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ABSTRACT

A neural network for software compensation was developed for the highly granular CALICE Analogue
Hadronic Calorimeter (AHCAL). The neural network uses spatial and temporal event information
from the AHCAL and energy information, which is expected to improve sensitivity to shower
development and the neutron fraction of the hadron shower. The neural network method produced a
depth-dependent energy weighting and a time-dependent threshold for enhancing energy deposits
consistent with the timescale of evaporation neutrons. Additionally, it was observed to learn an
energy-weighting indicative of longitudinal leakage correction. In addition, the method produced a
linear detector response and outperformed a published control method regarding resolution for every
particle energy studied.
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1 Introduction

To fulfil the requirements for BSM physics searches and Higgs precision measurements at future linear colliders, a
challenging final state jet-energy resolution must be achieved. For example, for ILC operating at

√
s= 0.5−1TeV

where typical di-jet energies for interesting physics processes will be in the range 150–350GeV, a jet energy resolution
of 2.7% is crucial [1]. Particle Flow (PF) is a method expected to provide this resolution, which relies upon accurate
tracking of charged particles in a jet, sophisticated event reconstruction techniques, and highly granular sampling
calorimeters. A prototype of such a detector is the CALICE Analogue Hadronic Calorimeter (AHCAL) [2], a highly-
granular steel-scintillator sampling calorimeter designed for PF, with 24× 24× 38 individual silicon photomultiplier
(SiPM) readout cells. The AHCAL is notable for its capacity to measure a timestamp for each readout channel.

The response of calorimeters to hadrons may be described in terms of two components: an electromagnetic component
(produced mainly by π0/η → γγ, contributed to by nuclear γ), and a hadronic component, which contains the remainder
of energy depositing processes. The calorimeter response is therefore split into an EM response (e) and a HAD response
(h). A hadron shower in a calorimeter exhibits an EM-dominated, energy-dense ’core’ that propagates over a short
longitudinal and lateral range and a HAD-dominated, diffuse energy-sparse ’halo’, which propagates over a wider range
[3]. Part of the energy deposited by a hadron shower cannot be detected and is called ’invisible energy’ (e.g. neutrinos,
nuclear binding energy losses). This fraction also experiences significant stochastic fluctuations from event to event,
contributing to the calorimeter’s resolution.

Compensation describes a method to equalise e and h, typically by attenuating e and enhancing h to improve the
resolution. Hardware compensation requires careful tuning of the composition and proportions of active and passive
material in the calorimeter. This method is difficult to implement in highly-granular calorimeters, which require a high
degree of longitudinal segmentation. Therefore, software compensation (SC) algorithms are employed for this purpose
and operate by estimating the EM fraction of a shower using information measured in each event.

Notably, spatial and temporal readout information available from highly granular calorimeter may be used for SC:

• A highly granular calorimeter may be able to resolve the hadron shower core and halo, and therefore exploit
spatial energy density for SC;

• The number of neutrons produced in nuclear interactions is proportional, on average, to the invisible energy of
the hadron shower. Energy deposits from neutrons can be measured indirectly using ionisation by recoil protons
from neutron elastic scattering in hydrogenous active material such as plastic scintillator and photons from
neutron capture. Energy deposits induced by neutrons are delayed by 10-100 ns in steel [4]. A time-sensitive
hadron calorimeter may therefore exploit temporal information for SC.

Artificial neural network models have already been demonstrated to effectively exploit the spatial development of
hadron showers to improve SC. For example, a study performed in Ref. [5] demonstrated that a deep neural network
was found to improve the response of a highly-granular hadron calorimeter system from 48%/

√
Eparticle ⊕ 2.2% to

37%/
√
Eparticle ⊕ 1% using simulation.

However, a similar studies performed for AHCAL in Ref. [6] and Ref. [7], which trained and compared the performance
of neural networks trained on both simulation and testbeam data, demonstrated the inability of similar machine
learning-based SC algorithms to interpolate or extrapolate compensation from the limited hadron shower data typically
available for such studies. In other words, the SC algorithm was biased to the training range of energies and its binning.
This result is problematic as it indicates that experimental data of hadron showers from testbeams cannot be used for
training SC algorithms because the available samples are typically binned too coarsely in particle energy to prevent bias.
Additionally, while simulation samples can be used to train the algorithm with no constraints on particle energy binning
or ranges, producing and storing these samples is presently an unsustainable practice. These limitations therefore
motivate the development of an algorithm that can exploit the spatial and temporal information from AHCAL and
simultaneously remain unbiased to the training particle energies.

In the presented study, a neural network is designed to perform SC on simulated π− hadron showers observed with the
AHCAL calorimeter, using the local spatial and temporal energy density from the event rather than just the sum of
energy deposits. This information was expected to reduce the effect of stochastic fluctuations by improving sensitivity to
the shower development and the neutron fraction of the event. Importantly, the neural network was carefully structured
to reduce the effect of energy biasing. Finally, the neural network is compared to the standard CALICE SC method,
which is used as a control algorithm. The results are then compared.
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2 Methods and Tools

The CALICE AHCAL is a non-compensating, highly granular steel-scintillator calorimeter prototype designed for future
precision e+-e− collider experiments. It has a highly granular structure, consisting of 24× 24× 38 plastic scintillator
cells of 30× 30× 3mm3 volume each, read out by SiPMs. These cells indicate the spatial position, magnitude and
timestamp of energy deposition with a minimum operating time resolution of up to 100 ps allowed by hardware. The
detector has a depth of approximately 4.2 nuclear interaction lengths (λI). The hadronic calorimeter is complemented
by a steel-scintillator Tail Catcher/Muon Tracker (TCMT) detector, composed of 320 extruded scintillator strips of
50× 5mm2 area packaged in 16× 1m2 planes interleaved between steel plates corresponding to an additional depth
of 1.1λI [8]. The TCMT is used in this analysis to tag leakage. Pictures of the AHCAL calorimeter are shown for
reference in Fig. 1.

