subplan_itlist,
2546 OUTER_VAR);
2547 if (!newexpr)
2548 newexpr = fix_upper_expr(root,
2549 (Node *) tle->expr,
2550 subplan_itlist,
2551 OUTER_VAR,
2552 rtoffset,
2553 NRM_EQUAL,
2555 }
2556 else
2557 newexpr = fix_upper_expr(root,
2558 (Node *) tle->expr,
2559 subplan_itlist,
2560 OUTER_VAR,
2561 rtoffset,
2562 NRM_EQUAL,
2564 tle = flatCopyTargetEntry(tle);
2565 tle->expr = (Expr *) newexpr;
2566 output_targetlist = lappend(output_targetlist, tle);
2567 }
2568 plan->targetlist = output_targetlist;
2569
2570 plan->qual = (List *)
2572 (Node *) plan->qual,
2573 subplan_itlist,
2574 OUTER_VAR,
2575 rtoffset,
2576 NRM_EQUAL,
2578
2579 pfree(subplan_itlist);
2580}
2581
2582/*
2583 * set_param_references
2584 * Initialize the initParam list in Gather or Gather merge node such that
2585 * it contains reference of all the params that needs to be evaluated
2586 * before execution of the node. It contains the initplan params that are
2587 * being passed to the plan nodes below it.
2588 */
2589static void
2591{
2593
2594 if (plan->lefttree->extParam)
2595 {
2596 PlannerInfo *proot;
2597 Bitmapset *initSetParam = NULL;
2598 ListCell *l;
2599
2600 for (proot = root; proot != NULL; proot = proot->parent_root)
2601 {
2602 foreach(l, proot->init_plans)
2603 {
2604 SubPlan *initsubplan = (SubPlan *) lfirst(l);
2605 ListCell *l2;
2606
2607 foreach(l2, initsubplan->setParam)
2608 {
2609 initSetParam = bms_add_member(initSetParam, lfirst_int(l2));
2610 }
2611 }
2612 }
2613
2614 /*
2615 * Remember the list of all external initplan params that are used by
2616 * the children of Gather or Gather merge node.
2617 */
2618 if (IsA(plan, Gather))
2619 ((Gather *) plan)->initParam =
2620 bms_intersect(plan->lefttree->extParam, initSetParam);
2621 else
2622 ((GatherMerge *) plan)->initParam =
2623 bms_intersect(plan->lefttree->extParam, initSetParam);
2624 }
2625}
2626
2627/*
2628 * Recursively scan an expression tree and convert Aggrefs to the proper
2629 * intermediate form for combining aggregates. This means (1) replacing each
2630 * one's argument list with a single argument that is the original Aggref
2631 * modified to show partial aggregation and (2) changing the upper Aggref to
2632 * show combining aggregation.
2633 *
2634 * After this step, set_upper_references will replace the partial Aggrefs
2635 * with Vars referencing the lower Agg plan node's outputs, so that the final
2636 * form seen by the executor is a combining Aggref with a Var as input.
2637 *
2638 * It's rather messy to postpone this step until setrefs.c; ideally it'd be
2639 * done in createplan.c. The difficulty is that once we modify the Aggref
2640 * expressions, they will no longer be equal() to their original form and
2641 * so cross-plan-node-level matches will fail. So this has to happen after
2642 * the plan node above the Agg has resolved its subplan references.
2643 */
2644static Node *
2645convert_combining_aggrefs(Node *node, void *context)
2646{
2647 if (node == NULL)
2648 return NULL;
2649 if (IsA(node, Aggref))
2650 {
2651 Aggref *orig_agg = (Aggref *) node;
2652 Aggref *child_agg;
2653 Aggref *parent_agg;
2654
2655 /* Assert we've not chosen to partial-ize any unsupported cases */
2656 Assert(orig_agg->aggorder == NIL);
2657 Assert(orig_agg->aggdistinct == NIL);
2658
2659 /*
2660 * Since aggregate calls can't be nested, we needn't recurse into the
2661 * arguments. But for safety, flat-copy the Aggref node itself rather
2662 * than modifying it in-place.
2663 */
2664 child_agg = makeNode(Aggref);
2665 memcpy(child_agg, orig_agg, sizeof(Aggref));
2666
2667 /*
2668 * For the parent Aggref, we want to copy all the fields of the
2669 * original aggregate *except* the args list, which we'll replace
2670 * below, and the aggfilter expression, which should be applied only
2671 * by the child not the parent. Rather than explicitly knowing about
2672 * all the other fields here, we can momentarily modify child_agg to
2673 * provide a suitable source for copyObject.
2674 */
2675 child_agg->args = NIL;
2676 child_agg->aggfilter = NULL;
2677 parent_agg = copyObject(child_agg);
2678 child_agg->args = orig_agg->args;
2679 child_agg->aggfilter = orig_agg->aggfilter;
2680
2681 /*
2682 * Now, set up child_agg to represent the first phase of partial
2683 * aggregation. For now, assume serialization is required.
2684 */
2686
2687 /*
2688 * And set up parent_agg to represent the second phase.
2689 */
2690 parent_agg->args = list_make1(makeTargetEntry((Expr *) child_agg,
2691 1, NULL, false));
2693
2694 return (Node *) parent_agg;
2695 }
2697}
2698
2699/*
2700 * set_dummy_tlist_references
2701 * Replace the targetlist of an upper-level plan node with a simple
2702 * list of OUTER_VAR references to its child.
2703 *
2704 * This is used for plan types like Sort and Append that don't evaluate
2705 * their targetlists. Although the executor doesn't care at all what's in
2706 * the tlist, EXPLAIN needs it to be realistic.
2707 *
2708 * Note: we could almost use set_upper_references() here, but it fails for
2709 * Append for lack of a lefttree subplan. Single-purpose code is faster
2710 * anyway.
2711 */
2712static void
2714{
2715 List *output_targetlist;
2716 ListCell *l;
2717
2718 output_targetlist = NIL;
2719 foreach(l, plan->targetlist)
2720 {
2721 TargetEntry *tle = (TargetEntry *) lfirst(l);
2722 Var *oldvar = (Var *) tle->expr;
2723 Var *newvar;
2724
2725 /*
2726 * As in search_indexed_tlist_for_non_var(), we prefer to keep Consts
2727 * as Consts, not Vars referencing Consts. Here, there's no speed
2728 * advantage to be had, but it makes EXPLAIN output look cleaner, and
2729 * again it avoids confusing the executor.
2730 */
2731 if (IsA(oldvar, Const))
2732 {
2733 /* just reuse the existing TLE node */
2734 output_targetlist = lappend(output_targetlist, tle);
2735 continue;
2736 }
2737
2738 newvar = makeVar(OUTER_VAR,
2739 tle->resno,
2740 exprType((Node *) oldvar),
2741 exprTypmod((Node *) oldvar),
2742 exprCollation((Node *) oldvar),
2743 0);
2744 if (IsA(oldvar, Var) &&
2745 oldvar->varnosyn > 0)
2746 {
2747 newvar->varnosyn = oldvar->varnosyn + rtoffset;
2748 newvar->varattnosyn = oldvar->varattnosyn;
2749 }
2750 else
2751 {
2752 newvar->varnosyn = 0; /* wasn't ever a plain Var */
2753 newvar->varattnosyn = 0;
2754 }
2755
2756 tle = flatCopyTargetEntry(tle);
2757 tle->expr = (Expr *) newvar;
2758 output_targetlist = lappend(output_targetlist, tle);
2759 }
2760 plan->targetlist = output_targetlist;
2761
2762 /* We don't touch plan->qual here */
2763}
2764
2765
2766/*
2767 * build_tlist_index --- build an index data structure for a child tlist
2768 *
2769 * In most cases, subplan tlists will be "flat" tlists with only Vars,
2770 * so we try to optimize that case by extracting information about Vars
2771 * in advance. Matching a parent tlist to a child is still an O(N^2)
2772 * operation, but at least with a much smaller constant factor than plain
2773 * tlist_member() searches.
2774 *
2775 * The result of this function is an indexed_tlist struct to pass to
2776 * search_indexed_tlist_for_var() and siblings.
