Potenz (Mathematik)

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Zweierpotenz)
Zur Navigation springen Zur Suche springen
Die Schreibweise einer Potenz:

Eine Potenz (von lateinisch potentia ‚Vermögen, Macht‘)[1][2] ist das Ergebnis des Potenzierens (der Exponentiation), das wie das Multiplizieren seinem Ursprung nach eine abkürzende Schreibweise für eine wiederholte mathematische Rechenoperation ist. Wie beim Multiplizieren ein Summand wiederholt addiert wird, so wird beim Potenzieren ein Faktor wiederholt multipliziert. Dabei heißt die Zahl, die zu multiplizieren ist, Basis. Wie oft diese Basis als Faktor auftritt, wird durch den Exponenten angegeben. Man schreibt

Man spricht als a hoch n, n-te Potenz von a, a zur n-ten Potenz oder kurz a zur n-ten aus. Im Fall ist auch a (zum) Quadrat üblich.

heißt Basis (oder Grundzahl), heißt Exponent (oder Hochzahl) der Potenz . Das Ergebnis heißt Potenz oder Wert der Potenz.

Die Definitionsmengen sowohl auf seiten der Exponenten wie auf seiten der Basen werden im Folgenden Schritt für Schritt erweitert.

Natürliche Exponenten

[Bearbeiten | Quelltext bearbeiten]

Die Potenz wird für reelle oder komplexe Zahlen (allgemeiner Elemente eines beliebigen multiplikativen Monoids) und natürliche Zahlen durch

definiert. Diese Definition gilt nur für Damit die aus ihr (ebenfalls nur für ) folgende Identität auch noch für gilt, wird festgelegt. (Anmerkungen zum Fall siehe unten.)

Potenzfunktionen mit positivem Exponenten graphisch
Potenzfunktionen mit negativem Exponenten graphisch

Die folgende Modifikation erleichtert die Behandlung des Sonderfalles :

Die Potenzschreibweise bedeutet „Multipliziere die Zahl 1 mit der Grundzahl so oft, wie der Exponent angibt“, also

Der Exponent 0 sagt aus, dass die Zahl 1 keinmal mit der Grundzahl multipliziert wird und allein stehen bleibt, sodass man das Ergebnis 1 erhält.

Bei negativer Basis und geradzahligem Exponenten ist die Potenz positiv:

Bei negativer Basis und ungeradzahligem Exponenten ist die Potenz negativ:

Ganze negative Exponenten

[Bearbeiten | Quelltext bearbeiten]

Negative Exponenten bedeuten, dass man die zur Multiplikation inverse Operation (Division) durchführen soll. Also „Dividiere die Zahl 1 durch die Grundzahl so oft, wie der Betrag des Exponenten angibt“.

Für eine reelle Zahl und eine natürliche Zahl definiert man also:

Die analoge Definition wird auch in allgemeinerem Kontext angewandt, wann immer eine Multiplikation und inverse Elemente zur Verfügung stehen, beispielsweise bei invertierbaren Matrizen.

Rationale Exponenten

[Bearbeiten | Quelltext bearbeiten]

Sei eine rationale Zahl mit der Bruchdarstellung mit . Für beliebige positive reelle definiert man:

(oder, was äquivalent ist, )

Zum Beispiel gilt:

Der Wert der Potenz hängt nicht davon ab, welche Bruchdarstellung man gewählt hat.

Dieselbe Definition gilt auch für . Daraus folgt, dass für gilt und dass für nicht existiert.

Wenn man Wurzeln aus negativen Zahlen mit ungeraden Wurzelexponenten zulässt, dann kann man diese Definition auf negative Basen und solche rationale Exponenten erweitern, deren gekürzte Bruchdarstellungen ungerade Nenner haben. Dazu gehören auch Potenzen mit negativen Basen und ganzen Exponenten, weil die Nenner in diesem Fall gleich sind.