Event information from AHCAL consists of the position of an active cell with an energy deposit in the AHCAL cell
matrix (Ihit, Jhit, Khit), its energy in calibrated MIP units (Ehit), and its timestamp in nanoseconds, relative to the
time at which deposited energy in a given cell cross a pre-defined threshold (thit). Ihit and Jhit indicate the lateral
spatial position of an active cell relative to the longitudinal axis of the calorimeter (Ihit, Jhit ∈ [1, 24] in units of cell
index). The longitudinal spatial position (depth in layers) is denoted Khit (Khit ∈ [1, 38] in units of layer index). The
energy of an active cell is denoted Ehit, measured in Analogue-to-Digital counts, calibrated to the energy deposited by a
minimum ionising particle (MIP) in one cell [9]. Ehit takes a value between a noise threshold at 0.5MIP and the energy
corresponding to the SiPM saturation value. The thit is bounded between the time at which the energy deposited in a
given cell crosses a pre-defined threshold (normalised to 0 ns in this study), smeared by the resolution, and the chosen
gate length for the measurement of an event. This study considers the ultimate 100 ps timing resolution for AHCAL.
No charge integration gate length is considered in this study. The calorimeter response is measured as the sum of the
individual active cells (hits) in an event, Esum =

∑event
Ehit. Additionally, the incident position of a charged particle

in lateral coordinates is reconstructed using four delay wire chambers (DWC) of 10× 10 cm2 size, which is denoted as
a vector [Itrack, Jtrack] [10]. The track information is only relevant to event selection cuts described in Section 2.3.

a b

Figure 1: Pictures showing the CALICE AHCAL at testbeam. Fig. 1a shows the detector setup for a testbeam performed in June
2018 at the Super Proton Synchrotron (SPS) at CERN, Geneva [10]. Fig. 1b shows the individual cells of the calorimeter wrapped in
foil to improve photon sensitivity.

The event coordinate system is changed for this study to reflect the shower development. The energy-weighted
mean spatial position of the hadron shower in spatial coordinates is defined as a vector called ’centre-of-gravity’
(CoG = [CoGI ,CoGJ ,CoGK ]). Shower coordinates are converted to a cylindrical coordinate system, relative to the
shower development axis, approximated by CoGI and CoGJ , and the shower starting depth, KS . These coordinates
act as the origin and are all measured in cell units. KS is calculated using a algorithm described in Ref. [11]. The
transformation results in three new spatial coordinates: a hit radius, Rhit =

√
(Ihit − CoGI)2 + (Jhit − CoGJ)2,

measured in cell units; a hit azimuthal angle, θhit = arctan2 (Jhit − CoGJ , Ihit − CoGI), where arctan2 is the
2-argument arctangent, measured in radians, and a shower-start normalised depth, Khit−KS , measured in layer indices.
This coordinate system is advantageous to an SC algorithm because the hadron shower is represented independently of
the lateral position of the hadron shower and the depth at which the hadron shower starts, and performs well for square
cells of equal transverse size as in the AHCAL. Furthermore, these ’natural’ spatial coordinates describe the lateral
and longitudinal development of hadron showers more effectively than the raw event readout coordinates. They can be
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readily obtained from a well-separated single hadron shower. A visual representation of these coordinates is shown in
Fig. 2 for reference.

Figure 2: Diagram illustrating the modified event coordinate system. The red axes indicate the readout of the event from the cells.
The green axes indicate the transformed spatial co-ordinates, as defined from the lateral centre-of-gravity, indicated by CoGI and
CoGJ and the shower starting position, indicated by the green plane labelled KS .

2.1 Neural Network SC Method

SC models are typically trained indirectly since the e
h fraction is unknown in a hadron shower event a priori. The

resolution of a hadron calorimeter is described according to Eq. 1:

R =
σE

E
=

a ·
√
1GeV√

Eparticle

⊕ b, (1)

where E and σE are the mean and standard deviation of the response of the calorimeter to a hadron of Eparticle, a
describes the combined sampling and stochastic fluctuations experienced by the calorimeter, b the quality of detector
calibration, non-uniformities in signal collection, imperfections in calorimeter construction etc. and ⊕ addition in
quadrature. This equation is valid under the assumption of a normally distributed response (i.e. full shower containment,
negligible electronics noise). Since reductions in σE imply compensation due to a smaller a, χ2 minimisation of
the calorimeter response to the known particle energy may be used to optimise SC algorithms. However, the lack of
available high-statistics training samples for SC at finely binned particle energies tends to result in undesirable network
biases that limit the algorithms’ general applicability. In particular, two failure modes have been observed [6]: the
’classification’ of the hadron showers by calorimeter response and bias to the training sample’s upper and lower particle
energy bins.

In particular, two failure modes have been observed [6]: the ’classification’ of the hadron showers by calorimeter
response and bias to the training sample’s upper and lower particle energy bins.

A neural network was, therefore, designed to overcome the limitations of energy biasing. The proposed model was
designed to use k nearest-neighbour (k-NN) clustering in the event coordinates defined in Sec. 2 to obtain a local
estimate of the energy density in space and time. A k-NN cluster consists of the k nearest points in the event in
space, energy and, optionally, time in terms of the square Euclidean distance, ds2 = dR2

hit + dθ2hit + d(Khit −
KS)

