PTEN-inducirana kinaza 1 (PINK1) jest enzim koji je kod ljudi kodiran genom PINK1 sa hromosoma 1. To je mitohondrijska serin/treonin-specifična protein-kinaza .[5][6]

PINK1
Identifikatori
AliasiPINK1
Vanjski ID-jeviOMIM: 608309 MGI: 1916193 HomoloGene: 32672 GeneCards: PINK1
Lokacija gena (čovjek)
Hromosom 1 (čovjek)
Hrom.Hromosom 1 (čovjek)[1]
Hromosom 1 (čovjek)
Genomska lokacija za PINK1
Genomska lokacija za PINK1
Bend1p36.12Početak20,633,458 bp[1]
Kraj20,651,511 bp[1]
Lokacija gena (miš)
Hromosom 4 (miš)
Hrom.Hromosom 4 (miš)[2]
Hromosom 4 (miš)
Genomska lokacija za PINK1
Genomska lokacija za PINK1
Bend4|4 D3Početak138,040,720 bp[2]
Kraj138,053,618 bp[2]
Obrazac RNK ekspresije


Više referentnih podataka o ekspresiji
Ontologija gena
Molekularna funkcija C3HC4-type RING finger domain binding
kinase activity
ATP binding
protein kinase activity
vezivanje iona metala
protein serine/threonine kinase activity
calcium-dependent protein kinase activity
peptidase activator activity
magnesium ion binding
aktivnost sa transferazom
protease binding
GO:0001948, GO:0016582 vezivanje za proteine
nucleotide binding
protein kinase B binding
ubiquitin protein ligase binding
Ćelijska komponenta citoplazma
citosol
membrana
mitochondrial intermembrane space
mitohondrija
perinuklearno područje citoplazme
citoskelet
jedro
Lewy body
integral component of mitochondrial outer membrane
mitochondrial outer membrane
Hromatin
TORC2 complex
integral component of membrane
kompleks ubikvitin-ligaze
Translokaza vanjske membrane
astrocyte projection
Akson
cell body
mitochondrial inner membrane
growth cone
Biološki proces GO:1904089 negative regulation of neuron apoptotic process
positive regulation of mitophagy in response to mitochondrial depolarization
positive regulation of free ubiquitin chain polymerization
regulation of protein ubiquitination
cellular response to toxic substance
positive regulation of catecholamine secretion
regulation of synaptic vesicle transport
positive regulation of translation
protein phosphorylation
positive regulation of dopamine secretion
macroautophagy
GO:0106159 regulation of protein-containing complex assembly
cellular response to hypoxia
negative regulation of autophagosome assembly
positive regulation of protein kinase B signaling
positive regulation of protein dephosphorylation
ubiquitin-dependent protein catabolic process
peptidyl-serine autophosphorylation
regulation of neuron apoptotic process
GO:0001306 response to oxidative stress
negative regulation of gene expression
positive regulation of peptidyl-serine phosphorylation
negative regulation of mitochondrial fission
positive regulation of mitochondrial electron transport, NADH to ubiquinone
positive regulation of macroautophagy
regulation of autophagy of mitochondrion
positive regulation of ubiquitin-protein transferase activity
negative regulation of hydrogen peroxide-induced neuron intrinsic apoptotic signaling pathway
protein ubiquitination
negative regulation of oxidative stress-induced cell death
negative regulation of intrinsic apoptotic signaling pathway in response to hydrogen peroxide
positive regulation of synaptic transmission, dopaminergic
negative regulation of hypoxia-induced intrinsic apoptotic signaling pathway
regulation of oxidative phosphorylation
regulation of mitochondrion organization
regulation of hydrogen peroxide metabolic process
negative regulation of oxidative stress-induced neuron death
protein stabilization
mitochondrion organization
positive regulation of DNA-binding transcription factor activity
negative regulation of autophagy of mitochondrion
GO:1904489 regulation of reactive oxygen species metabolic process
positive regulation of ATP biosynthetic process
maintenance of protein location in mitochondrion
regulation of protein targeting to mitochondrion
positive regulation of release of cytochrome c from mitochondria
respiratory electron transport chain
positive regulation of protein ubiquitination
regulation of proteasomal protein catabolic process
activation of protein kinase B activity
GO:0007243 intracellular signal transduction
negative regulation of macroautophagy
positive regulation of protein targeting to mitochondrion
positive regulation of cristae formation
positive regulation of peptidase activity
TORC2 signaling
regulation of mitochondrial membrane potential
Autofagija
negative regulation of JNK cascade
establishment of protein localization to mitochondrion
autophagy of mitochondrion
GO:0035404 peptidyl-serine phosphorylation
positive regulation of I-kappaB kinase/NF-kappaB signaling
cellular response to oxidative stress
negative regulation of reactive oxygen species metabolic process
negative regulation of apoptotic process
positive regulation of protein phosphorylation
positive regulation of histone deacetylase activity
mitochondrion to lysosome transport
regulation of cellular response to oxidative stress
response to ischemia
positive regulation of mitochondrial fission
positive regulation of autophagy of mitochondrion in response to mitochondrial depolarization
cellular response to hydrogen sulfide
Fosforilacija
negative regulation of neuron death
positive regulation of NMDA glutamate receptor activity
negative regulation of intrinsic apoptotic signaling pathway
Izvori:Amigo / QuickGO
Ortolozi
VrsteČovjekMiš
Entrez
Ensembl
UniProt
RefSeq (mRNK)

