Dies ist ein als lesenswert ausgezeichneter Artikel.

Krebsnebel

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 13. Dezember 2019 um 15:32 Uhr durch DirkHoffmann (Diskussion | Beiträge) (Grammatik). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen
Supernovaüberrest
Daten des Krebsnebels
Krebsnebel, Aufnahme des Hubble-Weltraumteleskops
Krebsnebel, Aufnahme des Hubble-Weltraumteleskops
Sternbild Stier
Position
Äquinoktium: J2000.0
Rektaszension 05h 34m 32,0s[1]
Deklination +22° 00′ 52″[1]
Weitere Daten
Helligkeit (visuell)

8,4 mag[2]

Winkelausdehnung

6′ × 4′[2]

Entfernung

6300 Lj[3]

Durchmesser 6 × 4 Lj
Geschichte
Entdeckung

John Bevis

Datum der Entdeckung

1731

Katalogbezeichnungen
M 1 • NGC 1952 • IRAS 05314+2200 • Sh 2–244
AladinLite

Der Krebsnebel (seltener Krabbennebel, englisch Crab Nebula, katalogisiert als M 1 und NGC 1952) im Sternbild Stier ist der Überrest der im Jahr 1054 beobachteten Supernova, in dem sich ein Pulsarwind-Nebel gebildet hat. Er befindet sich im Perseus-Arm der Milchstraße und ist etwa 2000 Parsec von der Erde entfernt.

Der mit fast 1500 Kilometer pro Sekunde expandierende Nebel ist von ovaler Gestalt mit einer Länge von 6 Bogenminuten und einer Breite von 4 Bogenminuten. In seinem Zentrum befindet sich der aus dem explodierten Ursprungsstern hervorgegangene Neutronenstern, der etwa 30 mal pro Sekunde um seine Achse rotiert und im Radiofrequenzbereich sowie im optischen, Röntgen- und Gammafrequenzbereich als Pulsar (sog. Krebs- oder Crabpulsar) nachweisbar ist. Der ihn umgebende Nebel ist von Filamenten durchzogen, die aus den äußeren Schalen des Ursprungssterns entstanden sind und zum größten Teil aus ionisiertem Wasserstoff und Helium bestehen. Hinzu kommen kleinere Anteile von Kohlenstoff, Sauerstoff, Stickstoff, Eisen, Neon und Schwefel, teilweise auch in Form von Staub.

Wegen seiner geringen scheinbaren Helligkeit kann der Krebsnebel nur durch Teleskope beobachtet werden und wurde erst mit deren systematischem Einsatz im 18. Jahrhundert entdeckt. Durch seine Nähe und als einer der jüngsten galaktischen Pulsarwind-Nebel gehört er seitdem zu den am intensivsten in der Astronomie erforschten Objekten.[4][5]

Erforschung

Entdeckung und Erscheinungsbild des Nebels

Die nebelartige Erscheinung wurde im Jahr 1731 von John Bevis während der Anfertigung von Sternkarten sowie, davon unabhängig, von Charles Messier auf der Suche nach Kometen im August 1758 entdeckt. Während die Entdeckung von Bevis lange unveröffentlicht blieb, war es für Messier der Auslöser zur Erstellung seines Katalogs von Nebeln und Sternhaufen, in dem der Krebsnebel als erstes Objekt eingeordnet ist. Seine Form wird darin einer Kerzenflamme ähnelnd beschrieben.

Skizze des Krebsnebels, Lord Rosse, 1844
Isaac Roberts’ Aufnahme des Krebsnebels, 1895

Eine Abbildung des Nebels veröffentlichte John Herschel im Jahr 1833, die den Nebel als ovalen Sternhaufen zeigte – einen Aufbau, den er aufgrund einer von ihm erkannten Sprenkelung irrtümlich vermutete.[6] Lord Rosse konnte den Nebel mit seinem großen Spiegelteleskop detailliert beobachten und publizierte eine Zeichnung im Jahr 1844. Ihm wird auch die Benennung als Krebsnebel häufig zugeschrieben, jedoch wurde die Ähnlichkeit der Filamente mit den Extremitäten eines Krebses, die in dieser Zeichnung besonders ausgeprägt ist, von Thomas Romney Robinson schon früher angedeutet.[7] Gegen Ende des 19. Jahrhunderts publizierte Isaac Roberts, ein Pionier der Astrofotografie, erste Aufnahmen des Krebsnebels und befand, dass der Nebel auf seinen Aufnahmen den zuvor bekannten Zeichnungen nicht ähnelte.[8][9]

Spektroskopische Untersuchungen in den 1910er Jahren von Vesto Slipher zeigten aufgrund von charakteristischen Spektrallinien, dass der Nebel aus Wasserstoff und Helium besteht. Er bemerkte, dass diese Spektrallinien aufgespalten sind, und vermutete den Stark-Effekt als Ursache.[10] Roscoe Frank Sanford überlegte kurz darauf, dass auch entgegengesetzte Dopplerverschiebungen mit Geschwindigkeiten von −600 bis −1000 km/s und 1620 bis 1750 km/s die Aufspaltung erklären. Bei seinen Untersuchungen erkannte er zudem, dass der hellste Bereich blau leuchtet und ein kontinuierliches Spektrum besitzt.[11] Diese Resultate wurden später von Walter Baade durch Aufnahmen mit schmalbandigen Filtern bestätigt, die zudem zeigten, dass der helle bläuliche Bereich im Zentrum liegt und etwa 80 % der Helligkeit des Nebels ausmachte, während die Linienspektren von den Filamenten herrührten.[12]