2 + d logEhit
2 + darcsinhThit

2, where Rhit and Khit −KS are in units of cells, θhit is in units of radians, Ehit
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is in calibrated MIP units and Thit is in units of nanoseconds. Ehit and Thit are transformed to reduce the skewness
of these variables. In practice, k-NN clustering is implemented by calculating the negative square distance matrix
−D2

ij = −|xi|2 − |xj |2 + 2 · ⟨xi, xj⟩ where xi and xj are co-ordinates of individual hits in space and time with
indices i and j, |xi,j |2 is the absolute square of xi or xj , and ⟨xi, xj⟩ is the inner product of xi and xj . The columns
of the D matrix are ranked based on their proximity to zero. The top k elements are then selected for each column,
representing the k-nearest neighbours for each data point or coordinate, and the vectors between the seed cell and
the other cells of the cluster are calculated. Each cluster is then treated independently by the neural network. With
context to highly-granular calorimetry, this gives the local energy density surrounding a particular active cell during
an event. The neural network was designed based on a single EdgeConv operator, introduced in the DGCNN graph
neural network model [12]. The value of k was optimised using a hyperparameter scan to 20 cells using the Optuna
hyperparameter optimisation tool [13], as shown in Table 2. The most critical aspect of the neural network design is
that each cluster is operated independently of all others. This choice means that the capacity for the neural network to
learn biased features of the training data, such as overall shower shape and energy, can be reduced compared to the case
where the entire shower is presented as an input. This is because the network is subjected only to the local distributions
of individual clusters of active cells. Therefore, the neural network is guided to infer the appropriate attenuation or
enhancement of the calorimeter response from the energy distribution local to each active cell. The idea is summarised
in Fig. 3.

The neural network architecture consists of five main stages:

• Input: The neural network is provided two inputs. The first is the hadron shower event in natural/transformed
coordinates ([Rhit, θhit,Khit −KS , logEhit, arcsinh thit]), where arcsinh thit is optional. The second is the
original cell energy, Ehit, which is used to inform the neural network of the output scale of the compensated
energy;

• k-NN clustering: As a pre-processing step, the neural network clusters the input according to the k-nearest
neighbours. Their positions and vectors to their positions are calculated;

• Addition of Dimensions: Dimensions are added to each cluster using a module consisting of three sequential 2D
fully connected convolutional layers 12, 24, and 48 channels, each using leaky ReLU activation and instance
normalisation. Each new dimension is calculated using information from the inputs.

• Processing: Each cluster is passed through a deep processing layer consisting of 3 sequential 2D fully
connected layers of 48 channels, each using leaky ReLU activation and instance normalisation;

• Aggregation: The maximum, mean and variance of the cluster dimension k are used as activation values for
the cluster. These are concatenated with the cell energies of the event for each active cell;

• Output: The final layers of the network are five dense layers, with 1024, 512, 256 and 128 channels and leaky
ReLU activation, with an output layer with ReLU activation such that the final output is positive. All dense
layers, excluding the final layer, include dropout with probability pdropout. The neural network’s final output
is a single value for each active cell: the compensated hit energy, Êhit. The sum of these outputs yields the
total compensated response, Êsum =

∑event
Êhit, where Êhit ∈ [0,∞] is the compensated cell energy.

A diagram representing the proposed neural network architecture is shown in Fig. 4.

2.2 Control SC Method

The neural network was compared to the standard CALICE software compensation method called ’local software
compensation’, abbreviated hereafter as the control method and based on [14], is described as follows.

The Ehit distribution is binned in deciles (i.e. a 10% probability for a given Ehit to be found in any one of the bins).
For each bin, an appropriate function is used for weighting. A function approximator in the form of a second-order
Chebyshev polynomial of the first kind, ωb, is defined as a function of the total calorimeter response, Esum, scaled using
a factor, S, such that Esum/S ∈ [0, 1] for the typical range of hadron shower energies of AHCAL (S = 150GeV). ωb

has three free parameters, αb, βb and γb, shown in Eq. 2:

ωb(Esum;S, αb, βb, γb) = αb + βb ·
(
Esum

S

)
+ γb ·

(
2

(
Esum

S

)2

− 1

)
(2)

For each bin, the corresponding weight is calculated. Finally, the energy of each active cell within the ranges defined by
bin b is scaled by ωb.
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Figure 3: Illustration of a method for software compensation by which biasing may be reduced. First, a hadron shower of N
measured with AHCAL, indicated by the event display on the left, is decomposed into a series of k-NN cluster graphs, indicated
by the vertices and red lines, indicating edges between them, denoted G. At this stage, each active cell is now represented as a
local neighbourhood graph, Gi, where i is the index of the active cell. This diagram shows the case of 9 nearest neighbours for
illustration. Next, for each cluster, a SC model, fSC(Gi; θ), is applied to each graph, where θ is the vector of the model’s free
parameters, producing an attenuated or enhanced calorimeter response to the kernel cell of Gi, Êhit,i. The sum of the individually
weighted active cells is then the compensated calorimeter response, Êsum.

Figure 4: Flowchart describing the proposed neural network for software compensation studied in this paper. The black, blue and
grey colour coding indicates inputs and outputs, convolutional operations and general operations, respectively. Additional operations
are specified on the right of the figure.
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Êsum =

bins∑
b

ωb · Esum,b (3)

The idea underlying this method is that higher hit energy bins attenuate the energy, as these are more likely to belong to
an EM fraction and enhance the energy of low energy bins, which are more likely to belong to the HAD fraction. An
example of the ten bins selected for the study is in Fig. 5.

2.3 Datasets and Training

Both the neural network model defined in Section 2.1 and the control model defined in Section 2.2 were trained and
validated using experimental data from a CALICE test beam study at the Super Proton Synchrotron at CERN in 2018,
as well as a simulated dataset thereof [10]. Each case was studied separately. Both simulation and experimental
data were used for training and evaluation, respectively. The showers were produced from π− hadron shower events
observed with the AHCAL detector. The simulation of the particle showers was achieved using Geant4 [15], with a full
detector simulation developed using DD4hep [16]. Additional effects, such as digitisation of the analogue signal and
reconstruction of the detector variables, were achieved for both simulation and data using CALICESoft [17]. Timing
information from experimental data is not studied due to comparatively poor timing resolution arising from chip
occupancy effects [18]. A MIP-to-GeV calibration factor of 37.3MIP/GeV was used [19]. The statistics of the training,
validation and test datasets are shown in Table 1.