2777 * When done, the indexed_tlist may be freed with a single pfree().
2778 */
2779static indexed_tlist *
2781{
2782 indexed_tlist *itlist;
2783 tlist_vinfo *vinfo;
2784 ListCell *l;
2785
2786 /* Create data structure with enough slots for all tlist entries */
2787 itlist = (indexed_tlist *)
2788 palloc(offsetof(indexed_tlist, vars) +
2789 list_length(tlist) * sizeof(tlist_vinfo));
2790
2791 itlist->tlist = tlist;
2792 itlist->has_ph_vars = false;
2793 itlist->has_non_vars = false;
2794
2795 /* Find the Vars and fill in the index array */
2796 vinfo = itlist->vars;
2797 foreach(l, tlist)
2798 {
2799 TargetEntry *tle = (TargetEntry *) lfirst(l);
2800
2801 if (tle->expr && IsA(tle->expr, Var))
2802 {
2803 Var *var = (Var *) tle->expr;
2804
2805 vinfo->varno = var->varno;
2806 vinfo->varattno = var->varattno;
2807 vinfo->resno = tle->resno;
2808 vinfo->varnullingrels = var->varnullingrels;
2809 vinfo++;
2810 }
2811 else if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2812 itlist->has_ph_vars = true;
2813 else
2814 itlist->has_non_vars = true;
2815 }
2816
2817 itlist->num_vars = (vinfo - itlist->vars);
2818
2819 return itlist;
2820}
2821
2822/*
2823 * build_tlist_index_other_vars --- build a restricted tlist index
2824 *
2825 * This is like build_tlist_index, but we only index tlist entries that
2826 * are Vars belonging to some rel other than the one specified. We will set
2827 * has_ph_vars (allowing PlaceHolderVars to be matched), but not has_non_vars
2828 * (so nothing other than Vars and PlaceHolderVars can be matched).
2829 */
2830static indexed_tlist *
2831build_tlist_index_other_vars(List *tlist, int ignore_rel)
2832{
2833 indexed_tlist *itlist;
2834 tlist_vinfo *vinfo;
2835 ListCell *l;
2836
2837 /* Create data structure with enough slots for all tlist entries */
2838 itlist = (indexed_tlist *)
2839 palloc(offsetof(indexed_tlist, vars) +
2840 list_length(tlist) * sizeof(tlist_vinfo));
2841
2842 itlist->tlist = tlist;
2843 itlist->has_ph_vars = false;
2844 itlist->has_non_vars = false;
2845
2846 /* Find the desired Vars and fill in the index array */
2847 vinfo = itlist->vars;
2848 foreach(l, tlist)
2849 {
2850 TargetEntry *tle = (TargetEntry *) lfirst(l);
2851
2852 if (tle->expr && IsA(tle->expr, Var))
2853 {
2854 Var *var = (Var *) tle->expr;
2855
2856 if (var->varno != ignore_rel)
2857 {
2858 vinfo->varno = var->varno;
2859 vinfo->varattno = var->varattno;
2860 vinfo->resno = tle->resno;
2861 vinfo->varnullingrels = var->varnullingrels;
2862 vinfo++;
2863 }
2864 }
2865 else if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2866 itlist->has_ph_vars = true;
2867 }
2868
2869 itlist->num_vars = (vinfo - itlist->vars);
2870
2871 return itlist;
2872}
2873
2874/*
2875 * search_indexed_tlist_for_var --- find a Var in an indexed tlist
2876 *
2877 * If a match is found, return a copy of the given Var with suitably
2878 * modified varno/varattno (to wit, newvarno and the resno of the TLE entry).
2879 * Also ensure that varnosyn is incremented by rtoffset.
2880 * If no match, return NULL.
2881 *
2882 * We cross-check the varnullingrels of the subplan output Var based on
2883 * nrm_match. Most call sites should pass NRM_EQUAL indicating we expect
2884 * an exact match. However, there are places where we haven't cleaned
2885 * things up completely, and we have to settle for allowing subset or
2886 * superset matches.
2887 */
2888static Var *
2890 int newvarno, int rtoffset,
2891 NullingRelsMatch nrm_match)
2892{
2893 int varno = var->varno;
2894 AttrNumber varattno = var->varattno;
2895 tlist_vinfo *vinfo;
2896 int i;
2897
2898 vinfo = itlist->vars;
2899 i = itlist->num_vars;
2900 while (i-- > 0)
2901 {
2902 if (vinfo->varno == varno && vinfo->varattno == varattno)
2903 {
2904 /* Found a match */
2905 Var *newvar = copyVar(var);
2906
2907 /*
2908 * Verify that we kept all the nullingrels machinations straight.
2909 *
2910 * XXX we skip the check for system columns and whole-row Vars.
2911 * That's because such Vars might be row identity Vars, which are
2912 * generated without any varnullingrels. It'd be hard to do
2913 * otherwise, since they're normally made very early in planning,
2914 * when we haven't looked at the jointree yet and don't know which
2915 * joins might null such Vars. Doesn't seem worth the expense to
2916 * make them fully valid. (While it's slightly annoying that we
2917 * thereby lose checking for user-written references to such
2918 * columns, it seems unlikely that a bug in nullingrels logic
2919 * would affect only system columns.)
2920 */
2921 if (!(varattno <= 0 ||
2922 (nrm_match == NRM_SUBSET ?
2923 bms_is_subset(var->varnullingrels, vinfo->varnullingrels) :
2924 nrm_match == NRM_SUPERSET ?
2925 bms_is_subset(vinfo->varnullingrels, var->varnullingrels) :
2926 bms_equal(vinfo->varnullingrels, var->varnullingrels))))
2927 elog(ERROR, "wrong varnullingrels %s (expected %s) for Var %d/%d",
2928 bmsToString(var->varnullingrels),
2930 varno, varattno);
2931
2932 newvar->varno = newvarno;
2933 newvar->varattno = vinfo->resno;
2934 if (newvar->varnosyn > 0)
2935 newvar->varnosyn += rtoffset;
2936 return newvar;
2937 }
2938 vinfo++;
2939 }
2940 return NULL; /* no match */
2941}
2942
2943/*
2944 * search_indexed_tlist_for_phv --- find a PlaceHolderVar in an indexed tlist
2945 *
2946 * If a match is found, return a Var constructed to reference the tlist item.
2947 * If no match, return NULL.
2948 *
2949 * Cross-check phnullingrels as in search_indexed_tlist_for_var.
2950 *
2951 * NOTE: it is a waste of time to call this unless itlist->has_ph_vars.
2952 */
2953static Var *
2955 indexed_tlist *itlist, int newvarno,
2956 NullingRelsMatch nrm_match)
2957{
2958 ListCell *lc;
2959
2960 foreach(lc, itlist->tlist)
2961 {
2962 TargetEntry *tle = (TargetEntry *) lfirst(lc);
2963
2964 if (tle->expr && IsA(tle->expr, PlaceHolderVar))
2965 {
2966 PlaceHolderVar *subphv = (PlaceHolderVar *) tle->expr;
2967 Var *newvar;
2968
2969 /*
2970 * Analogously to search_indexed_tlist_for_var, we match on phid
2971 * only. We don't use equal(), partially for speed but mostly
2972 * because phnullingrels might not be exactly equal.
2973 */
2974 if (phv->phid != subphv->phid)
2975 continue;
2976
2977 /* Verify that we kept all the nullingrels machinations straight */
2978 if (!(nrm_match == NRM_SUBSET ?
2980 nrm_match == NRM_SUPERSET ?
2982 bms_equal(subphv->phnullingrels, phv->phnullingrels)))
2983 elog(ERROR, "wrong phnullingrels %s (expected %s) for PlaceHolderVar %d",
2985 bmsToString(subphv->phnullingrels),
2986 phv->phid);
2987
2988 /* Found a matching subplan output expression */
2989 newvar = makeVarFromTargetEntry(newvarno, tle);
2990 newvar->varnosyn = 0; /* wasn't ever a plain Var */
2991 newvar->varattnosyn = 0;
2992 return newvar;
2993 }
2994 }
2995 return NULL; /* no match */
2996}
2997
2998/*
2999 * search_indexed_tlist_for_non_var --- find a non-Var/PHV in an indexed tlist
3000 *
3001 * If a match is found, return a Var constructed to reference the tlist item.
