CERN Accelerating science

Article
Report number arXiv:2403.04632
Title Software Compensation for Highly Granular Calorimeters using Machine Learning
Author(s)

Lai, S. (Gottingen U., II. Phys. Inst.) ; Utehs, J. (Gottingen U., II. Phys. Inst.) ; Wilhahn, A. (Gottingen U., II. Phys. Inst.) ; Bach, O. (DESY) ; Brianne, E. (DESY) ; Ebrahimi, A. (DESY) ; Gadow, K. (DESY) ; Göttlicher, P. (DESY) ; Hartbrich, O. (DESY) ; Heuchel, D. (DESY) ; Irles, A. (DESY) ; Krüger, K. (DESY) ; Kvasnicka, J. (DESY) ; Lu, S. (DESY) ; Neubüser, C. (DESY) ; Provenza, A. (DESY) ; Reinecke, M. (DESY) ; Sefkow, F. (DESY) ; Schuwalow, S. (DESY) ; De Silva, M. (DESY) ; Sudo, Y. (DESY) ; Tran, H.L. (DESY) ; Buhmann, E. (Hamburg U.) ; Garutti, E. (Hamburg U.) ; Huck, S. (Hamburg U.) ; Kasieczka, G. (Hamburg U.) ; Martens, S. (Hamburg U.) ; Rolph, J. (Hamburg U.) ; Wellhausen, J. (Hamburg U.) ; Blazey, G.C. (NIU, DeKalb) ; Dyshkant, A. (NIU, DeKalb) ; Francis, K. (NIU, DeKalb) ; Zutshi, V. (NIU, DeKalb) ; Bilki, B. (U. Iowa, Iowa City) ; Northacker, D. (U. Iowa, Iowa City) ; Onel, Y. (U. Iowa, Iowa City) ; Hummer, F. (KIT, Karlsruhe) ; Simon, F. (KIT, Karlsruhe) ; Kawagoe, K. (Kyushu U.) ; Onoe, T. (Kyushu U.) ; Suehara, T. (Kyushu U.) ; Tsumura, S. (Kyushu U.) ; Yoshioka, T. (Kyushu U.) ; Fouz, M.C. (Madrid, CIEMAT) ; Emberger, L. (Munich, Max Planck Inst.) ; Graf, C. (Munich, Max Planck Inst.) ; Wagner, M. (Munich, Max Planck Inst.) ; Pöschl, R. (IJCLab, Orsay) ; Richard, F. (IJCLab, Orsay) ; Zerwas, D. (IJCLab, Orsay) ; Boudry, V. (LLR, Palaiseau) ; Brient, J-C. (Ecole Polytechnique) ; Nanni, J. (Ecole Polytechnique) ; Videau, H. (Ecole Polytechnique) ; Liu, L. (Tokyo U., ICEPP) ; Masuda, R. (Tokyo U., ICEPP) ; Murata, T. (Tokyo U., ICEPP) ; Ootani, W. (Tokyo U., ICEPP) ; Takatsu, T. (Tokyo U., ICEPP) ; Tsuji, N. (Tokyo U., ICEPP) ; Chadeeva, M. ; Danilov, M. ; Korpachev, S. ; Rusinov, V.

Publication 2024-04
Imprint 2024-03-07
Number of pages 27
In: JINST 19 (2024) P04037
DOI 10.1088/1748-0221/19/04/P04037
Subject category physics.ins-det ; Detectors and Experimental Techniques
Accelerator/Facility, Experiment CALICE
Abstract A neural network for software compensation was developed for the highly granular CALICE Analogue Hadronic Calorimeter (AHCAL). The neural network uses spatial and temporal event information from the AHCAL and energy information, which is expected to improve sensitivity to shower development and the neutron fraction of the hadron shower. The neural network method produced a depth-dependent energy weighting and a time-dependent threshold for enhancing energy deposits consistent with the timescale of evaporation neutrons. Additionally, it was observed to learn an energy-weighting indicative of longitudinal leakage correction. In addition, the method produced a linear detector response and outperformed a published control method regarding resolution for every particle energy studied.
Copyright/License preprint: (License: arXiv nonexclusive-distrib 1.0)
publication: © 2024 The Author(s) (License: CC-BY-4.0)



Corresponding record in: Inspire


 Record created 2024-03-20, last modified 2024-08-05


Fulltext:
2403.04632 - Download fulltextPDF
Publication - Download fulltextPDF