The following selection criteria were applied:

• events were required to be identified using the standard CALICE particle identification algorithm [20] as
being a single particle and having less than a 0.5% probability of being a muon to exclude non-showering,
’punch-through’ pions;

• the 38th layer of the AHCAL was ganged and required special treatment beyond the scope of this paper.
Therefore, energy deposits were considered up to the 38th layer of the calorimeter;

• events were selected to have a track position with a corresponding position inside the 24× 24 cell AHCAL
front-face and a shower starting layer within layers 1-4 of the AHCAL calorimeter. This choice was made
to reduce the effect of longitudinal and lateral leakage on the experiment. These cuts were supplemented by
an additional cut using the TCMT detector to only measure detector resolution and linearity. This criterion
requires the TCMT to measure a total deposited energy of less than 25MIP (ETCMT

sum < 25MIP).

The cuts applied, not including the TCMT cut, remove around two-thirds of the original sample. For the measurement
of resolution, Eq. 1 cannot be used if the AHCAL experiences longitudinal shower leakage since the distributions
exhibit a skewed ’leakage tail’ that deviates from the expected Gaussian response distribution. To resolve this, the
TCMT is employed to tag and cut events likely to have a fraction of leakage energy.

Examples of the effect of the applied TCMT cut are shown in Fig. 6. Fig. 6a indicate the cut has practically no effect
on 10GeV hadron showers, while Fig. 6b show that the cut significantly reduces the leakage tail of the response
distribution of 80GeV hadron showers, resulting in a more Gaussian distribution at energies where leakage is observed.
This means that the cut can be used to evaluate the resolution of the AHCAL alone. Fig. 6a and Fig. 6b indicate that
the energy distribution of simulation is similar to experimental data and that the cut has a similar effect on both. This
means the cut can be applied without modification in both cases.

As a caveat, this method is sub-optimal based on the considerable longitudinal leakage experienced by the AHCAL
and will bias the resolution measurement to more compact showers. Therefore, example distributions illustrating the
performance of the software compensation without the TCMT cut are supplied for reference in the results shown in
Section 3, to illustrate the performance of each method without this bias.

The training and validation dataset consisted of simulated showers induced by π− hadrons with Eparticle in the range
10-80GeV, in increasing steps of 10GeV. By contrast, the test sample contained showers induced by π− hadrons
with Eparticle in the range 10-120GeV, in increasing steps of 5GeV. The finer granularity tests the hypothesis that the
neural network is unbiased to the particular particle energies used for training. Energies higher than the training range
are included to test the generalisation capacity of each compensation method. The whole range of energies is used for
training and testing for experimental data.

Two independent networks based on the model defined in Section 2.1 were trained on the training dataset: one without
timing information and one with timing information. The proposed compensation networks were developed in PyTorch
[21] and trained using the PyTorch Lightning research framework [22] on an NVidia V100 GPU. The ADAM

7



Figure 5: Histogram showing the ten decile bin ranges of the Ehit distribution, shown in alternating blue and orange, are shown for
the training sample. Each bin corresponds to a total cumulative probability of 10% (deciles). The bin ranges extracted from the
training sample discussed in Section 2.3 are shown in Appendix Table 5.

Table 1: Table of events used for training SC models after all cuts except the TCMT cut (shown separately), split into simulation and
data and by the testing, training and validation samples and by data and simulation. Hyphens indicate 0 events.

Type June 2018 SPS Testbeam Data Simulation
Sample Test Test Training Validation Test Test Training Validation

+ TCMT Cut + TCMT Cut
Eparticle [GeV]

10 6472 6460 51773 6472 20826 20759 18719 2080
15 - - - - 21969 21685 - -
20 9439 9233 75512 9439 23425 22808 21428 2381
25 - - - - 25193 24124 - -
30 - - - - 24031 22491 21901 2434
35 - - - - 24154 22065 - -
40 10384 9378 83064 10383 24195 21513 23552 2617
45 - - - - 23122 19981 - -
50 - - - - 27337 22889 24737 2749
55 - - - - 19636 16009 - -
60 13223 10684 105782 13223 22503 17728 24479 2720
65 - - - - 25584 19374 - -
70 - - - - 18951 13889 24864 2763
75 - - - - 15827 11204 - -
80 11666 8298 93325 11666 22272 15165 25308 2813
85 - - - - 22577 14875 - -
90 - - - - 26210 16618 - -
95 - - - - 20605 12475 - -
100 - - - - 17706 10385 - -
105 - - - - 17410 9873 - -
110 - - - - 16885 9161 - -
115 - - - - 18706 9820 - -
120 10713 5829 85701 10713 18192 9239 - -

Total Events 61897 49882 495157 61896 497316 395131 184988 20557

8



a b

c d

Figure 6: Fig. 6a and Fig. 6b show the reconstructed AHCAL energy distributions of simulation for 10GeV and 80GeV π− hadron
showers. The dashed line and the solid line filled with dots indicate the distribution before and after the applied TCMT cut. Fig. 6c
and Fig. 6d show response distributions of the test samples of simulation and June 2018 Testbeam data before and after the cut was
applied, for 10GeV and 80GeV π− hadron showers.

optimiser was used to improve the convergence rate for ten epochs, with early stopping applied. The hyperparameters
used for training are shown in Table 2. Hyperparameter optimisation was achieved by optimising the networks many
times with different starting parameters for k, learning rate, and dropout probability. Varying β1 and β2 resulted in large
fluctuations in performance and were therefore held at nominal values. The hyperparameter search program Optuna
optimised the hyperparameters for 50 trials, with 10 epochs per trial. To speed up convergence, trials were rejected
using ‘median pruning’, where a trial is pruned if its best intermediate result is worse than the median of intermediate
results of previous trials at the same epoch.
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Table 2: Table of hyperparameters used to train the neural network. In this table, β1 and β2 are the ADAM momentum parameters,
pdropout is the dropout probability, and k is the number of nearest-neighbours per cluster. The parameters were informed by a
hyperparameter scan using Optuna [13].

