Kronecker-Paarung
Im mathematischen Gebiet der algebraischen Topologie definiert die Kronecker-Paarung eine Paarung zwischen Homologie und Kohomologie.
Definition
[Bearbeiten | Quelltext bearbeiten]Es sei ein topologischer Raum, eine natürliche Zahl, eine Homologieklasse und eine Kohomologieklasse mit Koeffizienten in einer abelschen Gruppe . Dann ist die Kronecker-Paarung von und durch
definiert, wobei ein die Kohomologieklasse repräsentierender Kozykel und ein die Homologieklasse repräsentierender Zykel ist.
Man kann zeigen, dass die Kronecker-Paarung wohldefiniert ist, dass also der Wert von nicht von der Auswahl des die Kohomologieklasse repräsentierenden Kozykels oder des die Homologieklasse repräsentierenden Zykels abhängt.
Surjektivität
[Bearbeiten | Quelltext bearbeiten]Aus dem Universellen Koeffiziententheorem folgt, dass der durch die Kronecker-Paarung definierte Homomorphismus
ein Epimorphismus ist.
Literatur
[Bearbeiten | Quelltext bearbeiten]- Ralph Stöcker, Heiner Zieschang: Algebraische Topologie. Eine Einführung. Zweite Auflage. Mathematische Leitfäden. B. G. Teubner, Stuttgart, 1994. ISBN 3-519-12226-X.
Weblinks
[Bearbeiten | Quelltext bearbeiten]- Kronecker pairing auf nLab (englisch)