Im Jahr 1921 entdeckte Carl Otto Lampland anhand von verschieden weit zurückliegenden Aufnahmen, dass sich die Struktur insbesondere im Zentrum des Krebsnebels über die Zeit hinweg verändert – eine Eigenschaft, die bis auf drei andersartige Ausnahmen bei sonst keinem Nebel gefunden wurde.[13]

Supernova

Inspiriert von der Entdeckung Lamplands bestätigte John Charles Duncan kurz darauf anhand weiterer Aufnahmen die Veränderung im Krebsnebel, und erkannte zudem, dass es sich bei der Veränderung im äußeren Bereich um eine Expansion handelt.[14] Parallel dazu fiel Knut Lundmark auf, dass der Krebsnebel nahe der in chinesischen Schriften verzeichneten Nova aus dem Jahr 1054 liegt.[15] Sieben Jahre später schloss Edwin Hubble durch Zurückberechnung der Expansion auf diese Nova vor rund 900 Jahren.[16]

Rund zehn Jahre später bestimmte Nicholas Ulrich Mayall anhand der Doppleraufspaltung der Spektrallinien die tatsächliche Ausdehnungsgeschwindigkeit zu 1300 km/s und ermittelte durch Vergleich mit der scheinbaren Expansion die Entfernung von 1500 Parsec (4900 Lichtjahre).[17] Walter Baade und Knut Lundmark erkannten daraufhin, dass es sich aufgrund der großen Distanz zusammen mit der im Jahr 1054 beobachteten hohen Helligkeit um eine sogenannte Supernova handeln müsse, der Krebsnebel so aus einem Stern entstanden ist:[18] Nur wenige Jahre zuvor hatte Walter Baade zusammen mit Fritz Zwicky postuliert, dass es neben einer Nova eine viel leuchtkräftigere, aber seltenere „Super-nova“ geben kann. Bei dieser explodiert ein massereicher Stern, wobei sich aus seinen äußeren Schichten ein expandierender Nebel bildet, während sein Kern zu einem Neutronenstern kollabiert.[19][20]

Der im Zentrum des Nebels vermutete Neutronenstern wurde durch spektroskopische Untersuchungen von Rudolph Minkowski Anfang der 1940er Jahre bestätigt. Die Spektroskopien deuteten auf etwa eine Sonnenmasse bei einem Durchmesser von höchstens 2 % der Sonne und somit eine zumindest 180.000-fache Dichte und — was ihn von einem weißen Zwerg unterscheidet — eine Temperatur von 500.000 Kelvin sowie die 30.000-fache Leuchtkraft der Sonne hin. Diese Leuchtkraft ergibt sich aus der beobachteten Leuchtkraft des gesamten Nebels unter der Annahme, dass der Neutronenstern außerhalb des sichtbaren Spektrum diesem die Energie liefert; im sichtbaren Spektrum erreicht der Neutronenstern nur 16 mag.[21]

Die Supernova ordnete Minkowski nach einem kurz zuvor von ihm entworfenen phänomenologischen Klassifikationssystem[22] dem Typ I zu.[21] Mit dem schrittweise verfeinerten und um physikalische Modelle ergänzten Klassifikationssystem wurde jedoch der Typ II-P immer plausibler.[23][24][25][26]

Synchrotronstrahlung

Im Jahr 1948 fand John Gatenby Bolton mit weiteren Wissenschaftlern an der Position des Nebels die Radioquelle Taurus A[27][28], und erkannte, dass die hohe Intensität wahrscheinlich nicht durch thermische Prozesse hervorgerufen wird. Hannes Alfvén und Nicolai Herlofson schlugen kurz darauf eine Synchrotronstrahlung als Erklärung vor, die von fast lichtschnellen Elektronen in einem starken Magnetfeld hervorgerufen wird.[29] Im Jahr 1953 vermutete Iosef Shklovsky, dass auch das blaue Leuchten des Zentrums durch Synchrotronstrahlung hervorgerufen wird und dieses aufgrund des Magnetfelds polarisiert ist.[30] Diese Polarisation wurde im Folgejahr nachgewiesen, die Quelle der Elektronen und des Magnetfelds blieben jedoch lange Gegenstand einer Kontroverse.[31][32]

Gammastrahlung der Himmelssphäre: In der Bildmitte das galaktische Zentrum; ganz rechts, hell, der Krebsnebel

Erste röntgenastronomische Beobachtungen, die nur außerhalb der Atmosphäre möglich sind, wurden ab 1963 mit Aerobee-Raketen durchgeführt. Dabei wurden im Energiebereich zwischen 1,5 keV und 8 keV zunächst nur zwei sehr helle Röntgenquellen entdeckt und der Krebsnebel mit einer von ihnen, Taurus X-1, identifiziert.[33] Dies gab auch Evidenzen für den Neutronenstern als Ursache des Magnetfeldes.[34] Im Jahr 1967 erkannte man durch Instrumente an einem Höhenballon, dass es eine der stärksten Quellen für Gammastrahlung im Bereich bis 560 keV ist.[35] Zu dieser Zeit begann man auch, Gammastrahlung bis in den Teraelektronenvolt-Energiebereich mit Hilfe von Tscherenkow-Teleskopen zu untersuchen und konnte diese im Laufe der 1970er Jahre immer deutlicher nachweisen.[36][37][38] Beobachtungen mithilfe des Fermi Gamma-ray Space Telescope zeigten zudem ein gelegentliches, mehrere Tage anhaltendes starkes Auflodern der Aktivität.[39][40] Im Jahr 2019 konnte Gammastrahlung mit über 100 TeV aus dem Krebsnebel nachgewiesen werden, womit er die erste bekannte Quelle derartiger Strahlung ist.[41]

