- 2.28.0 (latest)
 - 2.27.0
 - 2.26.0
 - 2.25.0
 - 2.24.0
 - 2.23.0
 - 2.22.0
 - 2.21.0
 - 2.20.0
 - 2.19.0
 - 2.18.0
 - 2.17.0
 - 2.16.0
 - 2.15.0
 - 2.14.0
 - 2.13.0
 - 2.12.0
 - 2.11.0
 - 2.10.0
 - 2.9.0
 - 2.8.0
 - 2.7.0
 - 2.6.0
 - 2.5.0
 - 2.4.0
 - 2.3.0
 - 2.2.0
 - 1.36.0
 - 1.35.0
 - 1.34.0
 - 1.33.0
 - 1.32.0
 - 1.31.0
 - 1.30.0
 - 1.29.0
 - 1.28.0
 - 1.27.0
 - 1.26.0
 - 1.25.0
 - 1.24.0
 - 1.22.0
 - 1.21.0
 - 1.20.0
 - 1.19.0
 - 1.18.0
 - 1.17.0
 - 1.16.0
 - 1.15.0
 - 1.14.0
 - 1.13.0
 - 1.12.0
 - 1.11.1
 - 1.10.0
 - 1.9.0
 - 1.8.0
 - 1.7.0
 - 1.6.0
 - 1.5.0
 - 1.4.0
 - 1.3.0
 - 1.2.0
 - 1.1.0
 - 1.0.0
 - 0.26.0
 - 0.25.0
 - 0.24.0
 - 0.23.0
 - 0.22.0
 - 0.21.0
 - 0.20.1
 - 0.19.2
 - 0.18.0
 - 0.17.0
 - 0.16.0
 - 0.15.0
 - 0.14.1
 - 0.13.0
 - 0.12.0
 - 0.11.0
 - 0.10.0
 - 0.9.0
 - 0.8.0
 - 0.7.0
 - 0.6.0
 - 0.5.0
 - 0.4.0
 - 0.3.0
 - 0.2.0
 
VertexAIModel(
    endpoint: str,
    input: typing.Mapping[str, str],
    output: typing.Mapping[str, str],
    *,
    session: typing.Optional[bigframes.session.Session] = None,
    connection_name: typing.Optional[str] = None
)Remote model from a Vertex AI HTTPS endpoint. User must specify HTTPS endpoint, input schema and output schema. For more information, see Deploy model on Vertex AI: https://cloud.google.com/bigquery/docs/bigquery-ml-remote-model-tutorial#Deploy-Model-on-Vertex-AI.
Parameters | 
      |
|---|---|
| Name | Description | 
endpoint | 
        
  	str
  	Vertex AI HTTPS endpoint.  | 
      
input | 
        
  	Mapping
  	Input schema:  
  | 
      
output | 
        
  	Mapping
  	Output label schema:   | 
      
session | 
        
  	bigframes.Session or None
  	BQ session to create the model. If None, use the global default session.  | 
      
connection_name | 
        
  	str or None
  	Connection to connect with remote service. str of the format <PROJECT_NUMBER/PROJECT_ID>. 
  | 
      
Methods
__repr__
__repr__()Print the estimator's constructor with all non-default parameter values.
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]Get parameters for this estimator.
| Parameter | |
|---|---|
| Name | Description | 
deep | 
        
          bool, default True
          Default   | 
      
| Returns | |
|---|---|
| Type | Description | 
Dictionary | 
        A dictionary of parameter names mapped to their values. | 
predict
predict(
    X: typing.Union[
        bigframes.dataframe.DataFrame,
        bigframes.series.Series,
        pandas.core.frame.DataFrame,
        pandas.core.series.Series,
    ],
) -> bigframes.dataframe.DataFramePredict the result from the input DataFrame.
| Parameter | |
|---|---|
| Name | Description | 
X | 
        
          bigframes.pandas.DataFrame or bigframes.pandas.Series or pandas.DataFrame or pandas.Series
          Input DataFrame or Series, which needs to comply with the input parameter of the model.  | 
      
| Returns | |
|---|---|
| Type | Description | 
bigframes.pandas.DataFrame | 
        DataFrame of shape (n_samples, n_input_columns + n_prediction_columns). Returns predicted values. |