NM_032409

NM_026880

RefSeq (bjelančevina)

NP_115785

NP_081156

Lokacija (UCSC)Chr 1: 20.63 – 20.65 MbChr 4: 138.04 – 138.05 Mb
PubMed pretraga[3][4]
Wikipodaci
Pogledaj/uredi – čovjekPogledaj/uredi – miš

Smatra se da štiti ćelije od disfunkcije mitohondrija izazvane stresom. PINK1 aktivnost uzrokuje parkin protein da se veže za depolarizirane mitohondrije, kako bi inducirao autofagiju tih mitohondrija.[7][8] PINK1 se prerađuje u zdravim mitohondrijama i oslobađa da pokrene diferencijaciju neurona.[9] Mutacije ovog gena uzrokuju jedan oblik ranog početka autosomno recesivnog oblkika Parkionsonove bolesti.[10]

Aminokiselinska sekvenca

uredi

Dužina polipeptidnog lanca je 581 aminokiselina, a molekulska težina 62.769 Da.[11]

1020304050
MAVRQALGRGLQLGRALLLRFTGKPGRAYGLGRPGPAAGCVRGERPGWAA
GPGAEPRRVGLGLPNRLRFFRQSVAGLAARLQRQFVVRAWGCAGPCGRAV
FLAFGLGLGLIEEKQAESRRAVSACQEIQAIFTQKSKPGPDPLDTRRLQG
FRLEEYLIGQSIGKGCSAAVYEATMPTLPQNLEVTKSTGLLPGRGPGTSA
PGEGQERAPGAPAFPLAIKMMWNISAGSSSEAILNTMSQELVPASRVALA
GEYGAVTYRKSKRGPKQLAPHPNIIRVLRAFTSSVPLLPGALVDYPDVLP
SRLHPEGLGHGRTLFLVMKNYPCTLRQYLCVNTPSPRLAAMMLLQLLEGV
DHLVQQGIAHRDLKSDNILVELDPDGCPWLVIADFGCCLADESIGLQLPF
SSWYVDRGGNGCLMAPEVSTARPGPRAVIDYSKADAWAVGAIAYEIFGLV
NPFYGQGKAHLESRSYQEAQLPALPESVPPDVRQLVRALLQREASKRPSA
RVAANVLHLSLWGEHILALKNLKLDKMVGWLLQQSAATLLANRLTEKCCV
ETKMKMLFLANLECETLCQAALLLCSWRAAL