Pulsar

Mitte der 1960er Jahre überlegte Lodewijk Woltjer, dass ein Neutronenstern den magnetischen Fluss des Vorgängersterns zu einem enorm starken Magnetfeld in sich bündeln könnte.[34] Etwas später folgerte Franco Pacini, dass, wenn dieser auch den Drehimpuls des Vorgängersterns behält und durch die Kontraktion schnell rotiert, er wie ein Dynamo riesige Energiemengen in den umgebenden Nebel abgibt.[42]

Sequenz von Aufnahmen des Krebsnebel-Pulsars im nahen IR: Zeitlupe des sich alle 33 ms wiederholenden Haupt- und Nebenpulses

Motiviert durch den Bericht im Jahr 1968 über den ersten Pulsar – ein derartiger, zu pulsieren scheinender Neutronenstern[43] – durchmusterten David H. Staelin und Edward C. Reifenstein den Himmel und entdeckten zwei pulsierende Radioquellen „near the crab nebula that could be coincident with it“ mit Hilfe des rund 90 Meter Durchmesser aufweisenden Radioteleskops in Green Bank.[44][45] Sie bezeichneten die Radioquellen mit NP 0527 und NP 0532. Die Pulsperiode von 33,09 ms und deren langsame Abnahme wurden kurz darauf mit Hilfe des dreimal größeren Arecibo-Observatorium bestimmt.[46][47] Ein Vergleich zeigte, dass die als Pulsation beobachtete Rotationsfrequenz mit einem Magnetfeld von 100.000.000 Tesla eine Leistung abgibt, die der durch Abnahme der Rotation freiwerdenden Rotationsenergie und zugleich etwa der gesamten Synchrotronstrahlung entspricht, wenn man einen Durchmesser des Pulsars von 24 km zugrunde legt; der Krebsnebel bezieht somit seine Energie aus dem allmählich langsamer rotierenden Neutronenstern wie aus einem Schwungrad.[48]

Das Pulsieren konnte auch in anderen Spektralbereichen nachgewiesen werden. Bereits im Jahr 1969 wurde im optischen Bereich der Pulsar PSR B0531+21 mit dem Zentralstern des Krebsnebels identifiziert,[49] kurz darauf im gleichen Jahr auch im Röntgenbereich.[50] Die Pulse weisen einen Hauptpuls und einen Nebenpuls auf, wobei die Pulsform und Pulshöhe vom Spektralbereich abhängen; bei Gammastrahlung kann der Nebenpuls höher als der Hauptpuls ausfallen. Es gibt verschiedene Modelle des Pulsars, die diese Abstrahlung mit diesen Pulsformen beschreiben; bei einem ist beispielsweise das Magnetfeld um 45° gegen die Rotationsachse und diese um 67° gegen die Beobachtungsrichtung geneigt.[51] Allerdings kann die Intensität dieser Pulse auch vereinzelt in einem Maße höher ausfallen, wie es bei sehr wenigen anderen Pulsaren beobachtet wurde. Diese Pulse höherer Intensität werden als Giant Pulse bezeichnet und treten mit der zehnfachen Energie im Mittel etwa alle zehn Minuten auf,[52] können aber auch mit der 2000-fachen Energie auftreten.[53] Nachfolgende Untersuchungen zeigten, dass sie teilweise nur 2 Nanosekunden lange Subpulse enthalten, so dass der Emissionsbereich kleiner als 1 Meter sein muss.[54] Der Entstehungsmechanismus ist noch nicht umfassend geklärt.[55]

Röntgenstrahlung des Krebsnebels im Energiebereich 0,5 – 7,0 keV, Chandra-Weltraumteleskop

Aufgrund der Beobachtungen vermutete bereits im Jahr 1969 Wallace Hampton Tucker, dass ein sogenannter Pulsarwind aus den fast lichtschnellen geladenen Teilchen beim Auftreffen auf den umgebenden Nebel zu leuchten beginnt,[56] und fünf Jahre später präzisierten Martin John Rees und James Edward Gunn, dass die relativistischen Elektronen und Positronen im toroidalen magnetischen Feld um den Pulsar entstehen und die Synchrotronstrahlung einsetzt, sobald diese mit dem Nebel kollidieren.[57][58] Entlang der Rotationsachse bilden sich zudem durch das Magnetfeld geformte Jets aus relativistischen geladenen Teilchen, wie im Jahr 1984 berechnet wurde.[59] Rund 10 Jahre später konnten diese Jets im Röntgen- und optischen Bereich mittels der nunmehr verfügbaren hochauflösenden Teleskope ROSAT, Hubble-Weltraumteleskop und Chandra-Weltraumteleskop nachgewiesen werden.[60]

Zentrum des Krebsnebels, Überlagerung von Aufnahmen in den Bereichen des sichtbaren Lichts (rot) und der Röntgenstrahlen (blau). Man erkennt den eingebetteten Pulsar.

Nach neueren Untersuchungen wird für den Pulsar im Krebsnebel ein Durchmesser von 28 bis 30 km angenommen.[61] Damit ergibt sich eine Energieabgabe von etwas mehr als dem 100.000-fachen der Sonne.[61] Die hohe abgestrahlte Energiemenge erzeugt die von Lampland[13] entdeckte extrem dynamische Region im Zentrum des Krebsnebels, die sich mit dem hochauflösenden Hubble-Weltraumteleskop und dem Chandra-Weltraumteleskop eingehend beobachten lässt: Während die meisten Veränderungen von astronomischen Objekten so langsam geschehen, dass man sie erst nach vielen Jahren wahrnehmen kann, ändert sich das Innere des Krebsnebels innerhalb weniger Tage.[62] Die Gebiete mit den stärksten Veränderungen im inneren Teil des Nebels sind an dem Punkt, wo die Jets des Pulsars mit dem umgebenden Material kollidieren und eine Stoßwelle bilden. Zusammen mit dem äquatorialen Wind erscheinen sie als eine Serie von büschelähnlichen Gebilden, die steil hervorwachsen, aufleuchten und dann verblassen, wenn sie sich vom Pulsar weg- und in den Nebel hineinbewegen.