Parameter Value
Learning Rate 9× 10−5

Batch Size 32
β1 0.9
β2 0.999

pdropout 0.15
k 20

The control method was also trained using the training dataset, using the MIGRAD algorithm of the Minuit minimisation
program [23]. Weights were initialised such that the compensation algorithm acted as the identity operator (αb = 1,
βb = 0, γb = 0).

The loss was chosen to be the χ2 goodness-of-fit of the compensated energy to the known particle energy of the hadron
shower:

L(Êsum;Eparticle) =

(
Êsum − Eparticle

)2
Eparticle · (1GeV)

(4)

The denominator in the loss arises from the uncertainty on the Poisson-distributed sampling quanta measured by the
calorimeter, σE = a ·

√
Eparticle. The dummy constant of 1GeV in the denominator is formally included to make the

loss unitless and merely acts to scale the loss. The mean loss was used for both implementations to optimise the control
and network methods. For the network methods, the epoch with the smallest mean loss of the validation sample was
chosen for further study. The control method was minimised with the MIGRAD algorithm until the mean training loss
reached convergence.

The training process involved utilising both simulation and data training samples from Table 1 to train separate
models for both cases, which were subsequently evaluated on their respective test samples. Consequently, the model’s
performance was assessed independently for scenarios in which it was trained with simulation or experimental data.

3 Results

Each trained model was applied to the test sample. The effect of compensation was then analysed for each method.

3.1 Example Response Distributions

The normalised energy response distributions for the simulation and 2018 June Testbeam test samples are shown in
Figs. 7a-7d and Figs. 9a-9d, with the TCMT cut applied. In simulation, particle energies of 10GeV, 35GeV, 80GeV
and 120GeV are shown. For the experimental data, particle energies of 10GeV, 40GeV, 80GeV and 120GeV
are shown. These samples are used for measurement of the resolution. The corresponding distributions without the
TCMT cut applied are shown for the same particle energies in simulation and experimental data in Figs. 8a-8d and
Figs. 10a-10d, respectively. The uncompensated sample and each sample after compensation are shown in each plot.
The Freedman-Diaconis rule was applied to each sample to determine the bin width [24]. The Freedman-Diaconis
rule is a commonly used binning rule that approximately minimises the integral of the square difference between a
histogram and a probability density function.

Simulation Fig. 7a shows that the neural network methods outperform the control method for the 10GeV sample,
indicated by the lower spread of the response than for the control method. Furthermore, including timing information
results in superior energy resolution, which is expected to play a more significant role in compensation at this energy
scale due to a larger HAD fraction on average than at higher energies in the training sample, since the EM fraction
increases on average with Eparticle [3].

Fig. 7b shows the 35GeV testing sample, which demonstrates that the neural network methods produce a more linear
response than the control method and are therefore able to interpolate to samples between training energies.
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a b

c d

Figure 7: Example normalised histograms showing the calorimeter response before and after compensation applied to the simulated
test dataset of Table 1, with the TCMT cut applied. Samples of 10GeV, 40GeV, 80GeV and 120GeV hadron shower energies are
shown. Blue lines indicate intrinsic calorimeter response, while orange, green and red lines indicate the control, network without and
network with time compensation methods, respectively. Eparticle is indicated as a dashed purple line. The number of events shown
in the title indicate the corresponding sample sizes from Table 1.

Fig. 7c and Fig. 7d show the 80GeV and 120GeV samples. The control method outperforms the neural network
methods for the 80GeV sample. However, by examination of the 120GeV sample, it becomes apparent that this result
is due to the control method biasing to the highest energy sample of the training dataset. This statement is justified by
the artificial attenuation of the response by the control method, resulting in a highly non-linear compensated response.
By contrast, the neural network methods preserve the linearity of response beyond the training range. Therefore, it
is demonstrated that the neural network model can extrapolate the compensation to higher particle energies without
further training.
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a b

c d

Figure 8: Example normalised histograms showing the calorimeter response before and after compensation applied to the simulated
test dataset of Table 1, without the TCMT cut applied. Else, as in Fig. 7.
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a b

c d

Figure 9: Example normalised histograms showing the calorimeter response before and after compensation applied to the 2018 June
Testbeam test dataset of Table 1, with the TCMT cut applied. Samples of 10GeV, 40GeV, 80GeV and 120GeV hadron shower
energies are shown. Else, as in Fig. 7.
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a b

c d

Figure 10: Example normalised histograms showing the calorimeter response before and after compensation applied to the 2018
June Testbeam test dataset of Table 1, without the TCMT cut applied. Else, as in Fig. 7 and the same selected energy samples as in
Fig. 9.
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Similar conclusions can be drawn for Figs. 8a-8d, indicating that the bias from the TCMT cut does not significantly
influence the outcome of the experiment.

2018 Testbeam Data As in Fig. 7, the neural network method produces superior resolution than the control in
Fig. 9a-Fig. 9c except for the 120GeV sample shown in Fig. 9d. This observation can be attributed to the same energy
biasing observed for the 80GeV sample in simulation in Fig. 7c, as these are both the maximum energy bins of the
training dataset in both cases.

Again, similar conclusions can be drawn for Figs. 10a-10d, once again indicating that the bias from the TCMT cut does
not significantly influence the outcome of the experiment.
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3.2 Resolution and Linearity of Response

The energy response distributions for each particle energy in the testing dataset, with the TCMT cut applied, were fitted
with a normal distribution in the range of ±2 standard deviations from their mean. The location and scale parameters of
the fit, µ and σ, were used to estimate E and σE of Eq. 1 and used to study resolution (σ/µ vs. Eparticle) and linearity
of response (µ/Eparticle vs. Eparticle).

Simulation Fig. 11 and Table 3 show the measured resolution, fitted with Eq. 1, and the corresponding fit values,
respectively, for the simulation.