Für den Fall kann man bei Berechnungen von alle Bruchdarstellungen mit ungeraden benutzen. Aber bei Benutzung von Bruchdarstellungen mit geraden können Fehler entstehen. Zum Beispiel gilt:

Reelle Exponenten

[Bearbeiten | Quelltext bearbeiten]
Exponentialfunktionen 0,5x, 2x, ex und 10x

Ist , eine beliebige reelle Zahl und eine Folge rationaler Zahlen, die gegen konvergiert, so definiert man:

Diese Definition ist korrekt, d. h., der Grenzwert existiert immer und hängt nicht von der Auswahl der Folge ab.

Zum Beispiel ist gleich dem Grenzwert der Folge

Die Definition lässt sich nicht auf den Fall erweitern, da in diesem Fall der Grenzwert nicht zu existieren braucht bzw. für verschiedene Wahlen der Folge sich verschiedene Grenzwerte ergeben.

Eine andere Definition ist über die natürliche Exponentialfunktion und den natürlichen Logarithmus möglich:

Dazu kann die Exponentialfunktion über ihre Reihenentwicklung definiert werden:

Insgesamt sind somit die Potenzen mit nichtnegativen Basen für alle reellen Exponenten definiert. Im Unterschied dazu sind die Potenzen mit negativen Basen nur für solche rationalen Exponenten definiert, deren gekürzte Bruchdarstellungen ungerade Nenner haben. Alle Potenzen mit negativen Basen und ganzen Exponenten gehören dazu. Potenzen negativer Zahlen mit anderen reellen Exponenten lassen sich im Bereich der komplexen Zahlen definieren, sind allerdings nicht reellwertig.

Um die nachfolgende Tabelle nicht zu überladen, betrachten wir nur Potenzen mit reellen Basen, die ungleich sind. Betrachtet man aber eines der unten aufgeführten Gesetze mit nur positiven Exponenten, dann ist es auch für Potenzen zur Basis gültig. Wenn von rationalen Zahlen mit geraden oder ungeraden Nennern gesprochen wird, dann sind stets die Nenner ihrer gekürzten Bruchdarstellungen gemeint.

für alle (Anmerkungen zu „null hoch null“ siehe unten)
für beliebige reelle , falls ist;

für beliebige rationale mit ungeraden Nennern, falls ist.

für beliebige natürliche und ganze , falls ist;
für beliebige natürliche und ganze ungerade , falls ist.
für beliebige reelle , falls ist;
für beliebige rationale mit ungeraden Nennern, falls ist.
für beliebige reelle , falls ist;
für beliebige rationale mit ungeraden Nennern, falls ist.
für beliebige natürliche , und für ganze , wenn ;

für beliebige reelle , falls sind;
für beliebige rationale mit ungeraden Nennern, falls mindestens eine der Zahlen negativ ist.

für beliebige und ganze und, wenn , auch ;

für beliebige reelle , falls sind;
für beliebige rationale mit ungeraden Nennern, falls mindestens eine der Zahlen negativ ist.

für beliebige ganze , falls ist;
für beliebige reelle , falls ist;
für beliebige rationale , mit ungeraden Nennern, falls ist.

Ist mindestens einer der Exponenten irrational oder sind beide rational, aber hat mindestens eine der Zahlen oder einen geraden Nenner, dann ist einer der Ausdrücke oder für undefiniert. Ansonsten sind beide definiert und stimmen entweder überein oder unterscheiden sich nur um ihr Vorzeichen. Für beliebige , falls ist, und für ganze , falls ist, stimmen sie immer überein. Für und nicht ganzzahlige, aber rationale sind diese beiden Fälle möglich. Welcher Fall eintritt, hängt von der Anzahl der Zweien in der Primzahlzerlegung des Zählers von und des Nenners von ab. Um das richtige Vorzeichen auf der rechten Seite der Formel zu erkennen, ist es hinreichend, in diese Formel einzusetzen. Das Vorzeichen, mit dem sie dann bei gültig ist, bleibt richtig für alle und gegebenem . Gilt für , dann gilt für alle (und auch für , falls alle Exponenten positiv sind).

Zum Beispiel gilt und . Darum ist für alle und somit für alle reellen gültig.

Das Potenzieren ist weder kommutativ, denn beispielsweise gilt , noch assoziativ, denn beispielsweise gilt .

Die Schreibweise ohne Klammern bedeutet , das Potenzieren ist demnach rechtsassoziativ, vgl. Operatorrangfolge.