3002 * If no match, return NULL.
3003 *
3004 * NOTE: it is a waste of time to call this unless itlist->has_non_vars.
3005 */
3006static Var *
3008 indexed_tlist *itlist, int newvarno)
3009{
3010 TargetEntry *tle;
3011
3012 /*
3013 * If it's a simple Const, replacing it with a Var is silly, even if there
3014 * happens to be an identical Const below; a Var is more expensive to
3015 * execute than a Const. What's more, replacing it could confuse some
3016 * places in the executor that expect to see simple Consts for, eg,
3017 * dropped columns.
3018 */
3019 if (IsA(node, Const))
3020 return NULL;
3021
3022 tle = tlist_member(node, itlist->tlist);
3023 if (tle)
3024 {
3025 /* Found a matching subplan output expression */
3026 Var *newvar;
3027
3028 newvar = makeVarFromTargetEntry(newvarno, tle);
3029 newvar->varnosyn = 0; /* wasn't ever a plain Var */
3030 newvar->varattnosyn = 0;
3031 return newvar;
3032 }
3033 return NULL; /* no match */
3034}
3035
3036/*
3037 * search_indexed_tlist_for_sortgroupref --- find a sort/group expression
3038 *
3039 * If a match is found, return a Var constructed to reference the tlist item.
3040 * If no match, return NULL.
3041 *
3042 * This is needed to ensure that we select the right subplan TLE in cases
3043 * where there are multiple textually-equal()-but-volatile sort expressions.
3044 * And it's also faster than search_indexed_tlist_for_non_var.
3045 */
3046static Var *
3048 Index sortgroupref,
3049 indexed_tlist *itlist,
3050 int newvarno)
3051{
3052 ListCell *lc;
3053
3054 foreach(lc, itlist->tlist)
3055 {
3056 TargetEntry *tle = (TargetEntry *) lfirst(lc);
3057
3058 /*
3059 * Usually the equal() check is redundant, but in setop plans it may
3060 * not be, since prepunion.c assigns ressortgroupref equal to the
3061 * column resno without regard to whether that matches the topmost
3062 * level's sortgrouprefs and without regard to whether any implicit
3063 * coercions are added in the setop tree. We might have to clean that
3064 * up someday; but for now, just ignore any false matches.
3065 */
3066 if (tle->ressortgroupref == sortgroupref &&
3067 equal(node, tle->expr))
3068 {
3069 /* Found a matching subplan output expression */
3070 Var *newvar;
3071
3072 newvar = makeVarFromTargetEntry(newvarno, tle);
3073 newvar->varnosyn = 0; /* wasn't ever a plain Var */
3074 newvar->varattnosyn = 0;
3075 return newvar;
3076 }
3077 }
3078 return NULL; /* no match */
3079}
3080
3081/*
3082 * fix_join_expr
3083 * Create a new set of targetlist entries or join qual clauses by
3084 * changing the varno/varattno values of variables in the clauses
3085 * to reference target list values from the outer and inner join
3086 * relation target lists. Also perform opcode lookup and add
3087 * regclass OIDs to root->glob->relationOids.
3088 *
3089 * This is used in four different scenarios:
3090 * 1) a normal join clause, where all the Vars in the clause *must* be
3091 * replaced by OUTER_VAR or INNER_VAR references. In this case
3092 * acceptable_rel should be zero so that any failure to match a Var will be
3093 * reported as an error.
3094 * 2) RETURNING clauses, which may contain both Vars of the target relation
3095 * and Vars of other relations. In this case we want to replace the
3096 * other-relation Vars by OUTER_VAR references, while leaving target Vars
3097 * alone. Thus inner_itlist = NULL and acceptable_rel = the ID of the
3098 * target relation should be passed.
3099 * 3) ON CONFLICT UPDATE SET/WHERE clauses. Here references to EXCLUDED are
3100 * to be replaced with INNER_VAR references, while leaving target Vars (the
3101 * to-be-updated relation) alone. Correspondingly inner_itlist is to be
3102 * EXCLUDED elements, outer_itlist = NULL and acceptable_rel the target
3103 * relation.
3104 * 4) MERGE. In this case, references to the source relation are to be
3105 * replaced with INNER_VAR references, leaving Vars of the target
3106 * relation (the to-be-modified relation) alone. So inner_itlist is to be
3107 * the source relation elements, outer_itlist = NULL and acceptable_rel
3108 * the target relation.
3109 *
3110 * 'clauses' is the targetlist or list of join clauses
3111 * 'outer_itlist' is the indexed target list of the outer join relation,
3112 * or NULL
3113 * 'inner_itlist' is the indexed target list of the inner join relation,
3114 * or NULL
3115 * 'acceptable_rel' is either zero or the rangetable index of a relation
3116 * whose Vars may appear in the clause without provoking an error
3117 * 'rtoffset': how much to increment varnos by
3118 * 'nrm_match': as for search_indexed_tlist_for_var()
3119 * 'num_exec': estimated number of executions of expression
3120 *
3121 * Returns the new expression tree. The original clause structure is
3122 * not modified.
3123 */
3124static List *
3126 List *clauses,
3127 indexed_tlist *outer_itlist,
3128 indexed_tlist *inner_itlist,
3129 Index acceptable_rel,
3130 int rtoffset,
3131 NullingRelsMatch nrm_match,
3132 double num_exec)
3133{
3134 fix_join_expr_context context;
3135
3136 context.root = root;
3137 context.outer_itlist = outer_itlist;
3138 context.inner_itlist = inner_itlist;
3139 context.acceptable_rel = acceptable_rel;
3140 context.rtoffset = rtoffset;
3141 context.nrm_match = nrm_match;
3142 context.num_exec = num_exec;
3143 return (List *) fix_join_expr_mutator((Node *) clauses, &context);
3144}
3145
3146static Node *
3148{
3149 Var *newvar;
3150
3151 if (node == NULL)
3152 return NULL;
3153 if (IsA(node, Var))
3154 {
3155 Var *var = (Var *) node;
3156
3157 /*
3158 * Verify that Vars with non-default varreturningtype only appear in
3159 * the RETURNING list, and refer to the target relation.
