- 2.27.0 (latest)
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
Ensemble models. This module is styled after Scikit-Learn's ensemble module: https://scikit-learn.org/stable/modules/ensemble.html
Classes
RandomForestClassifier
RandomForestClassifier(
    num_parallel_tree: int = 100,
    *,
    tree_method: typing.Literal["auto", "exact", "approx", "hist"] = "auto",
    min_tree_child_weight: int = 1,
    colsample_bytree: float = 1.0,
    colsample_bylevel: float = 1.0,
    colsample_bynode: float = 0.8,
    gamma: float = 0.0,
    max_depth: int = 15,
    subsample: float = 0.8,
    reg_alpha: float = 0.0,
    reg_lambda: float = 1.0,
    early_stop=True,
    min_rel_progress: float = 0.01,
    enable_global_explain=False,
    xgboost_version: typing.Literal["0.9", "1.1"] = "0.9"
)A random forest classifier.
A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.
| Parameters | |
|---|---|
| Name | Description | 
| num_parallel_tree | Optional[int]Number of parallel trees constructed during each iteration. Default to 100. Minimum value is 2. | 
| tree_method | Optional[str]Specify which tree method to use. Default to "auto". If this parameter is set to default, XGBoost will choose the most conservative option available. Possible values: ""exact", "approx", "hist". | 
| min_child_weight | Optional[float]Minimum sum of instance weight(hessian) needed in a child. Default to 1. | 
| colsample_bytree | Optional[float]Subsample ratio of columns when constructing each tree. Default to 1.0. The value should be between 0 and 1. | 
| colsample_bylevel | Optional[float]Subsample ratio of columns for each level. Default to 1.0. The value should be between 0 and 1. | 
| colsample_bynode | Optional[float]Subsample ratio of columns for each split. Default to 0.8. The value should be between 0 and 1. | 
| gamma | Optional[float](min_split_loss) Minimum loss reduction required to make a further partition on a leaf node of the tree. Default to 0.0. | 
| max_depth | Optional[int]Maximum tree depth for base learners. Default to 15. The value should be greater than 0 and less than 1. | 
| subsample | Optional[float]Subsample ratio of the training instance. Default to 0.8. The value should be greater than 0 and less than 1. | 
| reg_alpha | Optional[float]L1 regularization term on weights (xgb's alpha). Default to 0.0. | 
| reg_lambda | Optional[float]L2 regularization term on weights (xgb's lambda). Default to 1.0. | 
| early_stop | Optional[bool]Whether training should stop after the first iteration. Default to True. | 
| min_rel_progress | Optional[float]Minimum relative loss improvement necessary to continue training when early_stop is set to True. Default to 0.01. | 
| enable_global_explain | Optional[bool]Whether to compute global explanations using explainable AI to evaluate global feature importance to the model. Default to False. | 
| xgboost_version | Optional[str]Specifies the Xgboost version for model training. Default to "0.9". Possible values: "0.9", "1.1".ß | 
RandomForestRegressor
RandomForestRegressor(
    num_parallel_tree: int = 100,
    *,
    tree_method: typing.Literal["auto", "exact", "approx", "hist"] = "auto",
    min_tree_child_weight: int = 1,
    colsample_bytree=1.0,
    colsample_bylevel=1.0,
    colsample_bynode=0.8,
    gamma=0.0,
    max_depth: int = 15,
    subsample=0.8,
    reg_alpha=0.0,
    reg_lambda=1.0,
    early_stop=True,
    min_rel_progress=0.01,
    enable_global_explain=False,
    xgboost_version: typing.Literal["0.9", "1.1"] = "0.9"
)A random forest regressor.