Vertauschung von Basis und Exponent

[Bearbeiten | Quelltext bearbeiten]

Wie schon erwähnt, ist das Potenzieren nicht kommutativ, was die nachfolgende Ungleichung bestätigt.

Es seien und sei die Eulersche Zahl. Dann gilt:

Aus der abgebildeten Figur ergibt sich folgende Implikationskette:

[3][4]

Analog lässt sich zeigen:

Potenzen komplexer Zahlen

[Bearbeiten | Quelltext bearbeiten]

Für ganzzahlige Exponenten kann man Potenzen mit komplexen Basen wie im reellen Fall definieren. Für beliebige reelle oder komplexe Exponenten muss man jedoch anders vorgehen.

Der erste Schritt zur Definition von Potenzen mit komplexen Basen und Exponenten besteht in der stetigen Fortsetzung der Funktion auf die Menge der komplexen Zahlen. Dafür gibt es unterschiedliche Möglichkeiten. Zum Beispiel kann man die Reihe

benutzen, die für alle konvergiert und für alle die Funktion angibt. Mithilfe von Operationen mit Reihen beweist man danach, dass

für beliebige und die eulersche Formel

für beliebige gelten. Daraus folgt die Formel

,

die man auch für die Definition von benutzen kann. Diese Formel zeigt, dass die Wertemenge von gleich ist und dass diese Funktion periodisch ist mit Perioden , .

Darum ist ihre Umkehrfunktion mehrdeutig und für alle definiert. Sie kann mithilfe der Formel angegeben werden, wobei der Betrag, die Wertemenge des Arguments von und der übliche reelle Logarithmus ist. Der Hauptwert dieser Funktion ergibt sich, wenn man den Hauptwert anstatt benutzt. Für reelle ist nach der üblichen Definition , deshalb stimmt diese Funktion auf der Menge mit dem üblichen reellen Logarithmus überein.

Für beliebige mit definiert man dann:

Das ist auch eine mehrdeutige Funktion, deren Hauptwert sich beim Einsatz von anstatt ergibt.

Aber für verschwindet diese Mehrdeutigkeit und es entstehen übliche Potenzen mit ganzen Exponenten, die im ersten Abschnitt definiert wurden. Seien und , dann zieht die exponentielle Darstellung

nach sich, dass

gilt.

Für einen rationalen Exponenten mit der gekürzten Bruchdarstellung , mit , hat die Potenz genau unterschiedliche Werte. Dies gilt insbesondere für . Ist ungerade und , dann gibt es unter ihnen genau eine reelle Zahl, und das ist gerade die Zahl aus dem Abschnitt 1.3. Ist gerade und , dann nimmt keine reellen Werte an. Wenn aber gerade und ist, dann nimmt die Potenz genau zwei reelle Werte an, die unterschiedliche Vorzeichen haben. Der positive davon ist in diesem Fall gerade gleich der Zahl aus dem Abschnitt 1.3.

Als ein Beispiel betrachten wir die Potenz hoch .

Aus und

mit

folgt

Daraus ergibt sich

mit

Der Hauptwert entspricht und ist gleich

Spezielle Potenzen

[Bearbeiten | Quelltext bearbeiten]

Ganzzahlige Potenzen von 10 (Zehnerpotenzen) bilden die Grundlage unseres Zahlensystems, des Dezimalsystems. Als Potenz geschrieben, z. B. 10−9 für 0,000000001 oder 1011 für 100 Milliarden, werden sie in den Naturwissenschaften zur Darstellung sehr großer oder sehr kleiner positiver Zahlen verwendet.

In der Mathematik und Technik besonders wichtig sind weiterhin Potenzen mit der Basis , der Eulerschen Zahl.