Filamente

Bereits im Jahr 1942 berichtete Walter Baade von Aufnahmen der Filamente mit schmalbandigen Filtern, mit denen er deren Ionisation durch charakteristische Spektrallinien von Wasserstoff nachwies.[12] Durch genauere Untersuchungen der ebenfalls vorhandenen Spektrallinien von Sauerstoff und Helium konnte Donald Edward Osterbrock im Jahr 1957 deren Temperatur mit rund 15.000 Kelvin und Dichte mit 550 bis 3700 ionisierten Teilchen pro Kubikzentimeter bestimmen,[63] was weitere Untersuchungen bestätigten.[64] Kurz darauf vermutete man, dass die komplexe Gestalt der Filamente durch eine Rayleigh-Taylor-Instabilität an der Grenzschicht zwischen Neutronenstern und abgestoßenem Supernovarest hervorgerufen wird.[65]

Neuere Untersuchungen zeigen, dass der Krebsnebel sich derzeit mit einer Geschwindigkeit von 1500 km/s ausdehnt.[66] Rechnet man die Expansion zurück, erhält man ein Datum für die Bildung des Nebels, das auf mehrere Jahrzehnte nach 1054 verweist. Es scheint, als hätte sich der Nebel beschleunigt ausgedehnt.[67] Man vermutet, dass die notwendige Energie für die Beschleunigung vom Pulsar stammt, der das Magnetfeld verstärkte, und dass dadurch die Filamente schneller vom Zentrum wegbewegt wurden.[42][68] Unterschiede in der zurückberechneten Expansion der Filamente und des Polarwindnebels stützen zudem die Rayleigh-Taylor-Instabilität als Erklärung der Filament-Morphologie.[4]

Gesamtmasse

Im fernen Infrarot (Herschel-Weltraumteleskop), rot, wird die Staubverteilung entlang der Filamente deutlich.

Abschätzungen der Masse des Krebsnebels waren anfangs wenig übereinstimmend. Minkowski nannte im Jahr 1942 zu der etwa 1 Sonnenmasse für den Neutronenstern weitere 15 Sonnenmassen für den umgebenden Nebel.[21] Die Gesamtmasse der Filamente versuchte Osterbrock im Jahr 1957 zu bestimmen.[63] Der sich ergebende Wert von wenigen Prozenten der Sonnenmasse wurde jedoch von nachfolgenden Untersuchungen nicht bestätigt, die auf die ein- bis fünffache Masse der Sonne hindeuten.[69] Aus theoretischen Modellen von Supernovaexplosionen wurde geschlossen, dass der Stern zuvor jedoch eine Masse zwischen acht und zwölf Sonnenmassen gehabt haben musste.[70] Lange vermutete man, dass die für eine Supernova zusätzlich erforderliche Masse in einer Hülle um den Krebsnebel liegen könnte, welche aber trotz Suche in unterschiedlichen Wellenlängen nicht gefunden wurde.[69][71] Unter Berücksichtigung von Staub, der im fernen Infrarot mit dem Herschel-Weltraumteleskop beobachtet werden konnte, folgerte man im Jahr 2015 eine Gasmasse von sieben Sonnenmassen und eine Staubmasse von etwas weniger als einer Sonnenmasse. Zusammen mit dem Pulsar, der etwas mehr als eine Sonnenmasse aufweist, ergeben sich somit insgesamt rund neun Sonnenmassen.[72] Neuere Analysen kommen jedoch zu einer um eine Größenordnung kleineren Staubmasse[73] oder zu einer etwas größeren Gesamtmasse von 9,5–10 Sonnenmassen.[74]

Entfernung

Eine genaue Bestimmung der Entfernung des Krebsnebels hat sich als schwierig erwiesen. Die von Mayall im Jahr 1937 beschriebene Methode zur Entfernungsbestimmung wurde vielfach nachvollzogen und lieferte je nach gewähltem Vorgehen Werte von 1030 Parsec bis 2860 Parsec.[3][75] Anhand von Annahmen über das interstellare Medium und den durch dieses hervorgerufenen Absorptionen in verschiedenen Spektralbereichen gelangte man auf einen sehr ähnlichen Wertebereich; physikalische Gründe, wie der Vergleich mit anderen Supernovae oder das Intensitätsverhältnis von Emissionslinien, sprechen für Entfernungen von 1800–2000 Parsec.[3] Da eine Reihe anderer etablierter Methoden zur Entfernungsbestimmung aufgrund von Besonderheiten des Krebsnebels versagt, wurde häufig der von Virginia Trimble aus den genannten Messungen um 1970 gemittelte Wert von 2000 ± 500 Parsec genutzt.[76] Im Jahr 2018 gelang mithilfe der Raumsonde Gaia eine optische Parallaxenbestimmung, die auf eine Entfernung von eher 3000 Parsec hindeutet und Entfernungen von weniger als 2400 Parsec unwahrscheinlich erscheinen lässt.[77]

Transit von Körpern des Sonnensystems

Farbcodierte Animation verschiedener Spektralbereiche:
rot: Radiobereich (VLA); gelb: IR (Spitzer Space Telescope); grün: sichtbares Spektrum (HST); blau: UV (XMM-Newton); violett: Gammastrahlung (Chandra X-ray Observatory)

Da der Krebsnebel nur rund 1,5° von der Ekliptik entfernt ist, können der Mond und manchmal auch Planeten, von der Erde aus gesehen, diesen Nebel scheinbar am Himmel durchqueren oder streifen. Die Sonne selbst durchquert den Nebel nicht, dafür aber ihre Korona. Solche Ereignisse helfen, den Nebel und die Objekte vor dem Nebel besser zu erforschen, indem man untersucht, wie sich die Strahlung des Nebels ändert.