3160 */
3162 {
3163 if (context->inner_itlist != NULL ||
3164 context->outer_itlist == NULL ||
3165 context->acceptable_rel == 0)
3166 elog(ERROR, "variable returning old/new found outside RETURNING list");
3167 if (var->varno != context->acceptable_rel)
3168 elog(ERROR, "wrong varno %d (expected %d) for variable returning old/new",
3169 var->varno, context->acceptable_rel);
3170 }
3171
3172 /* Look for the var in the input tlists, first in the outer */
3173 if (context->outer_itlist)
3174 {
3175 newvar = search_indexed_tlist_for_var(var,
3176 context->outer_itlist,
3177 OUTER_VAR,
3178 context->rtoffset,
3179 context->nrm_match);
3180 if (newvar)
3181 return (Node *) newvar;
3182 }
3183
3184 /* then in the inner. */
3185 if (context->inner_itlist)
3186 {
3187 newvar = search_indexed_tlist_for_var(var,
3188 context->inner_itlist,
3189 INNER_VAR,
3190 context->rtoffset,
3191 context->nrm_match);
3192 if (newvar)
3193 return (Node *) newvar;
3194 }
3195
3196 /* If it's for acceptable_rel, adjust and return it */
3197 if (var->varno == context->acceptable_rel)
3198 {
3199 var = copyVar(var);
3200 var->varno += context->rtoffset;
3201 if (var->varnosyn > 0)
3202 var->varnosyn += context->rtoffset;
3203 return (Node *) var;
3204 }
3205
3206 /* No referent found for Var */
3207 elog(ERROR, "variable not found in subplan target lists");
3208 }
3209 if (IsA(node, PlaceHolderVar))
3210 {
3211 PlaceHolderVar *phv = (PlaceHolderVar *) node;
3212
3213 /* See if the PlaceHolderVar has bubbled up from a lower plan node */
3214 if (context->outer_itlist && context->outer_itlist->has_ph_vars)
3215 {
3216 newvar = search_indexed_tlist_for_phv(phv,
3217 context->outer_itlist,
3218 OUTER_VAR,
3219 context->nrm_match);
3220 if (newvar)
3221 return (Node *) newvar;
3222 }
3223 if (context->inner_itlist && context->inner_itlist->has_ph_vars)
3224 {
3225 newvar = search_indexed_tlist_for_phv(phv,
3226 context->inner_itlist,
3227 INNER_VAR,
3228 context->nrm_match);
3229 if (newvar)
3230 return (Node *) newvar;
3231 }
3232
3233 /* If not supplied by input plans, evaluate the contained expr */
3234 /* XXX can we assert something about phnullingrels? */
3235 return fix_join_expr_mutator((Node *) phv->phexpr, context);
3236 }
3237 /* Try matching more complex expressions too, if tlists have any */
3238 if (context->outer_itlist && context->outer_itlist->has_non_vars)
3239 {
3240 newvar = search_indexed_tlist_for_non_var((Expr *) node,
3241 context->outer_itlist,
3242 OUTER_VAR);
3243 if (newvar)
3244 return (Node *) newvar;
3245 }
3246 if (context->inner_itlist && context->inner_itlist->has_non_vars)
3247 {
3248 newvar = search_indexed_tlist_for_non_var((Expr *) node,
3249 context->inner_itlist,
3250 INNER_VAR);
3251 if (newvar)
3252 return (Node *) newvar;
3253 }
3254 /* Special cases (apply only AFTER failing to match to lower tlist) */
3255 if (IsA(node, Param))
3256 return fix_param_node(context->root, (Param *) node);
3257 if (IsA(node, AlternativeSubPlan))
3259 (AlternativeSubPlan *) node,
3260 context->num_exec),
3261 context);
3262 fix_expr_common(context->root, node);
3263 return expression_tree_mutator(node, fix_join_expr_mutator, context);
3264}
3265
3266/*
3267 * fix_upper_expr
3268 * Modifies an expression tree so that all Var nodes reference outputs
3269 * of a subplan. Also looks for Aggref nodes that should be replaced
3270 * by initplan output Params. Also performs opcode lookup, and adds
3271 * regclass OIDs to root->glob->relationOids.
3272 *
3273 * This is used to fix up target and qual expressions of non-join upper-level
3274 * plan nodes, as well as index-only scan nodes.
3275 *
3276 * An error is raised if no matching var can be found in the subplan tlist
3277 * --- so this routine should only be applied to nodes whose subplans'
3278 * targetlists were generated by flattening the expressions used in the
3279 * parent node.
3280 *
3281 * If itlist->has_non_vars is true, then we try to match whole subexpressions
3282 * against elements of the subplan tlist, so that we can avoid recomputing
3283 * expressions that were already computed by the subplan. (This is relatively
3284 * expensive, so we don't want to try it in the common case where the
3285 * subplan tlist is just a flattened list of Vars.)
3286 *
3287 * 'node': the tree to be fixed (a target item or qual)
3288 * 'subplan_itlist': indexed target list for subplan (or index)
3289 * 'newvarno': varno to use for Vars referencing tlist elements
3290 * 'rtoffset': how much to increment varnos by
3291 * 'nrm_match': as for search_indexed_tlist_for_var()
3292 * 'num_exec': estimated number of executions of expression
3293 *
3294 * The resulting tree is a copy of the original in which all Var nodes have
3295 * varno = newvarno, varattno = resno of corresponding targetlist element.
3296 * The original tree is not modified.
3297 */
3298static Node *
3300 Node *node,
3301 indexed_tlist *subplan_itlist,
3302 int newvarno,
3303 int rtoffset,
3304 NullingRelsMatch nrm_match,
3305 double num_exec)
3306{
3307 fix_upper_expr_context context;
3308
3309 context.root = root;
3310 context.subplan_itlist = subplan_itlist;
3311 context.newvarno = newvarno;
3312 context.rtoffset = rtoffset;
3313 context.nrm_match = nrm_match;
3314 context.num_exec = num_exec;
3315 return fix_upper_expr_mutator(node, &context);
3316}
3317
3318static Node *
3320{
3321 Var *newvar;
3322
3323 if (node == NULL)
3324 return NULL;
3325 if (IsA(node, Var))
3326 {
3327 Var *var = (Var *) node;
3328
3329 newvar = search_indexed_tlist_for_var(var,
3330 context->subplan_itlist,
3331 context->newvarno,
3332 context->rtoffset,
3333 context->nrm_match);
3334 if (!newvar)
3335 elog(ERROR, "variable not found in subplan target list");
3336 return (Node *) newvar;
3337 }
3338 if (IsA(node, PlaceHolderVar))
3339 {
3340 PlaceHolderVar *phv = (PlaceHolderVar *) node;
3341
3342 /* See if the PlaceHolderVar has bubbled up from a lower plan node */
3343 if (context->subplan_itlist->has_ph_vars)
3344 {
3345 newvar = search_indexed_tlist_for_phv(phv,
3346 context->subplan_itlist,
3347 context->newvarno,
3348 context->nrm_match);
3349 if (newvar)
3350 return (Node *) newvar;
3351 }
3352 /* If not supplied by input plan, evaluate the contained expr */
3353 /* XXX can we assert something about phnullingrels? */
3354 return fix_upper_expr_mutator((Node *) phv->phexpr, context);
3355 }
3356 /* Try matching more complex expressions too, if tlist has any */
3357 if (context->subplan_itlist->has_non_vars)
3358 {
3359 newvar = search_indexed_tlist_for_non_var((Expr *) node,
3360 context->subplan_itlist,
3361 context->newvarno);
3362 if (newvar)
3363 return (Node *) newvar;
3364 }
3365 /* Special cases (apply only AFTER failing to match to lower tlist) */
3366 if (IsA(node, Param))
3367 return fix_param_node(context->root, (Param *) node);
3368 if (IsA(node, Aggref))
3369 {
3370 Aggref *aggref = (Aggref *) node;
3371 Param *aggparam;
3372
3373 /* See if the Aggref should be replaced by a Param */
3374 aggparam = find_minmax_agg_replacement_param(context->root, aggref);
3375 if (aggparam != NULL)
3376 {
3377 /* Make a copy of the Param for paranoia's sake */
3378 return (Node *) copyObject(aggparam);
3379 }
3380 /* If no match, just fall through to process it normally */
3381 }
3382 if (IsA(node, AlternativeSubPlan))
3384 (AlternativeSubPlan *) node,
3385 context->num_exec),
3386 context);
3387 fix_expr_common(context->root, node);
3388 return expression_tree_mutator(node, fix_upper_expr_mutator, context);
3389}
3390
3391/*
3392 * set_returning_clause_references
3393 * Perform setrefs.c's work on a RETURNING targetlist
3394 *
3395 * If the query involves more than just the result table, we have to
3396 * adjust any Vars that refer to other tables to reference junk tlist
3397 * entries in the top subplan's targetlist. Vars referencing the result
3398 * table should be left alone, however (the executor will evaluate them
3399 * using the actual heap tuple, after firing triggers if any). In the
3400 * adjusted RETURNING list, result-table Vars will have their original
3401 * varno (plus rtoffset), but Vars for other rels will have varno OUTER_VAR.
3402 *
3403 * We also must perform opcode lookup and add regclass OIDs to
3404 * root->glob->relationOids.
3405 *
3406 * 'rlist': the RETURNING targetlist to be fixed
3407 * 'topplan': the top subplan node that will be just below the ModifyTable
3408 * node (note it's not yet passed through set_plan_refs)
3409 * 'resultRelation': RT index of the associated result relation
3410 * 'rtoffset': how much to increment varnos by
3411 *
3412 * Note: the given 'root' is for the parent query level, not the 'topplan'.
3413 * This does not matter currently since we only access the dependency-item
3414 * lists in root->glob, but it would need some hacking if we wanted a root
3415 * that actually matches the subplan.
3416 *
3417 * Note: resultRelation is not yet adjusted by rtoffset.