Zweierpotenzen ergeben sich durch wiederholte Verdoppelung. Das überraschend schnelle Anwachsen der Zahlen macht Zweierpotenzen für Praxisbeispiele beliebt:

  • Ein Blatt Papier üblicher Größe lässt sich nur etwa siebenmal auf die halbe Größe falten. Es hat dann 128 Lagen und nur noch ein 128-tel seiner Fläche. Wenn man es 42-mal falten könnte, was nur theoretisch geht, entspräche seine Dicke von ca. 400.000 km etwa der Entfernung von der Erde zum Mond.
  • Jeder Mensch hat zwei biologische Eltern und die meisten haben vier Großeltern und acht Urgroßeltern. Ohne Ahnenverlust wären das vor 70 Generationen, zur Zeit Christi Geburt, Ahnen, obwohl damals weniger als 109 Menschen gelebt haben.
  • Die Weizenkornlegende vom Erfinder des Schachspiels, der auf jedem Feld des Schachbrettes die Anzahl der Weizenkörner verdoppelte, verdeutlicht ebenfalls das rasante Wachstum der Zweierpotenzen.

Zur digitalen Verarbeitung von Daten am Computer wird das Dualsystem mit der Basis 2 verwendet. Die Größeneinheiten digitaler Speichersysteme sind daher die Zweierpotenzen, also die Potenzen zur Basis 2 (das sind 1, 2, 4, 8, 16, …). Ein Kibibyte (abgekürzt KiB) entspricht Bytes.

Bei Schneeballsystemen, zum Beispiel sogenannten Schenkkreisen, werden zum Teil Systeme gestartet, die nicht nur eine Verdoppelung, sondern zum Beispiel eine Verachtfachung der neuen Mitglieder pro Schritt vorsehen. Solche Folgen wachsen derart schnell an, dass die Systeme bereits nach wenigen Schritten zwangsläufig kollabieren. Eine oft von den Initiatoren suggerierte Stabilität der Schneeballsysteme kann nicht bestehen. Sie sind daher aus gutem Grunde in vielen Ländern verboten.

00 wird oft als 1 definiert, auch wenn dies keine stetige Fortsetzung von ist, denn diese gibt es nicht. Manche Autoren lassen den Ausdruck undefiniert.

Umkehrfunktionen

[Bearbeiten | Quelltext bearbeiten]

Da das Kommutativgesetz beim Potenzieren nicht gilt, gibt es zwei Umkehrrechenarten:

  • das Wurzelziehen, um Gleichungen der Bauart nach aufzulösen, also um die Basis zu ermitteln, wenn der Exponent bekannt ist,
  • das Logarithmieren für Gleichungen des Typs , also die Bestimmung des Exponenten, wenn die Basis gegeben ist.

Verallgemeinerungen

[Bearbeiten | Quelltext bearbeiten]

Allgemeinere Basen

[Bearbeiten | Quelltext bearbeiten]

Allgemein gibt es Potenzen mit positiven, ganzzahligen Exponenten in jeder Halbgruppe. Hat diese ein neutrales Element und wird dadurch zum Monoid , so ist auch Exponent 0 sinnvoll, ist dann immer das neutrale Element. Es gelten für alle die Potenzgesetze

  • , falls und vertauschen, d. h. wenn gilt.

Ist ein invertierbares Element, so kann man mittels

für

Potenzen mit beliebigen ganzzahligen Exponenten definieren. Die Rechenregeln gelten analog. Im Fall abelscher Gruppen besagen sie, dass durch die Potenzierung die Struktur eines -Moduls induziert wird.

Allgemeinere Exponenten

[Bearbeiten | Quelltext bearbeiten]

Allgemeinere Exponenten wie Matrizen werden meist nur im Zusammenhang mit der Basis , also als Werte der verallgemeinerten Exponentialfunktion betrachtet.

Darüber hinaus wird die Potenzschreibweise gelegentlich auch für andere natürliche Fortsetzungen verwendet. So werden beispielsweise in der algebraischen Zahlentheorie gelegentlich Potenzen von Elementen von (topologischen) Galoisgruppen mit Exponenten in Vervollständigungen von betrachtet; es handelt sich dann um die jeweils eindeutig bestimmte stetige Fortsetzung der Abbildung

Für beliebige Kardinalzahlen und lässt sich die Potenz durch definieren, wobei die Menge aller Funktionen mit Urmenge und Bildmenge bezeichnet, diese Verallgemeinerung setzt das Potenzmengenaxiom voraus, wobei zur Handhabung der Kardinalzahlen in der Regel auch das Auswahlaxiom angenommen wird.