Mondtransits wurden verwendet, um die Quellen der Röntgenstrahlen im Nebel zu finden. Bevor man Satelliten wie das Chandra X-Ray Observatory hatte, die die Röntgenstrahlung beobachten konnten, hatten Röntgenbeobachtungen meist eine geringe Auflösung. Wenn sich jedoch der Mond vor den Nebel schiebt, kann man die Helligkeitsänderungen des Nebels verwenden, um Karten der Röntgenstrahlenemission des Nebels anzufertigen.[78] Als man das erste Mal Röntgenstrahlen im Krebsnebel beobachtet hatte, wurde der Mond, als er den Nebel am Himmel streifte, verwendet, um die genaue Position der Röntgenstrahlung auszumachen.[33]

Die Sonnenkorona verdeckt den Krebsnebel jeden Juni. Durch Veränderungen der Radiowellen des Krebsnebels kann man auf die Dichte und Struktur der Sonnenkorona schließen. Die ersten Beobachtungen offenbarten, dass die Sonnenkorona viel ausgedehnter ist als bis dahin angenommen; spätere Beobachtungen zeigten, dass sie beachtliche Dichteschwankungen aufweist.[79]

Sehr selten wandert der Saturn vor dem Nebel vorüber. Sein Transit am 4. Januar 2003 war der erste seit dem 31. Dezember 1295jul.; der nächste wird am 5. August 2267 stattfinden. Mit Hilfe des Chandra X-Ray Observatory wurde der Saturnmond Titan genauer untersucht. Dabei stellte sich heraus, dass auch um Titan Röntgenstrahlung emittiert wurde. Der Grund liegt in der Absorption der Röntgenstrahlung in seiner Atmosphäre. Dadurch erhielt man für die Dicke von Titans Atmosphäre einen Wert von 880 km.[80] Der Saturntransit selbst konnte nicht beobachtet werden, da Chandra zu der Zeit den Van-Allen-Gürtel durchquerte.

Literatur

  • Minas C. Kafatos, Richard B. C. Henry: The Crab Nebula and related supernova remnants. Cambridge University Press, Cambridge u. a. 1985, ISBN 0-521-30530-6.
  • Simon Mitton: The Crab Nebula. Faber and Faber, London 1979, ISBN 0-684-16077-3.
  • Rodney Deane Davies, Francis Graham-Smith (Hrsg.): The Crab Nebula. Reidel, Dordrecht 1971, ISBN 978-94-010-3087-8.
Commons: Messier 1 – Album mit Bildern, Videos und Audiodateien