3418 */
3419static List *
3421 List *rlist,
3422 Plan *topplan,
3423 Index resultRelation,
3424 int rtoffset)
3425{
3426 indexed_tlist *itlist;
3427
3428 /*
3429 * We can perform the desired Var fixup by abusing the fix_join_expr
3430 * machinery that formerly handled inner indexscan fixup. We search the
3431 * top plan's targetlist for Vars of non-result relations, and use
3432 * fix_join_expr to convert RETURNING Vars into references to those tlist
3433 * entries, while leaving result-rel Vars as-is.
3434 *
3435 * PlaceHolderVars will also be sought in the targetlist, but no
3436 * more-complex expressions will be. Note that it is not possible for a
3437 * PlaceHolderVar to refer to the result relation, since the result is
3438 * never below an outer join. If that case could happen, we'd have to be
3439 * prepared to pick apart the PlaceHolderVar and evaluate its contained
3440 * expression instead.
3441 */
3442 itlist = build_tlist_index_other_vars(topplan->targetlist, resultRelation);
3443
3444 rlist = fix_join_expr(root,
3445 rlist,
3446 itlist,
3447 NULL,
3448 resultRelation,
3449 rtoffset,
3450 NRM_EQUAL,
3451 NUM_EXEC_TLIST(topplan));
3452
3453 pfree(itlist);
3454
3455 return rlist;
3456}
3457
3458/*
3459 * fix_windowagg_condition_expr_mutator
3460 * Mutator function for replacing WindowFuncs with the corresponding Var
3461 * in the targetlist which references that WindowFunc.
3462 */
3463static Node *
3466{
3467 if (node == NULL)
3468 return NULL;
3469
3470 if (IsA(node, WindowFunc))
3471 {
3472 Var *newvar;
3473
3474 newvar = search_indexed_tlist_for_non_var((Expr *) node,
3475 context->subplan_itlist,
3476 context->newvarno);
3477 if (newvar)
3478 return (Node *) newvar;
3479 elog(ERROR, "WindowFunc not found in subplan target lists");
3480 }
3481
3482 return expression_tree_mutator(node,
3484 context);
3485}
3486
3487/*
3488 * fix_windowagg_condition_expr
3489 * Converts references in 'runcondition' so that any WindowFunc
3490 * references are swapped out for a Var which references the matching
3491 * WindowFunc in 'subplan_itlist'.
3492 */
3493static List *
3495 List *runcondition,
3496 indexed_tlist *subplan_itlist)
3497{
3499
3500 context.root = root;
3501 context.subplan_itlist = subplan_itlist;
3502 context.newvarno = 0;
3503
3504 return (List *) fix_windowagg_condition_expr_mutator((Node *) runcondition,
3505 &context);
3506}
3507
3508/*
3509 * set_windowagg_runcondition_references
3510 * Converts references in 'runcondition' so that any WindowFunc
3511 * references are swapped out for a Var which references the matching
3512 * WindowFunc in 'plan' targetlist.
3513 */
3514static List *
3516 List *runcondition,
3517 Plan *plan)
3518{
3519 List *newlist;
3520 indexed_tlist *itlist;
3521
3522 itlist = build_tlist_index(plan->targetlist);
3523
3524 newlist = fix_windowagg_condition_expr(root, runcondition, itlist);
3525
3526 pfree(itlist);
3527
3528 return newlist;
3529}
3530
3531/*
3532 * find_minmax_agg_replacement_param
3533 * If the given Aggref is one that we are optimizing into a subquery
3534 * (cf. planagg.c), then return the Param that should replace it.
3535 * Else return NULL.
3536 *
3537 * This is exported so that SS_finalize_plan can use it before setrefs.c runs.
3538 * Note that it will not find anything until we have built a Plan from a
3539 * MinMaxAggPath, as root->minmax_aggs will never be filled otherwise.
3540 */
3541Param *
3543{
3544 if (root->minmax_aggs != NIL &&
3545 list_length(aggref->args) == 1)
3546 {
3547 TargetEntry *curTarget = (TargetEntry *) linitial(aggref->args);
3548 ListCell *lc;
3549
3550 foreach(lc, root->minmax_aggs)
3551 {
3552 MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
3553
3554 if (mminfo->aggfnoid == aggref->aggfnoid &&
3555 equal(mminfo->target, curTarget->expr))
3556 return mminfo->param;
3557 }
3558 }
3559 return NULL;
3560}
3561
3562
3563/*****************************************************************************
3564 * QUERY DEPENDENCY MANAGEMENT
3565 *****************************************************************************/
3566
3567/*
3568 * record_plan_function_dependency
3569 * Mark the current plan as depending on a particular function.
3570 *
3571 * This is exported so that the function-inlining code can record a
3572 * dependency on a function that it's removed from the plan tree.
3573 */
3574void
3576{
3577 /*
3578 * For performance reasons, we don't bother to track built-in functions;
3579 * we just assume they'll never change (or at least not in ways that'd
3580 * invalidate plans using them). For this purpose we can consider a
3581 * built-in function to be one with OID less than FirstUnpinnedObjectId.
3582 * Note that the OID generator guarantees never to generate such an OID
3583 * after startup, even at OID wraparound.
3584 */
3585 if (funcid >= (Oid) FirstUnpinnedObjectId)
3586 {
3587 PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3588
3589 /*
3590 * It would work to use any syscache on pg_proc, but the easiest is
3591 * PROCOID since we already have the function's OID at hand. Note
3592 * that plancache.c knows we use PROCOID.
3593 */
3594 inval_item->cacheId = PROCOID;
3595 inval_item->hashValue = GetSysCacheHashValue1(PROCOID,
3596 ObjectIdGetDatum(funcid));
3597
3598 root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3599 }
3600}
3601
3602/*
3603 * record_plan_type_dependency
3604 * Mark the current plan as depending on a particular type.
3605 *
3606 * This is exported so that eval_const_expressions can record a
3607 * dependency on a domain that it's removed a CoerceToDomain node for.
3608 *
3609 * We don't currently need to record dependencies on domains that the
3610 * plan contains CoerceToDomain nodes for, though that might change in
3611 * future. Hence, this isn't actually called in this module, though
3612 * someday fix_expr_common might call it.
3613 */
3614void
3616{
3617 /*
3618 * As in record_plan_function_dependency, ignore the possibility that
3619 * someone would change a built-in domain.
3620 */
3621 if (typid >= (Oid) FirstUnpinnedObjectId)
3622 {
3623 PlanInvalItem *inval_item = makeNode(PlanInvalItem);
3624
3625 /*
3626 * It would work to use any syscache on pg_type, but the easiest is
3627 * TYPEOID since we already have the type's OID at hand. Note that
3628 * plancache.c knows we use TYPEOID.
3629 */
3630 inval_item->cacheId = TYPEOID;
3631 inval_item->hashValue = GetSysCacheHashValue1(TYPEOID,
3632 ObjectIdGetDatum(typid));
3633
3634 root->glob->invalItems = lappend(root->glob->invalItems, inval_item);
3635 }
3636}
3637
3638/*
3639 * extract_query_dependencies
3640 * Given a rewritten, but not yet planned, query or queries
3641 * (i.e. a Query node or list of Query nodes), extract dependencies
3642 * just as set_plan_references would do. Also detect whether any
3643 * rewrite steps were affected by RLS.
3644 *
3645 * This is needed by plancache.c to handle invalidation of cached unplanned
3646 * queries.
3647 *
3648 * Note: this does not go through eval_const_expressions, and hence doesn't
3649 * reflect its additions of inlined functions and elided CoerceToDomain nodes
3650 * to the invalItems list. This is obviously OK for functions, since we'll
3651 * see them in the original query tree anyway. For domains, it's OK because
3652 * we don't care about domains unless they get elided. That is, a plan might
3653 * have domain dependencies that the query tree doesn't.