Mehrdeutigkeit der Exponentenschreibweise

[Bearbeiten | Quelltext bearbeiten]

Die Exponentenschreibweise kann insbesondere bei Funktionen verschiedene Bedeutungen haben, je nachdem, ob die Schreibweise die Iteration der Verkettung oder der punktweisen Multiplikation wiedergeben soll. Darüber hinaus könnte auch ein oberer Index gemeint sein. In der Regel geht aus dem Kontext hervor, was gerade gemeint ist.

Die Potenzschreibweise wird oft als abkürzende Schreibweise für die Verkettung von Funktionen, deren Werte wieder im Definitionsbereich liegen, verwendet, zum Beispiel für Iterationen in dynamischen Systemen.

Man definiert, wobei id die Identität auf dem Definitionsbereich bezeichnet, rekursiv:

für , also

und so weiter.

Für die Funktionswerte bedeutet dies

und allgemein

Als Erweiterung dieser Definition definiert man üblicherweise noch als die Umkehrfunktion von . Insbesondere findet sich diese Schreibweise auch auf vielen Taschenrechnern, beispielsweise wird dort und auch sonst die Arkusfunktion mit bezeichnet. Oft bezeichnet auch die Urbildfunktion.

Als abkürzende Schreibweise für die Multiplikation mehrerer Funktionswerte trigonometrischer Funktionen mit gleichen Argumenten, wie sie beispielsweise bei den Additionstheoremen für Winkelfunktionen häufig auftreten, hat sich ebenfalls die Potenzschreibweise eingebürgert, das heißt, man schreibt

.

Dies ist nicht mit der oben vorgestellten Schreibweise für die Verkettung von Funktionen verträglich. Gleiches gilt für Polynome. Mit meint man immer das -fache Produkt der Unbestimmten mit sich selbst. Da die Unbestimmte als Polynomfunktion die identische Abbildung ist, wäre die Potenzschreibweise als Iteration von Funktionen hier nicht sinnvoll.

Für indizierte Größen schreibt man den Index manchmal hochgestellt, sodass in den Formeln der Eindruck einer Potenzierung entstehen könnte. Das kommt besonders in der Tensorrechnung vor, etwa bei der Bezeichnung von Vektorfeldern in Koordinatenschreibweise, oder bei der Indizierung von Größen, die ihrerseits bereits indiziert sind, etwa Folgen von Folgen.

Wird der Exponent in Klammern geschrieben, so ist meist die entsprechende Ableitung gemeint, bezeichnet dann die -te Ableitung der Funktion .

Potenzwert mit Zirkel und Lineal

[Bearbeiten | Quelltext bearbeiten]

Der Wert einer Potenz kann auch – so wie die Quadratwurzel, die Multiplikation und die Division – als Konstruktion mit Zirkel und Lineal mithilfe des Strahlensatzes dargestellt werden. Die Bedingung dabei ist: Die Basis ist eine reelle Zahl und der Exponent eine positive ganze Zahl.

Es ist zu unterscheiden, ob die Basis größer oder kleiner als die Zahl ist. Im Folgenden werden beide Möglichkeiten für einen Potenzwert gleich beschrieben. Dabei wird auch die Vorgehensweise für Potenzwerte , und erkennbar.

Konstruktion für a > 1

[Bearbeiten | Quelltext bearbeiten]
Potenzwert mit Zirkel und Lineal,
Beispiel

Zunächst zieht man durch den vorher bestimmten Punkt den ersten Strahl und bestimmt darauf die Länge gleich . Es folgt der Halbkreis mit dem Radius um den Punkt die Schnittpunkte sind und Nun wird eine Senkrechte zu in errichtet, bis sie den Halbkreis in schneidet. Das Einzeichnen des zweiten Strahls durch den Punkt schließt sich an.

Weiter geht es mit dem Errichten einer Senkrechten auf dem zweiten Strahl im Punkt , bis sie den ersten Strahl in schneidet. Die Strecke entspricht dem Potenzwert Jetzt wird eine Senkrechte auf dem ersten Strahl im Punkt errichtet, bis sie den zweiten Strahl in schneidet. Schließlich liefert eine letzte Senkrechte auf dem zweiten Strahl im Punkt den Potenzwert als Strecke .

