R0-Raum

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

In der Topologie und verwandten Gebieten der Mathematik sind R0-Räume spezielle topologische Räume, die gewisse angenehme Eigenschaften besitzen. Die Eigenschaft, ein R0 zu sein, wird zu den sogenannten Trennungsaxiomen gezählt.

Gegeben seien ein topologischer Raum X und zwei Punkte x und y in X. Man sagt, dass x und y getrennt sind oder getrennt werden können, wenn x und y jeweils in einer offenen Menge liegen, die den anderen Punkt nicht enthält. Weiter heißen x und y topologisch unterscheidbar, falls eine offene Menge existiert, die genau einen der beiden Punkte enthält.

X heißt R0-Raum, falls zwei beliebige topologisch unterscheidbare Punkte getrennt sind. Ein R0-Raum wird auch symmetrischer Raum genannt.

Sei X ein topologischer Raum. Folgende Aussagen sind äquivalent:

  • X ist ein R0-Raum.
  • Für jedes x in X enthält der Abschluss von {x} nur die Punkte, die von x topologisch nicht unterscheidbar sind.
  • Jeder Elementarfilter zu x konvergiert nur gegen Punkte, die von x topologisch nicht unterscheidbar sind.
  • Der Kolmogoroff-Quotient KQ(X) ist ein T1-Raum.

In topologischen Räumen gilt immer folgende Implikation

getrennt ⇒ topologisch unterscheidbar

Falls diese umgekehrt werden kann, handelt es sich um einen R0-Raum.

Ist X ein R0-Raum, so gilt dies auch für jeden Teilraum.

Ist (Xi) eine Familie von R0-Räumen, so ist auch deren Produktraum ein R0-Raum und umgekehrt.

  • sei die Menge der ganzen Zahlen. Für sei definiert durch für gerades und für ungerades . Durchläuft die endlichen Teilmengen von , so bilden die Mengen eine Basis einer Topologie. Wir erhalten einen R0-Raum, der kein Kolmogoroff-Raum (für ein gerades sind und topologisch nicht unterscheidbar) und somit auch kein T1-Raum ist.
  • Ist ein pseudometrischer Raum, so ist dieser in Bezug auf die von der Metrik induzierte Topologie ein R0-Raum. Für die von einem Punkt topologisch nicht unterscheidbaren Punkte gilt gerade .