Einzelnachweise

  1. NASA/IPAC EXTRAGALACTIC DATABASE
  2. a b Messier 1. In: messier.seds.org. 22. August 2007, abgerufen am 28. September 2019 (englisch).
  3. a b c Virginia Trimble: The Distance to the Crab Nebula and NP 0532. In: Publications of the Astronomical Society of the Pacific. Band 85, 1973, S. 579–585, bibcode:1973PASP...85..579T.
  4. a b Michael F. Bietenholz, Richard L. Nugent: New expansion rate measurements of the Crab Nebula in radio and optical. In: Monthly Notices of the Royal Astronomical Society. Band 454, Nr. 3, 2015, S. 2416–2422, bibcode:2015MNRAS.454.2416B.
  5. Stephen P. Reynolds, Kazimierz J. Borkowski, Peter H. Gwynne: Expansion and Brightness Changes in the Pulsar-wind Nebula in the Composite Supernova Remnant Kes 75. In: Astrophysical Journal. Band 856, Nr. 2, S. 1–12, bibcode:2018ApJ...856..133R.
  6. John Herschel: Observations of Nebulae and Clusters of Stars, Made at Slough, with a Twenty-Feet Reflector, between the Years 1825 and 1833. In: Philosophical Transactions of the Royal Society of London. Volume II, 1833, S. 359–505, doi:10.1098/rstl.1833.0021 (digitalisiert, s. Fig. 81).
  7. Michael Hoskin: Rosse, Robinson, and the Resolution of the Nebulae. In: Journal for the History of Astronomy. Band 21, Nr. 4, 1990, S. 331–344, bibcode:1990JHA....21..331H.
  8. Isaac Roberts: Photographs of the Region of the "Crab" Nebula, 1 M. Tauri. In: Monthly Notices of the Royal Astronomical Society. Band 52, 1892, S. 502, bibcode:1892MNRAS..52..502R.
  9. Isaac Roberts: A Selection of Photographs of Stars, Star-clusters and Nebulae. Volume II. The Universal Press, London 1899, S. 164 (digitalisiert).
  10. Vesto Melvin Slipher: Spectrographic Observations of Nebulae and Star Clusters. In: Publications of the Astronomical Society of the Pacific. Band 28, 1916, S. 191–192.Digitalisiert (Memento vom 13. März 2016 im Internet Archive)
  11. Roscoe Frank Sanford: Spectrum of the Crab Nebula. In: Publications of the Astronomical Society of the Pacific. Band 31, Nr. 180, 1919, S. 108–109, bibcode:1919PASP...31..108S.
  12. a b Walter Baade: The Crab Nebula. In: Astrophysical Journal. Band 96, 1942, S. 188–198, bibcode:1942ApJ....96..188B.
  13. a b Carl Otto Lampland: Observed Changes in the Structure of the "Crab" Nebula (N. G. C. 1952). In: Publications of the Astronomical Society of the Pacific. Band 33, Nr. 192, 1921, S. 79–84, bibcode:1921PASP...33...79L.
  14. John Charles Duncan: Changes Observed in the Crab Nebula in Taurus. In: Proceedings of the National Academy of Sciences. Band 7, Nr. 6, 1921, S. 179–180.1, bibcode:1921PNAS....7..179D.
  15. Knut Lundmark: Suspected New Stars Recorded in Old Chronicles and Among Recent Meridian Observations. In: Publications of the Astronomical Society of the Pacific. Band 33, Nr. 195, 1921, S. 225–238, bibcode:1921PASP...33..225L., hier S. 234
  16. Edwin Hubble: Novae or Temporary Stars. In: Astronomical Society of the Pacific Leaflet. Band 1, Nr. 14, 1928, S. 55–58, bibcode:1928ASPL....1...55H.
  17. Nicholas Ulrich Mayall: The Spectrum of the Crab Nebula in Taurus. In: Publications of the Astronomical Society of the Pacific. Band 49, Nr. 288, 1937, S. 101–105, bibcode:1937PASP...49..101M.
  18. Walter Baade: The Absolute Photographic Magnitude of Supernovae. In: Astrophysical Journal. Band 88, 1938, S. 285–304, bibcode:1938ApJ....88..285B.
  19. Walter Baade, Fritz Zwicky: On Super-novae. In: Contributions from the Mount Wilson Observatory. Band 3, 1934, S. 73–78, bibcode:1934CoMtW...3...73B.
  20. Walter Baade, Fritz Zwicky: Cosmic Rays from Super-novae. In: Contributions from the Mount Wilson Observatory. Band 3, 1934, S. 79–83, bibcode:1934CoMtW...3...79B.
  21. a b c Rudolph Minkowski: The Crab Nebula. In: Astrophysical Journal. Band 96, 1942, S. 199–213, bibcode:1942ApJ....96..199M.
  22. Rudolph Minkowski: The Spectra of the Supernovae in IC 4182 and in NGC 1003. In: Astrophysical Journal. Band 89, 1939, S. 156–217, bibcode:1939ApJ....89..156M.
  23. Roger A. Chevalier: Was SN 1054 A Type II Supernova? 1977, S. 53–61, bibcode:1977ASSL...66...53C.
  24. F.S. Kitaura, H.-Th. Janka, W. Hillebrandt: Explosions of O-Ne-Mg Cores, the Crab Supernova, and Subluminous Type II-P Supernovae. In: Astronomy and Astrophysics. Band 450, Nr. 1, 2006, S. 345–350, bibcode:2006A&A...450..345K.
  25. Nathan Smith: The Crab Nebula and the class of Type IIn-P supernovae caused by sub-energetic electron capture explosions. In: Monthly Notices of the Royal Astronomical Society. Band 434, Nr. 1, 2013, S. 102–113, bibcode:2013MNRAS.434..102S.
  26. Takashi J. Moriya, Nozomu Tominaga, Norbert Langer, Ken’ichi Nomoto, Sergei I. Blinnikov, Elena I. Sorokina: Electron-capture supernovae exploding within their progenitor wind. In: Astronomy and Astrophysics. Band 569, 2014, S. 1–8, bibcode:2014A&A...569A..57M.
  27. John G. Bolton, G. J. Stanley, O. B. Slee: Positions of three discrete sources of Galactic radio frequency radiation. In: Nature. Band 164, Nr. 4159, 1949, S. 101–102, doi:10.1038/164101b0, bibcode:1949Natur.164..101B.
  28. J. G. Bolton, G. J. Stanley: The Position and Probable Identification of the Source of the Galactic Radio-Frequency Radiation Taurus-A. In: Australian Journal of Scientific Research A. Band 2, 1949, S. 139–148, bibcode:1949AuSRA...2..139B.