3654 */
3655void
3657 List **relationOids,
3658 List **invalItems,
3659 bool *hasRowSecurity)
3660{
3661 PlannerGlobal glob;
3663
3664 /* Make up dummy planner state so we can use this module's machinery */
3665 MemSet(&glob, 0, sizeof(glob));
3666 glob.type = T_PlannerGlobal;
3667 glob.relationOids = NIL;
3668 glob.invalItems = NIL;
3669 /* Hack: we use glob.dependsOnRole to collect hasRowSecurity flags */
3670 glob.dependsOnRole = false;
3671
3672 MemSet(&root, 0, sizeof(root));
3673 root.type = T_PlannerInfo;
3674 root.glob = &glob;
3675
3677
3678 *relationOids = glob.relationOids;
3679 *invalItems = glob.invalItems;
3680 *hasRowSecurity = glob.dependsOnRole;
3681}
3682
3683/*
3684 * Tree walker for extract_query_dependencies.
3685 *
3686 * This is exported so that expression_planner_with_deps can call it on
3687 * simple expressions (post-planning, not before planning, in that case).
3688 * In that usage, glob.dependsOnRole isn't meaningful, but the relationOids
3689 * and invalItems lists are added to as needed.
3690 */
3691bool
3693{
3694 if (node == NULL)
3695 return false;
3696 Assert(!IsA(node, PlaceHolderVar));
3697 if (IsA(node, Query))
3698 {
3699 Query *query = (Query *) node;
3700 ListCell *lc;
3701
3702 if (query->commandType == CMD_UTILITY)
3703 {
3704 /*
3705 * This logic must handle any utility command for which parse
3706 * analysis was nontrivial (cf. stmt_requires_parse_analysis).
3707 *
3708 * Notably, CALL requires its own processing.
3709 */
3710 if (IsA(query->utilityStmt, CallStmt))
3711 {
3712 CallStmt *callstmt = (CallStmt *) query->utilityStmt;
3713
3714 /* We need not examine funccall, just the transformed exprs */
3715 (void) extract_query_dependencies_walker((Node *) callstmt->funcexpr,
3716 context);
3717 (void) extract_query_dependencies_walker((Node *) callstmt->outargs,
3718 context);
3719 return false;
3720 }
3721
3722 /*
3723 * Ignore other utility statements, except those (such as EXPLAIN)
3724 * that contain a parsed-but-not-planned query. For those, we
3725 * just need to transfer our attention to the contained query.
3726 */
3727 query = UtilityContainsQuery(query->utilityStmt);
3728 if (query == NULL)
3729 return false;
3730 }
3731
3732 /* Remember if any Query has RLS quals applied by rewriter */
3733 if (query->hasRowSecurity)
3734 context->glob->dependsOnRole = true;
3735
3736 /* Collect relation OIDs in this Query's rtable */
3737 foreach(lc, query->rtable)
3738 {
3739 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
3740
3741 if (rte->rtekind == RTE_RELATION ||
3742 (rte->rtekind == RTE_SUBQUERY && OidIsValid(rte->relid)) ||
3743 (rte->rtekind == RTE_NAMEDTUPLESTORE && OidIsValid(rte->relid)))
3744 context->glob->relationOids =
3745 lappend_oid(context->glob->relationOids, rte->relid);
3746 }
3747
3748 /* And recurse into the query's subexpressions */
3750 context, 0);
3751 }
3752 /* Extract function dependencies and check for regclass Consts */
3753 fix_expr_common(context, node);
3755 context);
3756}
int16 AttrNumber
Definition: attnum.h:21
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:216
Bitmapset * bms_intersect(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:292
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1306
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:470
unsigned int Index
Definition: c.h:619
#define MemSet(start, val, len)
Definition: c.h:1019
#define OidIsValid(objectId)
Definition: c.h:774
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
Assert(PointerIsAligned(start, uint64))
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * lappend_int(List *list, int datum)
Definition: list.c:357
List * lappend_oid(List *list, Oid datum)
Definition: list.c:375
Datum lca(PG_FUNCTION_ARGS)
Definition: ltree_op.c:571
Var * makeVarFromTargetEntry(int varno, TargetEntry *tle)
Definition: makefuncs.c:107
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
Const * makeNullConst(Oid consttype, int32 consttypmod, Oid constcollid)
Definition: makefuncs.c:388
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:289
TargetEntry * flatCopyTargetEntry(TargetEntry *src_tle)
Definition: makefuncs.c:322
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc0(Size size)
Definition: mcxt.c:1395
void * palloc(Size size)
Definition: mcxt.c:1365
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
int32 exprTypmod(const Node *expr)
Definition: nodeFuncs.c:301
Oid exprCollation(const Node *expr)
Definition: nodeFuncs.c:821
void set_sa_opfuncid(ScalarArrayOpExpr *opexpr)
Definition: nodeFuncs.c:1879
void set_opfuncid(OpExpr *opexpr)
Definition: nodeFuncs.c:1868
#define expression_tree_mutator(n, m, c)
Definition: nodeFuncs.h:155
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:158
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
#define QTW_EXAMINE_RTES_BEFORE
Definition: nodeFuncs.h:27
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
#define copyObject(obj)
Definition: nodes.h:232
double Cost
Definition: nodes.h:261
#define nodeTag(nodeptr)
Definition: nodes.h:139
#define DO_AGGSPLIT_COMBINE(as)
Definition: nodes.h:395
@ CMD_UTILITY
Definition: nodes.h:280
@ AGGSPLIT_FINAL_DESERIAL
Definition: nodes.h:391
@ AGGSPLIT_INITIAL_SERIAL
Definition: nodes.h:389
#define makeNode(_type_)
Definition: nodes.h:161
@ JOIN_INNER
Definition: nodes.h:303
char * bmsToString(const Bitmapset *bms)
Definition: outfuncs.c:822
RTEPermissionInfo * getRTEPermissionInfo(List *rteperminfos, RangeTblEntry *rte)
RTEPermissionInfo * addRTEPermissionInfo(List **rteperminfos, RangeTblEntry *rte)
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1050
@ RTE_SUBQUERY
Definition: parsenodes.h:1044
@ RTE_RELATION
Definition: parsenodes.h:1043
#define IS_DUMMY_REL(r)
Definition: pathnodes.h:2193
@ UPPERREL_FINAL
Definition: pathnodes.h:79
#define lfirst(lc)
Definition: pg_list.h:172
#define lfirst_node(type, lc)
Definition: pg_list.h:176
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:518
#define foreach_current_index(var_or_cell)
Definition: pg_list.h:403
#define lfirst_int(lc)
Definition: pg_list.h:173
#define list_make1(x1)
Definition: pg_list.h:212
#define linitial_int(l)
Definition: pg_list.h:179
#define forthree(cell1, list1, cell2, list2, cell3, list3)
Definition: pg_list.h:563
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
#define linitial(l)
Definition: pg_list.h:178
#define list_nth_node(type, list, n)
Definition: pg_list.h:327
#define plan(x)
Definition: pg_regress.c:161
void mark_partial_aggref(Aggref *agg, AggSplit aggsplit)
Definition: planner.c:5743
@ SUBQUERY_SCAN_NONTRIVIAL
Definition: plannodes.h:749
@ SUBQUERY_SCAN_UNKNOWN
Definition: plannodes.h:747
@ SUBQUERY_SCAN_TRIVIAL
Definition: plannodes.h:748
#define outerPlan(node)
Definition: plannodes.h:261
static Oid DatumGetObjectId(Datum X)
Definition: postgres.h:252
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:262
unsigned int Oid
Definition: postgres_ext.h:32
#define ROWID_VAR
Definition: primnodes.h:245
@ PARAM_MULTIEXPR
Definition: primnodes.h:387
#define IS_SPECIAL_VARNO(varno)
Definition: primnodes.h:247
@ VAR_RETURNING_DEFAULT
