CERN Accelerating science

Article
Report number arXiv:2003.13339 ; CERN-TH-2020-050 ; CTPU-PTC-20-06
Title Machine Learning String Standard Models
Author(s) Deen, Rehan (Oxford U., Theor. Phys.) ; He, Yang-Hui (Nankai U. ; London, City U. ; Merton Coll., Oxford) ; Lee, Seung-Joo (IBS, Daejeon ; CERN) ; Lukas, Andre (Oxford U., Theor. Phys.)
Publication 2022-02-02
Imprint 2020-03-30
Number of pages 10
Note 10 pages
In: Phys. Rev. D 105 (2022) 046001
DOI 10.1103/PhysRevD.105.046001 (publication)
Subject category stat.ML ; Mathematical Physics and Mathematics ; math.AG ; Mathematical Physics and Mathematics ; hep-th ; Particle Physics - Theory
Abstract We study machine learning of phenomenologically relevant properties of string compactifications, which arise in the context of heterotic line bundle models. Both supervised and unsupervised learning are considered. We find that, for a fixed compactification manifold, relatively small neural networks are capable of distinguishing consistent line bundle models with the correct gauge group and the correct chiral asymmetry from random models without these properties. The same distinction can also be achieved in the context of unsupervised learning, using an auto-encoder. Learning non-topological properties, specifically the number of Higgs multiplets, turns out to be more difficult, but is possible using sizeable networks and feature-enhanced data sets.
Copyright/License publication: © 2022-2025 authors (License: CC BY 4.0)
preprint: (License: arXiv nonexclusive-distrib 1.0)



Corresponding record in: Inspire


 Registro creado el 2020-04-16, última modificación el 2023-11-24


Texto completo:
2003.13339 - Descargar el texto completoPDF
PhysRevD.105.046001 - Descargar el texto completoPDF