The top subplot of Fig. 11 indicates the neural network methods offer improved linearity of response compared to
the control, which overestimates the hadron shower energy by up to 5% compared to 2-3% for the network methods
for most of the training range of particle energies. Moreover, the network and control methods are demonstrated to
interpolate within the training range. However, the control method fails to reconstruct the particle energy entirely for
particle energies greater than 80GeV.

The middle and bottom subfigure of Fig. 11 demonstrates that for values of Eparticle up to around 60GeV, the neural
network methods produce superior compensation, indicated by the smaller value of the compensated response to the
intrinsic response. Beyond this range, the resolution produced by the control method diverges from the model of
Eq. 1. For this reason, the fit to this method was only performed for Eparticle in the range 10-60GeV. By contrast,
the uncompensated and network methods show good agreement with the expectations of Eq. 1 and were fitted over
the entire range. Table 3 shows the fitted parameters indicated by the dashed coloured lines of the middle subplot
of Fig. 11. The uncompensated stochastic resolution for simulated π− hadron showers in AHCAL is in agreement
within 1-2% with the a = 51.7 ± 0.97% obtained in the study of [19]. The neural network solutions improve the
calorimeter’s stochastic resolution, a, by comparison by around 3% without timing information and a further 3% with
timing information, compared to the control method. This result demonstrates the improvement in SC performance that
can be obtained from including spatiotemporal energy density information. This result agrees with a similar study on
the additional benefit of using timing information for software compensation with AHCAL, which observed a 3-4%
improvement in energy resolution using timing information than energy density information only.

June 2018 Testbeam Data Fig. 12 and Table 4 show the measured resolution, fitted with Eq. 1, and the corresponding
fit values, respectively, for the data.

As for simulation, the uncompensated stochastic resolution for data π− hadron showers in AHCAL is in agreement
within 1-2% with the stochastic resolution term a = 57.70 ± 1.06% obtained in [19]. Furthermore, the machine
learning methods outperform the control method in resolution, resulting in an improvement of the intrinsic stochastic
resolution term of 9.3% and 12.2%, outperforming the control method in both cases. The neural networks also reduce
the constant resolution term by 2%, indicating the neural networks perform some detector calibration and SC. A slightly
superior linearity of response overall is observed compared to the control method and less than for simulation.

3.3 Correlations with Spatial and Temporal Information

The spatial and energy-temporal correlations of the hadron shower weighting are analysed to study and compare the
neutral network SC methods to the control SC method.

Simulation The results for the spatial correlations (Rhit,Khit−KS) and energy-temporal correlations (thit, Ehit) are
shown in the left and right columns of Fig. 13, respectively to the test sample. The colour axes indicate the percentage
change of the energy due to the SC algorithm as a function of these variables. In this example, the tail-catcher cut was
not applied.

Table 3: Table of fitted parameters of Eq. 1 to the training range of energies of simulation shown as dashed lines in Fig. 11, except
for the control method, which was fitted up to 60GeV due to the effect of energy biasing.

a [%] b [%] χ2/NDF
Uncompensated 49.5± 0.4 7.1± 0.1 4.6
Control 43.4± 0.1 0.0± 2.9 14.3
Network, No Time 40.2± 0.2 2.2± 0.1 0.9
Network, + Time 37.3± 0.2 2.4± 0.1 1.4
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Figure 11: AHCAL linearity of response and resolution using all methods under test applied to the test dataset of simulation. Blue
indicates intrinsic calorimeter response, while orange, green and red indicate the control, network without and network with time
compensation methods. Circles indicate energies used for both training and testing, and cross markers indicate energies used for
testing only. The top subplot shows the ratio of fitted µ to Eparticle, where the dashed purple line indicates µ = Eparticle The middle
subplot shows the fitted σ/µ, where the dashed lines indicate fits of Eq. 1. The bottom subplot indicates the ratio of the resolution of
each compensation method to the intrinsic response.

Table 4: Table of fitted parameters of Eq. 1 to the training range of energies of 2018 CALICE Testbeam data shown as dashed lines
in Fig. 11. The whole range of available energies was used to fit.

a [%] b [%] χ2/NDF

Calorimeter Response 56.1± 0.7 6.1± 0.1 10.1
Control 51.5± 0.42 1.0± 0.3 38.9
Network, No Time 41.9± 0.5 4.0± 0.1 6.5
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Figure 12: AHCAL linearity of response and resolution using all methods under test applied to the test dataset of 2018 CALICE
Testbeam Data. Else, as in Fig. 11.

Fig. 13a demonstrates that the control method shows only a weak dependence on lateral and longitudinal development
of the shower, with attenuation occurring only within Rhit ≲ 1 ρM (the EM fraction) and enhancement beyond, with
minor variation, as expected. By contrast, the neural network methods attenuate and enhance the active cell energy
with much stronger spatial dependence, indicated by the broadening of the weighting profile with longitudinal shower
development. Two additional effects are observed for the network methods, shown in Fig. 13c and Fig. 13e: a tendency
to enhance Ehit in the region above the white dashed line, and to attenuate Ehit where Rhit ≲ 1ρM (close to the lateral
shower core) and KS < 0 (before the shower start). These effects are not present in Fig. 13a and must therefore be a
consequence of including spatial information in the models. These results suggest the network models have learned
leakage correction and to remove the energy deposited by minimum ionisation of the π− particle before showering.
This result demonstrates an improved capacity of the proposed model to learn the physical properties of the hadron
shower and detector compared to the control method.