  • Die beiden gestrichelten Linien sowie die Punkte und werden für die Lösung des Potenzwertes nicht benötigt. Sie dienen lediglich der Verdeutlichung wie der Potenzwert bestimmt werden kann.

Konstruktion für a < 1

[Bearbeiten | Quelltext bearbeiten]
Potenzwert mit Zirkel und Lineal,
Beispiel

Zuerst werden z. B. auf einer Zahlengeraden die Längen und als Strecken bzw. aufgetragen. Anschließend wird der Halbkreis über eingezeichnet. Es folgen die Halbierung der Strecke in und das Ziehen des Kreisbogens mit Radius um , bis er den Halbkreis in schneidet. Nun wird das Lot ab auf die Zahlengerade mit Fußpunkt gefällt. Die Strecke entspricht dem Potenzwert Nach den Verbindungen der Punkte mit sowie mit ergibt sich am Scheitel ein rechter Winkel.

Weiter geht es mit dem Ziehen einer Parallelen zur Strecke ab , bis sie in schneidet. Der nun folgende Kreisbogen mit Radius um schneidet den Zahlenstrahl in Die Strecke entspricht dem Potenzwert Eine Parallele zur Strecke ab schneidet in . Abschließend wird der Kreisbogen mit Radius um gezogen, bis er den Zahlenstrahl in schneidet. Die Strecke ist der gesuchte Potenzwert

Technische Schreibweise

[Bearbeiten | Quelltext bearbeiten]

Die Schreibweise mit hochgestelltem Exponenten ist praktisch und gut lesbar in handgeschriebenen Formeln und im Schriftsatz, aber unpraktisch bei Schreibmaschinen und Terminals, bei denen die Zeichen einer Zeile alle auf einer Höhe stehen. Wenn hochgestelltes Schreiben nicht möglich ist, verwendet man in Anlehnung an gängige Programmiersprachen oft die Schreibweise a^b oder auch a**b

Zehnerpotenzen werden in der elektronischen Datenverarbeitung oder in der Anzeige auf Taschenrechnern häufig mit e oder E dargestellt.
Häufig anzutreffende Darstellung für z. B. −299792458 = −2,99792458·108

-2.9979 08 (8-stellige 7-Segment-Anzeige)
-2.997925 08 (10-stellige 7-Segment-Anzeige)
-2.9979256 08 (8-stellige 7-Segment-Anzeige + Exponentenfeld)
-2.99792458 E+08 (16-stellige Punktmatrixanzeige)
-2.99792458E+08 (Gleitkommadarstellung nach IEEE)

In Programmiersprachen

[Bearbeiten | Quelltext bearbeiten]

Programmiersprachen verwenden unterschiedliche Wege, um eine Potenz darzustellen:

In vielen Programmiersprachen gibt es statt eines Potenzoperators eine entsprechende Bibliotheksfunktion, beispielsweise pow(x,y) in C, Math.pow(x,y) in Java oder JavaScript und Math.Pow(x,y) in C#.

Verwandte Themen

[Bearbeiten | Quelltext bearbeiten]
Wikibooks: Mathe für Nicht-Freaks: Potenz – Lern- und Lehrmaterialien

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Potenz. Bibliographisches Institut – Dudenverlag, abgerufen am 3. Juni 2016.
  2. Lehnübersetzung aus gr. δύναμις, dýnamis, das in der antiken Geometrie spätestens seit Platon auch die Bedeutung „Quadrat“ hatte.
  3. Roger B. Nelsen: Beweise ohne Worte, Deutschsprachige Ausgabe herausgegeben von Nicola Oswald, Springer Spektrum, Springer-Verlag Berlin Heidelberg 2016, ISBN 978-3-662-50330-0, Seite 150
  4. Mathematics Magazine, vol. 64, no. 1 (Feb. 1991), S. 31
  5. Brian W. Kernighan, Lorinda L. Cherry: Typesetting Mathematics – User’s Guide. 2. Auflage. 1978, S. 2 (englisch, kohala.com).