Struktura

uredi

PINK1 se sintetizira kao protein od 63000 Da koji se često cijepa pomoću PARL, između ostataka 103-alanina i 104-fenilalanina, u fragment od 53.000 Da.[12] PINK1 sadrži N-terminalnu sekvencu na mitohondrijama, pretpostavljenu transmembransku sekvencu, domen Ser/Thr kinaze i C-terminalnu regulatornu sekvencu. Utvrđeno je da se protein nalazi na vanjskoj membrani mitohondrija, ali se također može naći u cijelom citosolu. Eksperimenti sugeriraju da je domen Ser/Thr kinaze okrenut prema van prema citosolu, što ukazuje na moguću tačku interakcije s parkinom.[13]

Struktura PINK1 je riješena i pokazuje kako protein veže i fosforilira svoj supstrat ubikvitin.[14]

Funkcija

uredi

PINK1 je blisko uključen u kontrolu kvaliteta mitohondrija, tako što identifikuje oštećene mitohondrije i cilja specifične za degradaciju. Zdrave mitohondrije održavaju membranski potencijal koji se može koristiti za import PINK1 u unutrašnju membranu, gdje ga PARL cijepa i čisti od vanjske membrane. Jako oštećene mitohondrije nemaju dovoljan membranski potencijal za unos PINK1, koji se zatim akumulira na vanjskoj membrani. PINK1 zatim regrutuje parkin da cilja oštećene mitohondrije za degradaciju putem autofagija.[15] Zbog prisustva PINK1 u cijeloj citoplazmi, sugerirano je da PINK1 funkcionira kao "izviđač" za ispitivanje oštećenih mitohondrija.[16]

 
PINK1 prepoznaje oštećenu mitohondriju. Nakuplja se na vanjskoj membrani mitohondrija i regrutuje parkin. PINK1/parkin put tada označava mitohondrije za razgradnju u lizosomima.
 
Zdrave mitohondrije mogu da imoortuju PINK1 gde ga PARL potom cijepa. Ovo sprečava bilo kakvo nakupljanje PINK1 i parkin se ne regrutuje u mitohondrije.

PINK1 također može da kontrolira kvalitet mitohondrija putem mitohondrijske fisije. Time stvara se određeni broj kćeri mitohondrija, često s neravnomjernom raspodjelom u membranskom potencijalu. Vjerovatnije je da će mitohondrije sa jakim, zdravim membranskim potencijalom biti podvrgnute fuziji nego mitohondrije s niskim membranskim potencijalom. Interferencija s mitohondrijskim fisijskim putem dovela je do povećanja oksidiranih proteina i smanjenja disanja.[17] Bez PINK1, parkin se ne može efikasno lokalizirati na oštećene mitohondrije, dok prekomjerna ekspresija PINK1 uzrokuje da se parkin lokalizira čak i na zdravim mitohondrijama.[18] Nadalje, mutacije u Drp1, mitohondrijskom faktoru fisije i PINK1 bile su fatalne u Drosophila modelima. Međutim, prekomjerna ekspresija Drp1 mogla bi spasiti subjekte s nedostatkom PINK1 ili parkina, što sugerira da fisija mitohondrija koju je pokrenuo Drp1 rekreira iste efekte PINK1/parkin puta.[19]

Pored fisije mitohondrija, PINK1 je uključen u njihovu pokretljivost. Akumulacija PINK1 i regrutovanje parkina cilja mitohondrije za degradaciju, a PINK1 može poslužiti za povećanje stope degradacije, zaustavljanjem pokretljivosti mitohondrija. Prekomjerna ekspresija PINK1 proizvela je slične efekte kao i utišavanje Miro-a, proteina blisko povezanog s mitohondrijskom migracijom.[20]

Drugi mehanizam kontrole kvaliteta mitohondrija može nastati putem vezikula, izvedenih iz mitohondrija. Oksidativni stres u mitohondrijama može proizvesti potencijalno štetne spojeve, uključujući nepropisno presavijene proteine ili reaktivne vrste kisika. Pokazalo se da PINK1 olakšava stvaranje vezikula izvedenih iz mitohondrija, koje mogu odvojiti reaktivne vrste kisika i prebaciti ih prema lizosomima radi razgradnje.[21]