Fig. 13b, Fig. 13d and Fig. 13f demonstrate that all methods are observed to attenuate active cell energies above 5MIP
and enhance below that threshold, which is expected of all SC algorithms. The binned structure of the weighting of
the control method is visible in Fig. 13b. By contrast, the neural network methods in Fig. 13d and Fig. 13f indicate a
continuous weighting function has been learned. Furthermore, Fig. 13f indicates that the model with timing information
enhances the threshold for energy deposited in the order of several ns to several tens of ns. A reduction in the threshold
is observed after around 100 ns. These observations are consistent with the timescales of the two main neutron energy-
depositing processes discussed in Section 2. Comparison of Fig. 13f and Figs. 13b- 13d indicate that this effect must be
due to the inclusion of timing information since no such effect is observed in the control or method without timing
information.
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a b

c d

e f

Figure 13: Average percentage change in active cell energy (Ehit) as a result of compensation as a function of Rhit and Khit −KS

(left column, presented in units of Moliere radius from the lateral center-of-gravity, ρM = 24.9mm, and nuclear interaction length
from the shower start, λI = 237.1mm, respectively), and Ehit and thit (right column, presented in units of MIP and ns, respectively)
for simulation. Each row indicates the control and network methods without and with timing information in that order. The colour
axis indicates the percentage change, where blue regions indicate where the energy has been attenuated, and green through red
shows where the energy has been enhanced. White space indicates no data available. Regions of interest are labelled accordingly for
reference. The values of τslow and τfast were taken from [4]. 19
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c d

Figure 14: Average percentage change in active cell energy (Ehit) as a result of compensation as a function of Rhit and Khit −KS

as in Fig. 13 for CALICE 2018 Testbeam Data. Else, as in Fig. 13.

CALICE 2018 Testbeam Data The spatial and energy-temporal correlations in Fig. 14 show the same information
for data as in Figs. 13a-13d. The conclusions to this figure are the same as in Fig. 13 for the control method and the
neural network model trained only with spatial information.
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4 Conclusion

A neural network method for performing software compensation was devised, trained, and tested on simulation and
2018 June Testbeam data for the AHCAL calorimeter. The model used a local energy density estimate to overcome
biasing effects on particle energies.

The neural network model was trained with and without timing information with 100 ps timing resolution and is
compared to a control method after accounting for the effect of leakage compensation learned by the networks. The
neural networks yielded superior overall compensation and linearity of response to the control method when trained on
simulation, resulting in calorimeter resolutions of 40.2%/

√
Eparticle ⊕ 2.2% and 37.2%/

√
Eparticle ⊕ 2.4%. This

corresponded to an absolute improvement of stochastic resolution, a, by 9.3% and 12.2%, or a relative improvement
of 19% and 25% respectively compared to the uncompensated a. The absolute value of the constant resolution term, b,
was also found to reduce by around 5% or a relative improvement of 70% compared to the uncompensated b in both
models. This result indicates that the model was capable of detector calibration. Both methods obtained a linearity of
response within around 2-3% of the particle energy. This result should be interpreted with the caveat of the bias caused
by the TCMT cut. Nonetheless, improved performance was observed compared to the control using the neural network
method without the TCMT cut.

The network without timing information trained on CALICE 2018 SPS testbeam data achieved a comparable resolution
of 41.9%/

√
Eparticle⊕4.0%. This corresponded to an absolute improvement in a by 14.2% or a relative improvement

of 25%. Additionally, this corresponded to an absolute improvement in b by around 2% or a relative improvement of
around 35%. This result indicates that the model can be trained with limited experimental data to a similar level as
simulation. Additionally, the control method was observed to bias to the training range of particle energies. In contrast,
the neural network method was demonstrated to both interpolate and extrapolate compensation to energies not used for
training.

The networks’ learned method of applying SC agreed with expectations: the attenuation of high-energy (EM) deposits
and the enhancement of low-energy deposits. However, the network method was found to apply SC differently
depending on the stage of the shower development, both in space and in time, the former of which included an effect
consistent with longitudinal leakage correction and the latter of which was found to agree with expectations of a
bi-exponential time distribution for energy deposits in a steel-scintillator calorimeter expected from Ref. [4]. Similar
behaviour was observed in the independent neural network applied to data.

In summary, this study indicates that superior resolution can be obtained in highly granular calorimeters using
spatiotemporal event information and neural networks and that careful model design can overcome the limitations of
previous data-driven compensation techniques by reducing energy biasing. The validation of the method as part of a
full Particle Flow analysis represents a promising future study.
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Appendix

Table 5: Bin ranges and weights obtained for the control method described in Section 2.2. Table 5a shows the values obtained for
simulation. Table 5b shows the values obtained for CALICE June 2018 SPS Testbeam data.

a

Simulation
Bin Range [MIP] αb βb γb

0.500 - 0.735 -1.120 13.000 -5.499
0.735 - 1.002 -0.372 5.134 -4.727
1.002 - 1.272 -0.350 2.523 -3.054
1.272 - 1.585 -0.460 1.999 -1.587
1.585 - 2.013 -0.290 1.634 -1.012
2.013 - 2.631 0.022 1.275 -0.949
2.631 - 3.584 0.218 1.138 -0.632
3.584 - 5.328 0.387 0.658 -0.457
5.328 - 9.881 0.579 0.259 -0.281
9.881 - ∞ 0.788 -0.057 0.043

b

June 2018 SPS Testbeam Data
Bin Range [MIP] αb βb γb

0.500 - 0.770 -9.252 17.803 -16.047
0.770 - 1.059 -8.529 14.738 -11.256
1.059 - 1.351 -0.046 1.902 -1.797
1.351 - 1.698 1.283 -0.379 0.057
1.698 - 2.179 2.104 -1.325 0.720
2.179 - 2.875 1.025 0.384 -0.235
2.875 - 3.957 1.271 0.001 0.104
3.957 - 5.847 1.325 0.013 0.304
5.847 - 10.930 0.814 0.426 0.021
10.930 - ∞ 0.148 1.032 -0.243
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Table 6: Table of µ and σ from the Gaussian fits performed on the SC models trained on simulation. Tables 6a and 6b show the µ, σ
and their errors as a function of particle energy for each studied method applied to the testing dataset. CR, CTRL, NN,-Time and
NN,+Time are abbreviations of: ’intrinsic calorimeter response’, ’control method’, ’neural network, without time’ and with ’neural
network, with time’, respectively.

a

Simulation
µ dµ

CR CTRL NN,-Time NN,+Time CR CNTRL NN,-Time NN,+ Time
Eparticle [GeV]