A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.
| Parameters | |
|---|---|
| Name | Description | 
| num_parallel_tree | Optional[int]Number of parallel trees constructed during each iteration. Default to 100. Minimum value is 2. | 
| tree_method | Optional[str]Specify which tree method to use. Default to "auto". If this parameter is set to default, XGBoost will choose the most conservative option available. Possible values: ""exact", "approx", "hist". | 
| min_child_weight | Optional[float]Minimum sum of instance weight(hessian) needed in a child. Default to 1. | 
| colsample_bytree | Optional[float]Subsample ratio of columns when constructing each tree. Default to 1.0. The value should be between 0 and 1. | 
| colsample_bylevel | Optional[float]Subsample ratio of columns for each level. Default to 1.0. The value should be between 0 and 1. | 
| colsample_bynode | Optional[float]Subsample ratio of columns for each split. Default to 0.8. The value should be between 0 and 1. | 
| gamma | Optional[float](min_split_loss) Minimum loss reduction required to make a further partition on a leaf node of the tree. Default to 0.0. | 
| max_depth | Optional[int]Maximum tree depth for base learners. Default to 15. The value should be greater than 0 and less than 1. | 
| reg_alpha | Optional[float]L1 regularization term on weights (xgb's alpha). Default to 0.0. | 
| reg_lambda | Optional[float]L2 regularization term on weights (xgb's lambda). Default to 1.0. | 
| early_stop | Optional[bool]Whether training should stop after the first iteration. Default to True. | 
| min_rel_progress | Optional[float]Minimum relative loss improvement necessary to continue training when early_stop is set to True. Default to 0.01. | 
| enable_global_explain | Optional[bool]Whether to compute global explanations using explainable AI to evaluate global feature importance to the model. Default to False. | 
| xgboost_version | Optional[str]Specifies the Xgboost version for model training. Default to "0.9". Possible values: "0.9", "1.1". | 
XGBClassifier
XGBClassifier(
    num_parallel_tree: int = 1,
    *,
    booster: typing.Literal["gbtree", "dart"] = "gbtree",
    dart_normalized_type: typing.Literal["tree", "forest"] = "tree",
    tree_method: typing.Literal["auto", "exact", "approx", "hist"] = "auto",
    min_tree_child_weight: int = 1,
    colsample_bytree: float = 1.0,
    colsample_bylevel: float = 1.0,
    colsample_bynode: float = 1.0,
    gamma: float = 0.0,
    max_depth: int = 6,
    subsample: float = 1.0,
    reg_alpha: float = 0.0,
    reg_lambda: float = 1.0,
    early_stop: bool = True,
    learning_rate: float = 0.3,
    max_iterations: int = 20,
    min_rel_progress: float = 0.01,
    enable_global_explain: bool = False,
    xgboost_version: typing.Literal["0.9", "1.1"] = "0.9"
)XGBoost classifier model.
| Parameters | |
|---|---|
| Name | Description | 
| num_parallel_tree | Optional[int]Number of parallel trees constructed during each iteration. Default to 1. | 
| booster | Optional[str]Specify which booster to use: gbtree or dart. Default to "gbtree". | 
| dart_normalized_type | Optional[str]Type of normalization algorithm for DART booster. Possible values: "TREE", "FOREST". Default to "TREE". | 
| tree_method | Optional[str]Specify which tree method to use. Default to "auto". If this parameter is set to default, XGBoost will choose the most conservative option available. Possible values: ""exact", "approx", "hist". | 
| min_child_weight | Optional[float]Minimum sum of instance weight(hessian) needed in a child. Default to 1. | 
| colsample_bytree | Optional[float]Subsample ratio of columns when constructing each tree. Default to 1.0. | 
| colsample_bylevel | Optional[float]Subsample ratio of columns for each level. Default to 1.0. | 
| colsample_bynode | Optional[float]Subsample ratio of columns for each split. Default to 1.0. | 
| gamma | Optional[float](min_split_loss) Minimum loss reduction required to make a further partition on a leaf node of the tree. Default to 0.0. | 
| max_depth | Optional[int]Maximum tree depth for base learners. Default to 6. | 
