Partielle Funktion
Eine partielle Funktion von der Menge nach der Menge ist eine binäre, rechtseindeutige Relation, das heißt eine Relation, in der jedem Element der Menge höchstens ein Element der Menge zugeordnet wird. Im Unterschied zum üblichen Funktionsbegriff der Mathematik kann bei einer partiellen Funktion der Definitionsbereich eine echte Teilmenge von sein – eine partielle Funktion kann demnach auf einen undefinierten Ausdruck abbilden. Der Begriff der partiellen Funktion ist in der Theoretischen Informatik, insbesondere in der Berechenbarkeitstheorie verbreitet.
Beschreibung
BearbeitenDer Begriff der partiellen Funktion ist eine Verallgemeinerung des Begriffs der Funktion. Unter einer Funktion von nach versteht man eine linkstotale, rechtseindeutige Relation, also eine Relation, in der jedem Element von genau ein Element von zugeordnet ist. Jede Funktion von nach ist also insbesondere eine partielle Funktion von nach , nämlich eine (links-)totale partielle Funktion, aber nicht umgekehrt. Insofern kann der Begriff der partiellen Funktion irreführend sein. Falls eine partielle Funktion sogar eine Funktion im eigentlichen Sinn ist, sagt man gelegentlich, es handle sich um eine totale Funktion. Der Unterschied zwischen partiellen Funktionen und (totalen) Funktionen ist: Für partielle Funktionen gilt , für (totale) Funktionen gilt .[1]
Als Definitionsbereich der partiellen Funktion bezeichnet man die Menge aller derjenigen Elemente aus , denen ein Element aus zugeordnet ist. Eine partielle Funktion ist also genau dann eine Funktion, wenn gilt.
Eine partielle Funktion von nach lässt sich auf zweierlei Arten als Funktion modellieren:
- als Funktion oder
- als Funktion
- Der Wert („undefiniert“) darf dazu nicht in sein.[2]
Schreibweisen
BearbeitenFür „ ist eine partielle Funktion von nach “ schreibt man: [2] oder , alternativ auch , oder . Nicht empfehlenswert sind u. a. die Schreibweisen sowie , denn erstere definiert als (totale) Funktion und zweitere ist leicht mit zu verwechseln, was jedoch bedeutet, dass keine (totale) Funktion von nach ist. Dies ist aber wie ersteres im Allgemeinen nicht zutreffend.
Die Schreibweise „ ist undefiniert“ oder sogar „ “ ist problematisch, denn der Ausdruck ist ja dann gerade nicht zulässig. Klarer ist es zu sagen „ ist undefiniert an der Stelle “ oder als Formel „ “.
Beispiele
Bearbeiten- Die partielle Funktion ist an der Stelle undefiniert, weil die Division durch in den reellen Zahlen unzulässig ist. Man kann bilden
- oder
- partiell-rekursive Funktionen
- ein unbeschränkter linearer Operator
Anwendungen
BearbeitenWenn ein Algorithmus Eingaben aus der Menge annimmt und Ausgaben aus der Menge liefert, dann berechnet er eine partielle Funktion von nach . Der Definitionsbereich dieser Funktion ist die Menge aller Elemente aus , für die der Algorithmus einen Wert liefert. Um einen Wert zu liefern, muss er insbesondere mit seiner Berechnung an ein Ende kommen (terminieren).
Einzelnachweise
Bearbeiten- ↑ Technische Universität Braunschweig Partielle und totale Funktionen (PDF; 112 kB).
- ↑ a b Thomas Holder: partial map classifier, auf: nLab, 3. Juli 2015