  29. Hannes Alfvén, Nicolai Herlofson: Cosmic Radiation and Radio Stars. In: Physical Review. Band 78, Nr. 5, 1950, S. 616, bibcode:1950PhRv...78..616A.
  30. Iosef Shklovsky: On the Nature of the Crab Nebula’s Optical Emission. In: Doklady Akademii Nauk SSSR. Band 90, 1953, S. 983.
    Ins Englische übersetzt in Lang, K. R., & Gingerich, O. 1979, A source book in astronomy and astrophysics, 1979
  31. Jan Hendrik Oort, Theodore Walraven: Polarization and composition of the Crab nebula. In: Bulletin of the Astronomical Institutes of the Netherlands. Band 12, S. 285–308, bibcode:1956BAN....12..285O.
  32. J. H. Piddington: The Crab Nebula and the Origin of Interstellar Magnetic Fields. In: Australian Journal of Physics. Band 10, 1957, S. 530–546, bibcode:1957AuJPh..10..530P.
  33. a b S. Bowyer, E. T. Byram, T. A. Chubb, H. Friedman: X-ray Sources in the Galaxy. In: Nature. Band 201, Nr. 4926, 1964, S. 1307–1308, bibcode:1964Natur.201.1307B.
  34. a b Lodewijk Woltjer: X-Rays and Type I Supernova Remnants. In: Astrophysical Journal. Band 140, 1964, S. 1309–1313, bibcode:1964ApJ...140.1309W.
  35. R. C. Haymes, D. V. Ellis, G. J. Fishman, J. D. Kurfess, W. H. Tucker: Observation of Gamma Radiation from the Crab Nebula. In: Astrophysical Journal Letters. Band 151, 1968, S. L9–L14, doi:10.1086/180129, bibcode:1968ApJ...151L...9H.
  36. J. E. Grindlay: Very high-energy gamma ray astronomy. In: NASA. Goddard Space Flight Center The Structure and Content of the Galaxy and Galactic Gamma Rays. 1977, S. 81–98, bibcode:1977NASCP...2...81G.
  37. astronews.com: Überraschende Strahlung aus dem Krebsnebel 7. Oktober 2011
  38. astronews.com: Energiereiche Strahlung aus dem Krebsnebel 14. Januar 2016
  39. astronews.com: Funkenschlag im Pulsarwind 22. November 2017
  40. NASA’s Fermi Spots ‘Superflares’ in the Crab Nebula
  41. M. Amenomori: First Detection of Photons with Energy Beyond 100 TeV from an Astrophysical Source. In: Physical Review Letters. Band 123, Nr. 5, 2019, S. 051101, arxiv:1906.05521, bibcode:2019PhRvL.123e1101A.
  42. a b Franco Pacini: Energy Emission from a Neutron Star. In: Nature. Band 216, Nr. 5115, 1967, S. 567–568, doi:10.1038/216567a0, bibcode:1967Natur.216..567P.
  43. Thomas Gold: Rotating Neutron Stars as the Origin of the Pulsating Radio Sources. In: Nature. Band 218, Nr. 5143, 1968, S. 731–732, doi:10.1038/218731a0, bibcode:1968Natur.218..731G.
  44. David H. Staelin, Edward C. Reifenstein, III: Pulsating Radio Sources near Crab Nebula. In: International Astronomical Union Circulars. Nr. 2110, 1968 (archive.org).
  45. David H. Staelin, Edward C. Reifenstein, III: Pulsating radio sources near the Crab Nebula. In: Science. Band 162, Nr. 3861, 1968, S. 1481–1483, doi:10.1126/science.162.3861.1481, PMID 17739779, bibcode:1968Sci...162.1481S, JSTOR:1725616.
  46. R. V. E. Lovelace, J. M. Sutton, H. D. Craft Jr.: Pulsar NP 0532 near Crab nebula. In: International Astronomical Union Circulars. Nr. 2113, 1968 (archive.org, s. S. 4 [PDF]).
  47. D. Richards: NP 0532. In: International Astronomical Union Circulars. Nr. 2114, 1968 (archive.org).
  48. Jeremiah P. Ostriker, James E. Gunn: On the Nature of Pulsars. I. Theory. In: Astrophysical Journal. Band 157, September 1969, S. 1395–1417, bibcode:1969ApJ...157.1395O.
  49. W. J. Cocke, M. J. Disney, D. J. Taylor: Discovery of Optical Signals from Pulsar NP 0532. In: Nature. Band 221, Nr. 5180, 1969, S. 525–527, bibcode:1969Natur.221..525C.
  50. G. Fritz, R. C. Henry, J. F. Meekins, T. A. Chubb, H. Friedmann: X-ray Pulsar in the Crab Nebula. In: Science. Band 164, Nr. 3880, 1969, S. 709–712, bibcode:1969Sci...164..709F.
  51. Y. J. Du, G. J. Qiao, W. Wang: Radio-to-TeV Phase-resolved Emission from the Crab Pulsar: The Annular Gap Model. In: Astrophysical Journal. Band 748, Nr. 2, 2012, S. 1–12, bibcode:2012ApJ...748...84D.
  52. I. R. Linscott, T. H. Hankins: High Frequency Observations of Giant Pulses from the Crab Pulsar. In: Bulletin of the American Astronomical Society. Band 12, 1980, S. 820, bibcode:1980BAAS...12..820L.
  53. Lundgren, S. C.; Cordes, J. M.; Ulmer, M.; Matz, S. M.; Lomatch, S.; Foster, R. S.; Hankins, T.: Giant Pulses from the Crab Pulsar: A Joint Radio and Gamma-Ray Study. In: Astrophysical Journal. Band 453, 1995, S. 433–445, bibcode:1995ApJ...453..433L.
  54. Hankins, T. H.; Kern, J. S.; Weatherall, J. C.; Eilek, J. A.: Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar. In: Nature. 2003, S. 141–143, bibcode:2003Natur.422..141H.
  55. Jessner, A.; Popov, M. V.; Kondratiev, V. I.; Kovalev, Y. Y.; Graham, D.; Zensus, A.; Soglasnov, V. A.; Bilous, A. V.; Moshkina, O. A.: Giant pulses with nanosecond time resolution detected from the Crab pulsar at 8.5 and 15.1 GHz. In: Astronomy and Astrophysics. Band 524, 2010, S. 1–13, bibcode:2010A&A...524A..60J.
  56. Wallace Hampton Tucker: Rotating Neutron Stars, Pulsars and Cosmic X-Ray Sources. In: Nature. Band 223, Nr. 5212, 1969, S. 1250–1252, bibcode:1969Natur.223.1250T.
  57. Martin John Rees, James Edward Gunn: The origin of the magnetic field and relativistic particles in the Crab Nebula. In: Monthly Notices of the Royal Astronomical Society. Band 167, 1974, S. 1–12, bibcode:1974MNRAS.167....1R.