| subsample | Optional[float]Subsample ratio of the training instance. Default to 1.0. | 
| reg_alpha | Optional[float]L1 regularization term on weights (xgb's alpha). Default to 0.0. | 
| reg_lambda | Optional[float]L2 regularization term on weights (xgb's lambda). Default to 1.0. | 
| early_stop | Optional[bool]Whether training should stop after the first iteration. Default to True. | 
| learning_rate | Optional[float]Boosting learning rate (xgb's "eta"). Default to 0.3. | 
| max_iterations | Optional[int]Maximum number of rounds for boosting. Default to 20. | 
| min_rel_progress | Optional[float]Minimum relative loss improvement necessary to continue training when early_stop is set to True. Default to 0.01. | 
| enable_global_explain | Optional[bool]Whether to compute global explanations using explainable AI to evaluate global feature importance to the model. Default to False. | 
| xgboost_version | Optional[str]Specifies the Xgboost version for model training. Default to "0.9". Possible values: "0.9", "1.1". | 
XGBRegressor
XGBRegressor(
    num_parallel_tree: int = 1,
    *,
    booster: typing.Literal["gbtree", "dart"] = "gbtree",
    dart_normalized_type: typing.Literal["tree", "forest"] = "tree",
    tree_method: typing.Literal["auto", "exact", "approx", "hist"] = "auto",
    min_tree_child_weight: int = 1,
    colsample_bytree: float = 1.0,
    colsample_bylevel: float = 1.0,
    colsample_bynode: float = 1.0,
    gamma: float = 0.0,
    max_depth: int = 6,
    subsample: float = 1.0,
    reg_alpha: float = 0.0,
    reg_lambda: float = 1.0,
    early_stop: float = True,
    learning_rate: float = 0.3,
    max_iterations: int = 20,
    min_rel_progress: float = 0.01,
    enable_global_explain: bool = False,
    xgboost_version: typing.Literal["0.9", "1.1"] = "0.9"
)XGBoost regression model.
| Parameters | |
|---|---|
| Name | Description | 
| num_parallel_tree | Optional[int]Number of parallel trees constructed during each iteration. Default to 1. | 
| booster | Optional[str]Specify which booster to use: gbtree or dart. Default to "gbtree". | 
| dart_normalized_type | Optional[str]Type of normalization algorithm for DART booster. Possible values: "TREE", "FOREST". Default to "TREE". | 
| tree_method | Optional[str]Specify which tree method to use. Default to "auto". If this parameter is set to default, XGBoost will choose the most conservative option available. Possible values: ""exact", "approx", "hist". | 
| min_child_weight | Optional[float]Minimum sum of instance weight(hessian) needed in a child. Default to 1. | 
| colsample_bytree | Optional[float]Subsample ratio of columns when constructing each tree. Default to 1.0. | 
| colsample_bylevel | Optional[float]Subsample ratio of columns for each level. Default to 1.0. | 
| colsample_bynode | Optional[float]Subsample ratio of columns for each split. Default to 1.0. | 
| gamma | Optional[float](min_split_loss) Minimum loss reduction required to make a further partition on a leaf node of the tree. Default to 0.0. | 
| max_depth | Optional[int]Maximum tree depth for base learners. Default to 6. | 
| subsample | Optional[float]Subsample ratio of the training instance. Default to 1.0. | 
| reg_alpha | Optional[float]L1 regularization term on weights (xgb's alpha). Default to 0.0. | 
| reg_lambda | Optional[float]L2 regularization term on weights (xgb's lambda). Default to 1.0. | 
| early_stop | Optional[bool]Whether training should stop after the first iteration. Default to True. | 
| learning_rate | Optional[float]Boosting learning rate (xgb's "eta"). Default to 0.3. | 
| max_iterations | Optional[int]Maximum number of rounds for boosting. Default to 20. | 
| min_rel_progress | Optional[float]Minimum relative loss improvement necessary to continue training when early_stop is set to True. Default to 0.01. | 
| enable_global_explain | Optional[bool]Whether to compute global explanations using explainable AI to evaluate global feature importance to the model. Default to False. | 
| xgboost_version | Optional[str]Specifies the Xgboost version for model training. Default to "0.9". Possible values: "0.9", "1.1". |