- 2.25.0 (latest)
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
MatrixFactorization(
    *,
    feedback_type: typing.Literal["explicit", "implicit"] = "explicit",
    num_factors: int,
    user_col: str,
    item_col: str,
    rating_col: str = "rating",
    l2_reg: float = 1.0
)Matrix Factorization (MF).
Examples:
>>> import bigframes.pandas as bpd
>>> from bigframes.ml.decomposition import MatrixFactorization
>>> bpd.options.display.progress_bar = None
>>> X = bpd.DataFrame({
... "row": [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6],
... "column": [0,1] * 7,
... "value": [1, 1, 2, 1, 3, 1.2, 4, 1, 5, 0.8, 6, 1, 2, 3],
... })
>>> model = MatrixFactorization(feedback_type='explicit', num_factors=6, user_col='row', item_col='column', rating_col='value', l2_reg=2.06)
>>> W = model.fit(X)
| Parameters | |
|---|---|
| Name | Description | 
| feedback_type | 'explicit' 'implicit'Specifies the feedback type for the model. The feedback type determines the algorithm that is used during training. | 
| num_factors | int or auto, default autoSpecifies the number of latent factors to use. | 
| user_col | strThe user column name. | 
| item_col | strThe item column name. | 
| l2_reg | float, default 1.0A floating point value for L2 regularization. The default value is 1.0. | 
Properties
rating_col
str: The rating column name. Defaults to 'rating'.
Methods
__repr__
__repr__()Print the estimator's constructor with all non-default parameter values.
fit
fit(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
    y: typing.Optional[
        typing.Union[
            bigframes.dataframe.DataFrame,
            bigframes.series.Series,
            pandas.core.frame.DataFrame,
            pandas.core.series.Series,
        ]
    ] = None,
) -> bigframes.ml.base._TFit the model according to the given training data.
| Parameters | |
|---|---|
| Name | Description | 
| X | bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.SeriesSeries or DataFrame of shape (n_samples, n_features). Training vector, where  | 
| y | default NoneIgnored. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.ml.decomposition.MatrixFactorization | Fitted estimator. | 
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]Get parameters for this estimator.
| Parameter | |
|---|---|
| Name | Description | 
| deep | bool, default TrueDefault  | 
| Returns | |
|---|---|
| Type | Description | 
| Dictionary | A dictionary of parameter names mapped to their values. | 
predict
predict(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
) -> bigframes.dataframe.DataFrameGenerate a predicted rating for every user-item row combination for a matrix factorization model.
| Parameter | |
|---|---|
| Name | Description | 
| X | bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.SeriesSeries or a DataFrame to predict. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.dataframe.DataFrame | Predicted DataFrames. | 
register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._TRegister the model to Vertex AI.
After register, go to the Google Cloud console (https://console.cloud.google.com/vertex-ai/models) to manage the model registries. Refer to https://cloud.google.com/vertex-ai/docs/model-registry/introduction for more options.
| Parameter | |
|---|---|
| Name | Description | 
| vertex_ai_model_id | Optional[str], default NoneOptional string id as model id in Vertex. If not set, will default to 'bigframes_{bq_model_id}'. Vertex Ai model id will be truncated to 63 characters due to its limitation. | 
score
score(X=None, y=None) -> bigframes.dataframe.DataFrameCalculate evaluation metrics of the model.
| Parameters | |
|---|---|
| Name | Description | 
| X | bigframes.dataframe.DataFrame bigframes.series.Series NoneDataFrame of shape (n_samples, n_features). Test samples. | 
| y | bigframes.dataframe.DataFrame bigframes.series.Series NoneDataFrame of shape (n_samples,) or (n_samples, n_outputs). True labels for  | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.dataframe.DataFrame | DataFrame that represents model metrics. | 
to_gbq
to_gbq(
    model_name: str, replace: bool = False
) -> bigframes.ml.decomposition.MatrixFactorizationSave the model to BigQuery.
| Parameters | |
|---|---|
| Name | Description | 
| model_name | strThe name of the model. | 
| replace | bool, default FalseDetermine whether to replace if the model already exists. Default to False. | 
| Returns | |
|---|---|
| Type | Description | 
| MatrixFactorization | Saved model. |