Klinički značaj

uredi

Parkinsonovu bolest često karakteriše degeneracija dopaminskih neurona i povezana je sa nagomilavanjem nepropisno presavijenih proteina i Lewyjevih tijela. Pokazalo se da mutacije u PINK1 proteinu dovode do nakupljanja takvih nepropisno presavijenih proteina u mitohondrijama mišjih i ljudskih ćelija.[22] Konkretno, mutacije u domenu serin/treonin kinaze pronađene su kod brojnih pacijenata oboljelih od Parkinsonove bolesti kod kojih PINK1 ne uspijeva zaštititi od stresom izazvane mitohondrijske disfunkcije i apoptoze.[23]

Farmakološka manipulacija

uredi

Do danas je bilo nekoliko izvještaja o malim molekulama koje aktiviraju PINK1 i njihovo obećavajuće djelovanje kao potencijalnog tretmana za Parkinsonovu bolest. Prvi izvještaj pojavio se 2013. godine kada su Kevan Shokat i njegov tim iz UCSF identificirali nukleobazu zvanu kinetin kao aktivator PINK1.[24] Kasnije su drugi pokazali da nukleozidni derivat kinetina, tj. kinetin ribozid, pokazuje značajnu aktivaciju PINK1 u ćelijama.[25] Osim toga, monofosfatni prolijekovi kinetin-ribozida, ProTides, također su pokazali aktivaciju PINK1.[25] U decembru 2017., niklozamid, anthelmintski lijek, identificiran je kao snažan aktivator PINK1 u ćelijama i neuronima.[26]