Definition: primnodes.h:256
#define OUTER_VAR
Definition: primnodes.h:243
#define INNER_VAR
Definition: primnodes.h:242
#define INDEX_VAR
Definition: primnodes.h:244
tree ctl root
Definition: radixtree.h:1857
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:529
RelOptInfo * fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
Definition: relnode.c:1581
Node * remove_nulling_relids(Node *node, const Bitmapset *removable_relids, const Bitmapset *except_relids)
NullingRelsMatch
Definition: setrefs.c:35
@ NRM_EQUAL
Definition: setrefs.c:36
@ NRM_SUPERSET
Definition: setrefs.c:38
@ NRM_SUBSET
Definition: setrefs.c:37
void record_plan_type_dependency(PlannerInfo *root, Oid typid)
Definition: setrefs.c:3615
#define NUM_EXEC_QUAL(parentplan)
Definition: setrefs.c:117
static void set_hash_references(PlannerInfo *root, Plan *plan, int rtoffset)
Definition: setrefs.c:1974
static void fix_expr_common(PlannerInfo *root, Node *node)
Definition: setrefs.c:2051
static void add_rtes_to_flat_rtable(PlannerInfo *root, bool recursing)
Definition: setrefs.c:396
static Node * fix_join_expr_mutator(Node *node, fix_join_expr_context *context)
Definition: setrefs.c:3147
static void add_rte_to_flat_rtable(PlannerGlobal *glob, List *rteperminfos, RangeTblEntry *rte)
Definition: setrefs.c:542
static Plan * set_append_references(PlannerInfo *root, Append *aplan, int rtoffset)
Definition: setrefs.c:1842
Plan * set_plan_references(PlannerInfo *root, Plan *plan)
Definition: setrefs.c:288
static Plan * set_mergeappend_references(PlannerInfo *root, MergeAppend *mplan, int rtoffset)
Definition: setrefs.c:1909
static List * set_returning_clause_references(PlannerInfo *root, List *rlist, Plan *topplan, Index resultRelation, int rtoffset)
Definition: setrefs.c:3420
static Node * fix_param_node(PlannerInfo *root, Param *p)
Definition: setrefs.c:2146
void record_plan_function_dependency(PlannerInfo *root, Oid funcid)
Definition: setrefs.c:3575
static Relids offset_relid_set(Relids relids, int rtoffset)
Definition: setrefs.c:2007
static bool flatten_rtes_walker(Node *node, flatten_rtes_walker_context *cxt)
Definition: setrefs.c:497
static indexed_tlist * build_tlist_index(List *tlist)
Definition: setrefs.c:2780
static List * set_windowagg_runcondition_references(PlannerInfo *root, List *runcondition, Plan *plan)
Definition: setrefs.c:3515
bool trivial_subqueryscan(SubqueryScan *plan)
Definition: setrefs.c:1497
static void set_upper_references(PlannerInfo *root, Plan *plan, int rtoffset)
Definition: setrefs.c:2502
static Var * search_indexed_tlist_for_sortgroupref(Expr *node, Index sortgroupref, indexed_tlist *itlist, int newvarno)
Definition: setrefs.c:3047
static void flatten_unplanned_rtes(PlannerGlobal *glob, RangeTblEntry *rte)
Definition: setrefs.c:485
static Node * fix_upper_expr(PlannerInfo *root, Node *node, indexed_tlist *subplan_itlist, int newvarno, int rtoffset, NullingRelsMatch nrm_match, double num_exec)
Definition: setrefs.c:3299
static void set_param_references(PlannerInfo *root, Plan *plan)
Definition: setrefs.c:2590
static Var * search_indexed_tlist_for_non_var(Expr *node, indexed_tlist *itlist, int newvarno)
Definition: setrefs.c:3007
static Node * fix_upper_expr_mutator(Node *node, fix_upper_expr_context *context)
Definition: setrefs.c:3319
Param * find_minmax_agg_replacement_param(PlannerInfo *root, Aggref *aggref)
Definition: setrefs.c:3542
static Node * fix_scan_expr_mutator(Node *node, fix_scan_expr_context *context)
Definition: setrefs.c:2268
static void set_foreignscan_references(PlannerInfo *root, ForeignScan *fscan, int rtoffset)
Definition: setrefs.c:1611
static Plan * set_subqueryscan_references(PlannerInfo *root, SubqueryScan *plan, int rtoffset)
Definition: setrefs.c:1428
static Var * search_indexed_tlist_for_phv(PlaceHolderVar *phv, indexed_tlist *itlist, int newvarno, NullingRelsMatch nrm_match)
Definition: setrefs.c:2954
static Plan * set_indexonlyscan_references(PlannerInfo *root, IndexOnlyScan *plan, int rtoffset)
Definition: setrefs.c:1354
static List * fix_join_expr(PlannerInfo *root, List *clauses, indexed_tlist *outer_itlist, indexed_tlist *inner_itlist, Index acceptable_rel, int rtoffset, NullingRelsMatch nrm_match, double num_exec)
Definition: setrefs.c:3125
static Node * convert_combining_aggrefs(Node *node, void *context)
Definition: setrefs.c:2645
static void set_dummy_tlist_references(Plan *plan, int rtoffset)
Definition: setrefs.c:2713
static int register_partpruneinfo(PlannerInfo *root, int part_prune_index, int rtoffset)
Definition: setrefs.c:1781
static void set_customscan_references(PlannerInfo *root, CustomScan *cscan, int rtoffset)
Definition: setrefs.c:1698
#define ISREGCLASSCONST(con)
Definition: setrefs.c:126
void extract_query_dependencies(Node *query, List **relationOids, List **invalItems, bool *hasRowSecurity)
Definition: setrefs.c:3656
static Node * fix_windowagg_condition_expr_mutator(Node *node, fix_windowagg_cond_context *context)
Definition: setrefs.c:3464
static Var * copyVar(Var *var)
Definition: setrefs.c:2029
bool extract_query_dependencies_walker(Node *node, PlannerInfo *context)
Definition: setrefs.c:3692
static List * fix_windowagg_condition_expr(PlannerInfo *root, List *runcondition, indexed_tlist *subplan_itlist)
Definition: setrefs.c:3494
#define NUM_EXEC_TLIST(parentplan)
Definition: setrefs.c:116
static Node * fix_alternative_subplan(PlannerInfo *root, AlternativeSubPlan *asplan, double num_exec)
Definition: setrefs.c:2177
static void set_join_references(PlannerInfo *root, Join *join, int rtoffset)
Definition: setrefs.c:2353
static indexed_tlist * build_tlist_index_other_vars(List *tlist, int ignore_rel)
Definition: setrefs.c:2831
static Plan * clean_up_removed_plan_level(Plan *parent, Plan *child)
Definition: setrefs.c:1567
static Node * fix_scan_expr(PlannerInfo *root, Node *node, int rtoffset, double num_exec)
Definition: setrefs.c:2233
static Plan * set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset)
Definition: setrefs.c:619
static bool fix_scan_expr_walker(Node *node, fix_scan_expr_context *context)
Definition: setrefs.c:2333
static Var * search_indexed_tlist_for_var(Var *var, indexed_tlist *itlist, int newvarno, int rtoffset, NullingRelsMatch nrm_match)
Definition: setrefs.c:2889
#define fix_scan_list(root, lst, rtoffset, num_exec)
Definition: setrefs.c:130
AggSplit aggsplit
Definition: plannodes.h:1196
Oid aggfnoid
Definition: primnodes.h:463
List * aggdistinct
Definition: primnodes.h:493
List * args
Definition: primnodes.h:487
Expr * aggfilter
Definition: primnodes.h:496
List * aggorder
Definition: primnodes.h:490
Index child_relid
Definition: pathnodes.h:3192
List * translated_vars
Definition: pathnodes.h:3219
Index parent_relid
Definition: pathnodes.h:3191
int part_prune_index
Definition: plannodes.h:408
Bitmapset * apprelids
Definition: plannodes.h:392
Plan plan
Definition: plannodes.h:390
List * appendplans
Definition: plannodes.h:393
Plan plan
Definition: plannodes.h:491
List * bitmapplans
Definition: plannodes.h:492
List * bitmapqualorig
Definition: plannodes.h:693
List * indexqualorig
Definition: plannodes.h:677