10 9.214 10.281 10.157 10.502 0.013 0.012 0.010 0.009
15 14.257 15.754 15.186 15.512 0.016 0.014 0.012 0.012
20 19.401 21.307 20.326 20.692 0.019 0.015 0.013 0.013
25 24.516 26.796 25.569 25.954 0.021 0.016 0.015 0.014
30 29.330 31.990 30.661 31.136 0.024 0.018 0.017 0.016
35 34.230 37.160 35.688 36.247 0.027 0.020 0.018 0.018
40 39.199 42.311 40.656 41.368 0.030 0.021 0.019 0.019
45 44.148 47.374 45.651 46.468 0.034 0.023 0.022 0.021
50 49.119 52.316 50.526 51.466 0.034 0.022 0.021 0.021
55 54.066 57.157 55.555 56.583 0.043 0.028 0.027 0.026
60 59.033 61.864 60.352 61.535 0.045 0.027 0.026 0.026
65 64.099 66.412 65.148 66.438 0.045 0.026 0.026 0.026
70 69.145 70.838 69.905 71.315 0.057 0.031 0.032 0.032
75 74.178 74.941 74.578 76.158 0.066 0.035 0.037 0.037
80 79.235 78.972 79.270 80.992 0.061 0.029 0.033 0.032
85 84.506 82.781 83.912 85.779 0.064 0.029 0.034 0.033
90 89.475 86.410 88.615 90.592 0.063 0.027 0.033 0.032
95 94.663 89.725 93.157 95.238 0.078 0.031 0.039 0.039
100 99.804 92.822 97.723 99.969 0.088 0.034 0.044 0.044
105 104.983 95.722 102.337 104.685 0.095 0.032 0.047 0.047
110 110.224 98.338 106.931 109.416 0.103 0.031 0.050 0.049
115 115.567 100.585 111.316 113.949 0.106 0.028 0.050 0.049
120 120.000 102.513 115.874 118.618 0.010 0.028 0.053 0.052

b

Simulation
σ dσ

CR CTRL NN,-Time NN,+Time CR CNTRL NN,-Time NN,+ Time
Eparticle [GeV]

10 1.625 1.474 1.311 1.255 0.012 0.011 0.009 0.008
15 2.112 1.792 1.651 1.579 0.015 0.012 0.010 0.010
20 2.512 2.027 1.873 1.795 0.018 0.013 0.011 0.011
25 2.905 2.294 2.128 2.016 0.019 0.013 0.013 0.012
30 3.320 2.527 2.351 2.258 0.021 0.015 0.014 0.013
35 3.754 2.779 2.576 2.487 0.023 0.016 0.015 0.015
40 4.151 2.905 2.721 2.642 0.025 0.017 0.016 0.015
45 4.518 3.081 2.961 2.858 0.027 0.018 0.018 0.018
50 4.946 3.192 3.092 3.023 0.027 0.018 0.017 0.017
55 5.253 3.316 3.296 3.182 0.033 0.022 0.023 0.022
60 5.701 3.335 3.416 3.328 0.034 0.021 0.022 0.022
65 6.059 3.406 3.598 3.510 0.034 0.021 0.022 0.022
70 6.406 3.367 3.695 3.628 0.044 0.023 0.027 0.027
75 6.736 3.376 3.840 3.751 0.051 0.027 0.032 0.032
80 7.174 3.297 3.917 3.862 0.046 0.022 0.027 0.027
85 7.540 3.167 4.021 3.925 0.048 0.021 0.029 0.029
90 7.843 3.078 4.111 4.042 0.045 0.020 0.028 0.028
95 8.297 2.943 4.237 4.141 0.059 0.021 0.033 0.034
100 8.553 2.803 4.354 4.318 0.062 0.023 0.036 0.037
105 9.049 2.741 4.425 4.422 0.071 0.023 0.039 0.039
110 9.341 2.664 4.588 4.488 0.078 0.024 0.044 0.041
115 9.832 2.603 4.666 4.643 0.081 0.026 0.040 0.041
120 10.000 2.493 4.813 4.742 0.027 0.028 0.045 0.044
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Table 7: Table of µ and σ from the Gaussian fits performed on the SC models trained on data. Tables 7a, 7b µ, σ and their errors as
a function of particle energy for each studied method applied to the testing dataset. Else, as in Table 6. ’Sim’ and ’Data’ indicate
models trained on simulation and 2018 Testbeam data, resepctively.

a

June 2018 SPS Testbeam Data
µ dµ

CR CTRL NN,-Time NN,-Time CR CNTRL NN,-Time NN,-Time
Eparticle [GeV] (Data) (Data) (Sim) (Data) (Data) (Sim)

10 9.334 10.113 10.190 9.949 0.025 0.022 0.018 0.019
20 18.947 20.213 20.244 19.048 0.031 0.026 0.025 0.024
40 38.623 41.278 41.355 38.301 0.047 0.038 0.036 0.033
60 58.501 63.090 62.503 57.331 0.060 0.047 0.043 0.038
80 78.246 84.081 82.514 75.260 0.081 0.062 0.058 0.049
120 114.690 117.347 119.229 107.497 0.121 0.080 0.092 0.077

b

June 2018 SPS Testbeam Data
σ dσ

CR CTRL NN,-Time NN,-Time CR CNTRL NN,-Time NN,-Time
Eparticle [GeV] (Data) (Data) (Sim) (Data) (Data) (Sim)

10 1.733 1.554 1.363 1.407 0.023 0.019 0.016 0.016
20 2.614 2.260 2.151 2.094 0.029 0.023 0.022 0.021
40 4.124 3.456 3.198 3.012 0.042 0.033 0.031 0.029
60 5.702 4.526 4.202 3.750 0.050 0.039 0.036 0.031
80 7.058 5.093 5.144 4.381 0.065 0.046 0.048 0.040
120 8.734 5.203 6.611 5.532 0.096 0.062 0.077 0.059
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