Reference

uredi
  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000158828 - Ensembl, maj 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000028756 - Ensembl, maj 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Unoki M, Nakamura Y (Aug 2001). "Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway". Oncogene. 20 (33): 4457–65. doi:10.1038/sj.onc.1204608. PMID 11494141.
  6. ^ Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE, Caputo V, Romito L, Albanese A, Dallapiccola B, Bentivoglio AR (Sep 2004). "PINK1 mutations are associated with sporadic early-onset parkinsonism". Ann Neurol. 56 (3): 336–41. doi:10.1002/ana.20256. PMID 15349860. S2CID 11049051.
  7. ^ Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010). "PINK1 is selectively stabilized on impaired mitochondria to activate Parkin". PLOS Biology. 8 (1): e1000298. doi:10.1371/journal.pbio.1000298. PMC 2811155. PMID 20126261.
  8. ^ Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, Youle RJ (2013). "PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding". Journal of Cell Biology. 200 (2): 163–172. doi:10.1083/jcb.201210111. PMC 3549971. PMID 23319602.
  9. ^ Dagda RK, Pien I, Wang R, Zhu J, Wang KZ, Callio J, Banerjee TD, Dagda RY, Chu CT (2013). "Beyond the mitochondrion: cytosolic PINK1 remodels dendrites through protein kinase A". J Neurochem. 128 (6): 864–877. doi:10.1111/jnc.12494. PMC 3951661. PMID 24151868.
  10. ^ "Entrez Gene: PINK1 PTEN induced putative kinase 1".
  11. ^ "UniProt, Q9BXM7" (jezik: eng.). Pristupljeno 3. 12. 2021.CS1 održavanje: nepoznati jezik (link)
  12. ^ Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S, Loh SH, Renton AE, Harvey RJ, Whitworth AJ, Martins LM, Abramov AY, Wood NW (2011). "PINK1 cleavage at position A103 by the mitochondrial protease PARL". Hum. Mol. Genet. 20 (5): 867–869. doi:10.1093/hmg/ddq526. PMC 3033179. PMID 21138942.
  13. ^ Springer W, Kahle PJ (mart 2011). "Regulation of PINK1-Parkin-mediated mitophagy". Autophagy. 7 (3): 266–78. doi:10.4161/auto.7.3.14348. PMID 21187721.
  14. ^ Schubert, Alexander F.; Gladkova, Christina; Pardon, Els; Wagstaff, Jane L.; Freund, Stefan M. V.; Steyaert, Jan; Maslen, Sarah L.; Komander, David (30. 10. 2017). "Structure of PINK1 in complex with its substrate ubiquitin". Nature (jezik: engleski). 552 (7683): 51–56. Bibcode:2017Natur.552...51S. doi:10.1038/nature24645. ISSN 1476-4687. PMC 6020998. PMID 29160309.
  15. ^ Youle RJ, van der Bliek AM (2012). "Mitochondrial fission, fusion, and stress". Science. 337 (6098): 1062–1065. Bibcode:2012Sci...337.1062Y. doi:10.1126/science.1219855. PMC 4762028. PMID 22936770.
  16. ^ Narendra D, Walker JE, Youle R (2012). "Mitochondrail quality control mediated by PINK1 and Parkin: links to parkinsonism". Cold Spring Harbor Perspectives in Biology. 4 (11): a011338. doi:10.1101/cshperspect.a011338. PMC 3536340. PMID 23125018.
  17. ^ Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008). "Fission and selective fusion govern mitochondrial segregation and elimination by autophagy". The EMBO Journal. 27 (2): 433–446. doi:10.1038/sj.emboj.7601963. PMC 2234339. PMID 18200046.
  18. ^ Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrané J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010). "PINK1-dependent recruitment of Parkin to mitochondria in mitophagy". Proceedings of the National Academy of Sciences of the United States of America. 107 (1): 378–83. Bibcode:2010PNAS..107..378V. doi:10.1073/pnas.0911187107. PMC 2806779. PMID 19966284.
  19. ^ Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ (2008). "The PINK1/Parkin pathway regulates mitochondrial mitophagy". Proceedings of the National Academy of Sciences of the United States of America. 105 (5): 1638–43. doi:10.1073/pnas.0709336105. PMC 2234197. PMID 18230723.
  20. ^ Liu S, Sawada T, Lee S, Yu W, Silverio G, Alapatt P, Millan I, Shen A, Saxton W, Kanao T, Takahashi R, Hattori N, Imai Y, Lu B (2012). "Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria". PLOS Genetics. 8 (3): e102537. doi:10.1371/journal.pgen.1002537. PMC 3291531. PMID 22396657.
  21. ^ McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA (2014). "Parkin and PINK 1 function in a vesicular trafficking pathway regulating mitochondrial quality control". The EMBO Journal. 33 (4): 282–295. doi:10.1002/embj.201385902. PMC 3989637. PMID 24446486.
  22. ^ Pimenta de Castro I, Costa AC, Lam D, Tufi R, Fedele V, Moisoi N, Dinsdale D, Deas E, Loh SH, Martins LM (2012). "Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster". Cell Death & Differentiation. 19 (8): 1308–16. doi:10.1038/cdd.2012.5. PMC 3392634. PMID 22301916.
  23. ^ Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004). "Hereditary early-onset Parkinson's disease caused by mutations in PINK1". Science. 304 (5674): 1158–60. Bibcode:2004Sci...304.1158V. doi:10.1126/science.1096284. PMID 15087508. S2CID 33630092.
  24. ^ Hertz NT, Berthet A, Sos ML, Thorn KS, Burlingame AL, Nakamura K, Shokat KM (2013). "A neo-substrate that amplifies catalytic activity of parkinson's-disease-related kinase PINK1". Cell. 154 (4): 737–47. doi:10.1016/j.cell.2013.07.030. PMC 3950538. PMID 23953109.
  25. ^ a b Osgerby L, Lai YC, Thornton PJ, Amalfitano J, Le Duff CS, Jabeen I, Kadri H, Miccoli A, Tucker JH, Muqit M, Mehellou Y (2017). "Kinetin Riboside and Its ProTides Activate the Parkinson's Disease Associated PTEN-Induced Putative Kinase 1 (PINK1) Independent of Mitochondrial Depolarization". J. Med. Chem. 60 (8): 3518–24. doi:10.1021/acs.jmedchem.6b01897. PMC 5410652. PMID 28323427.
  26. ^ Barini E, Miccoli A, Tinarelli F, Mulholand K, Kadri H, Khanim F, Stojanovski L, Read KD, Burness K, Blow JJ, Mehellou Y, Muqit M (2017). "The Anthelmintic Drug Niclosamide and its Analogues Activate the Parkinson's Disease Associated Protein Kinase PINK1". ChemBioChem. 19 (5): 425–429. doi:10.1002/cbic.201700500. PMC 5901409. PMID 29226533.

Dopunska literatura

uredi

Vanjski linkovi

uredi