List * indexqual
Definition: plannodes.h:675
List * bitmapplans
Definition: plannodes.h:507
Plan plan
Definition: plannodes.h:505
FuncExpr * funcexpr
Definition: parsenodes.h:3644
List * outargs
Definition: parsenodes.h:3646
Scan scan
Definition: plannodes.h:800
List * custom_scan_tlist
Definition: plannodes.h:923
Scan scan
Definition: plannodes.h:913
Bitmapset * custom_relids
Definition: plannodes.h:925
List * custom_plans
Definition: plannodes.h:917
Bitmapset * fs_relids
Definition: plannodes.h:889
Bitmapset * fs_base_relids
Definition: plannodes.h:891
Index resultRelation
Definition: plannodes.h:875
List * fdw_scan_tlist
Definition: plannodes.h:885
List * functions
Definition: plannodes.h:767
List * hashclauses
Definition: plannodes.h:1046
List * hashkeys
Definition: plannodes.h:1054
List * hashkeys
Definition: plannodes.h:1409
List * indexorderby
Definition: plannodes.h:593
Scan scan
Definition: plannodes.h:585
List * indexqualorig
Definition: plannodes.h:591
List * indexqual
Definition: plannodes.h:589
List * indexorderbyorig
Definition: plannodes.h:595
List * joinqual
Definition: plannodes.h:971
JoinType jointype
Definition: plannodes.h:968
Plan plan
Definition: plannodes.h:1479
Node * limitCount
Definition: plannodes.h:1485
Node * limitOffset
Definition: plannodes.h:1482
Definition: pg_list.h:54
List * rowMarks
Definition: plannodes.h:1465
Plan plan
Definition: plannodes.h:1463
List * param_exprs
Definition: plannodes.h:1084
int part_prune_index
Definition: plannodes.h:447
Bitmapset * apprelids
Definition: plannodes.h:421
List * mergeplans
Definition: plannodes.h:423
List * mergeclauses
Definition: plannodes.h:1022
Param * param
Definition: pathnodes.h:3355
Expr * target
Definition: pathnodes.h:3340
Index nominalRelation
Definition: plannodes.h:338
List * mergeJoinConditions
Definition: plannodes.h:378
List * resultRelations
Definition: plannodes.h:342
List * onConflictSet
Definition: plannodes.h:366
List * exclRelTlist
Definition: plannodes.h:374
List * mergeActionLists
Definition: plannodes.h:376
List * returningLists
Definition: plannodes.h:352
List * withCheckOptionLists
Definition: plannodes.h:346
Index rootRelation
Definition: plannodes.h:340
Node * onConflictWhere
Definition: plannodes.h:370
List * rowMarks
Definition: plannodes.h:358
Index exclRelRTI
Definition: plannodes.h:372
Var * paramval
Definition: plannodes.h:1000
List * nestParams
Definition: plannodes.h:989
Definition: nodes.h:135
int paramid
Definition: primnodes.h:396
ParamKind paramkind
Definition: primnodes.h:395
Bitmapset * relids
Definition: plannodes.h:1647
Relids phnullingrels
Definition: pathnodes.h:3018
uint32 hashValue
Definition: plannodes.h:1804
Index prti
Definition: plannodes.h:1592
struct Plan * lefttree
Definition: plannodes.h:233
Cost total_cost
Definition: plannodes.h:199
struct Plan * righttree
Definition: plannodes.h:234
bool parallel_aware
Definition: plannodes.h:213
Cost startup_cost
Definition: plannodes.h:197
List * qual
Definition: plannodes.h:231
bool parallel_safe
Definition: plannodes.h:215
List * targetlist
Definition: plannodes.h:229
List * initPlan
Definition: plannodes.h:236
Bitmapset * prunableRelids
Definition: pathnodes.h:133
List * subplans
Definition: pathnodes.h:105
bool dependsOnRole
Definition: pathnodes.h:172
Bitmapset * allRelids
Definition: pathnodes.h:126
List * appendRelations
Definition: pathnodes.h:145
List * finalrowmarks
Definition: pathnodes.h:139
List * invalItems
Definition: pathnodes.h:154
List * relationOids
Definition: pathnodes.h:151
List * finalrteperminfos
Definition: pathnodes.h:136
List * partPruneInfos
Definition: pathnodes.h:148
List * finalrtable
Definition: pathnodes.h:120
List * init_plans
Definition: pathnodes.h:327
PlannerGlobal * glob
Definition: pathnodes.h:230
List * rtable
Definition: parsenodes.h:175
CmdType commandType
Definition: parsenodes.h:121
Node * utilityStmt
Definition: parsenodes.h:141
TableFunc * tablefunc
Definition: parsenodes.h:1215
struct TableSampleClause * tablesample
Definition: parsenodes.h:1129
Query * subquery
Definition: parsenodes.h:1135
List * values_lists
Definition: parsenodes.h:1221
List * functions
Definition: parsenodes.h:1208
RTEKind rtekind
Definition: parsenodes.h:1078
Index relid
Definition: pathnodes.h:973
PlannerInfo * subroot
Definition: pathnodes.h:1004
Node * resconstantqual
Definition: plannodes.h:299
Bitmapset * relids
Definition: plannodes.h:300
Plan plan
Definition: plannodes.h:297
struct TableSampleClause * tablesample
Definition: plannodes.h:543
Scan scan
Definition: plannodes.h:541
Index scanrelid
Definition: plannodes.h:523
Scan scan
Definition: plannodes.h:532
int plan_id
Definition: primnodes.h:1102
List * setParam
Definition: primnodes.h:1121
Cost startup_cost
Definition: primnodes.h:1126
Cost per_call_cost
Definition: primnodes.h:1127
TableFunc * tablefunc
Definition: plannodes.h:791
Expr * expr
Definition: primnodes.h:2239
AttrNumber resno
Definition: primnodes.h:2241
Index ressortgroupref
Definition: primnodes.h:2245
List * tidrangequals
Definition: plannodes.h:722
Scan scan
Definition: plannodes.h:706
List * tidquals
Definition: plannodes.h:708
Scan scan
Definition: plannodes.h:778
List * values_lists
Definition: plannodes.h:780
Definition: primnodes.h:262
AttrNumber varattno
Definition: primnodes.h:274
int varno
Definition: primnodes.h:269
VarReturningType varreturningtype
Definition: primnodes.h:297
Index varlevelsup
Definition: primnodes.h:294
Node * endOffset
Definition: plannodes.h:1271
List * runConditionOrig
Definition: plannodes.h:1277
Node * startOffset
Definition: plannodes.h:1268
List * runCondition
Definition: plannodes.h:1274
NullingRelsMatch nrm_match
Definition: setrefs.c:72
indexed_tlist * outer_itlist
Definition: setrefs.c:68
PlannerInfo * root
Definition: setrefs.c:67
indexed_tlist * inner_itlist
Definition: setrefs.c:69
PlannerInfo * root
Definition: setrefs.c:60
indexed_tlist * subplan_itlist
Definition: setrefs.c:79
PlannerInfo * root
Definition: setrefs.c:78
NullingRelsMatch nrm_match
Definition: setrefs.c:82
indexed_tlist * subplan_itlist
Definition: setrefs.c:89
PlannerInfo * root
Definition: setrefs.c:88
PlannerGlobal * glob
Definition: setrefs.c:96
tlist_vinfo vars[FLEXIBLE_ARRAY_MEMBER]
Definition: setrefs.c:55
bool has_ph_vars
Definition: setrefs.c:53
bool has_non_vars
Definition: setrefs.c:54
int num_vars
Definition: setrefs.c:52
List * tlist
Definition: setrefs.c:51
AttrNumber resno
Definition: setrefs.c:45
Bitmapset * varnullingrels
Definition: setrefs.c:46
int varno
Definition: setrefs.c:43
AttrNumber varattno
Definition: setrefs.c:44
Definition: regcomp.c:282
void SS_compute_initplan_cost(List *init_plans, Cost *initplan_cost_p, bool *unsafe_initplans_p)
Definition: subselect.c:2347
#define GetSysCacheHashValue1(cacheId, key1)
Definition: syscache.h:118
TargetEntry * tlist_member(Expr *node, List *targetlist)
Definition: tlist.c:79
void apply_tlist_labeling(List *dest_tlist, List *src_tlist)
Definition: tlist.c:318
#define FirstUnpinnedObjectId
Definition: transam.h:196
Query * UtilityContainsQuery(Node *parsetree)
Definition: utility.c:2171