  58. R. Bühler, R. Blandford: The surprising Crab pulsar and its nebula: a review. In: Reports on Progress in Physics. Band 77, Nr. 6, 2014, bibcode:2014RPPh...77f6901B.
  59. G. Benford: Magnetically ordered jets from pulsars. In: Astrophysical Journal. Band 282, 1984, S. 154–160, bibcode:1984ApJ...282..154B.
  60. J. Jeff Hester, Paul A. Scowen, Ravi Sankrit, Christopher J. Burrows, John S. Gallagher, Jon A. Holtzman, Alan Watson, John T. Trauger, Gilda E. Ballester, Stefano Casertano, John T. Clarke, David Crisp, Robin W. Evans, Richard E. Griffiths, John G. Hoessel, John Krist, Roger Lynds, Jeremy R. Mould, J. Earl Jr. O’Neil, Karl R. Stapelfeldt, James A. Westphal: WFPC2 Studies of the Crab Nebula. I. HST and ROSAT Imaging of the Synchrotron Nebula. In: Astrophysical Journal. Band 448, 1995, S. 240–263, bibcode:1995ApJ...448..240H.
  61. a b M. Bejger, P. Haensel: Moments of inertia for neutron and strange stars. Limits derived for the Crab pulsar. In: Astronomy and Astrophysics. Band 396, 2002, S. 917–921, bibcode:2002A&A...396..917B.
  62. J. J. Hester, P. A. Scowen, R. Sankrit, F. C. Michel, J. R. Graham, A. Watson, J. S. Gallagher: The Extremely Dynamic Structure of the Inner Crab Nebula. In: Bulletin of the American Astronomical Society. Band 28, 1996, S. 950, bibcode:1996AAS...188.7502H.
  63. a b Donald E. Osterbrock: Electron Densities in the Filaments of the Crab Nebula. In: Publications of the Astronomical Society of the Pacific. Band 69, Nr. 408, 1957, S. 227–230, bibcode:1957PASP...69..227O.
  64. R. A. Fesen, R. P. Kirshner: The Crab Nebula. I – Spectrophotometry of the filaments. In: Astrophysical Journal. Nr. 258, 1982, S. 1–10, bibcode:1982ApJ...258....1F.
  65. Russell Kulsrud, Ira B. Bernstein, Martin Krusdal, Jerome Fanucci, Nathan Ness: On the Explosion of a Supernova Into the Interstellar Magnetic Field. II. In: Astrophysical Journal. Band 142, 1965, S. 491–506, bibcode:1965ApJ...142..491K.
  66. M. F. Bietenholz, P. P. Kronberg, D. E. Hogg, A. S. Wilson: The expansion of the Crab Nebula. In: Astrophysical Journal Letters. Band 373, 1991, S. L59–L62, bibcode:1991ApJ...373L..59B.
  67. Virginia Trimble: Motions and Structure of the Filamentary Envelope of the Crab Nebula. In: Astronomical Journal. Band 73, 1968, S. 535–547, bibcode:1968AJ.....73..535T.
  68. M. Bejger, P. Haensel: Accelerated expansion of the Crab Nebula and evaluation of its neutron-star parameters. In: Astronomy and Astrophysics. Band 405, 2003, S. 747–751, bibcode:2003A&A...405..747B.
  69. a b R. A. Fesen, J. M. Shull, A. P. Hurford: An Optical Study of the Circumstellar Environment Around the Crab Nebula. In: Astronomical Journal. Band 113, 1997, S. 354–363, bibcode:1997AJ....113..354F.
  70. K. Davidson, R. A. Fesen: Recent developments concerning the Crab Nebula. In: Annual Review of Astronomy and Astrophysics. 23. Jahrgang, 1985, S. 119–146, bibcode:1985ARA&A..23..119D.
  71. D. A. Frail, N. E. Kassim, T. J. Cornwell, W. M. Goss: Does the Crab Have a Shell? In: Astrophysical Journal. Band 454, 1995, S. L129–L132, bibcode:1995ApJ...454L.129F.
  72. P. J. Owen, M. J. Barlow: The Dust and Gas Content of the Crab Nebula. In: Astrophysical Journal. Band 801, Nr. 2, 2015, S. 1–13, bibcode:2015ApJ...801..141O.
  73. I. De Looze, M. J. Barlow, R. Bandiera, A. Bevan, M. F. Bietenholz, H. Chawner, H. L. Gomez, M. Matsuura, F. Priestley, R. Wesson: The dust content of the Crab Nebula. In: Monthly Notices of the Royal Astronomical Society. Band 488, Nr. 1, S. 164–182, bibcode:2019MNRAS.488..164D.
  74. Adam R. Sibley, Andrea M. Katz, Timothy J. Satterfield, Steven J. Vanderveer, Gordon M. MacAlpine: Element Masses in the Crab Nebula. In: Astronomical Journal. Band 152, Nr. 4, 2016, S. 1–7, bibcode:2016AJ....152...93S.
  75. Matthew J. Bester, Matteo J. Pari: Determination of the Distance to the Crab Nebula. In: Journal of Undergraduate Sciences. 1996, S. 57–62 (archive.org [PDF]).
  76. D. L. Kaplan, S. Chatterjee, B. M. Gaensler, J. Anderson: A Precise Proper Motion for the Crab Pulsar, and the Difficulty of Testing Spin-Kick Alignment for Young Neutron Stars. In: Astrophysical Journal. Band 677, Nr. 2, 2008, S. 1201–1215, bibcode:2008ApJ...677.1201K.
  77. Morgan Fraser, Douglas Boubert: The Quick and the Dead: Finding the Surviving Binary Companions of Galactic Supernovae with Gaia. In: Astrophysical Journal. Band 871, Nr. 1, 2019, bibcode:2019ApJ...871...92F.
  78. T. M. Palmieri, F. D. Seward, A. Toor, T. C. van Flandern: Spatial distribution of X-rays in the Crab Nebula. In: Astrophysical Journal. 202. Jahrgang, 1975, S. 494–497, bibcode:1975ApJ...202..494P.
  79. W. C. Erickson: The Radio-Wave Scattering Properties of the Solar Corona. In: Astrophysical Journal. 139. Jahrgang, 1964, S. 1290–1311, bibcode:1964ApJ...139.1290E.
  80. K. Mori, H. Tsunemi, H. Katayama, D. N. Burrows, G. P. Garmire, A. E. Metzger: An X-Ray Measurement of Titan’s Atmospheric Extent from Its Transit of the Crab Nebula. In: Astrophysical Journal. 607. Jahrgang, 2004, S. 1065–1069, bibcode:2004ApJ...607.1065M. Dazugehörige Aufnahmen des Chandra-Weltraumteleskops.