タグ

waicに関するcartman0のブックマーク (2)

  • 広く使える情報量規準(WAIC)

    このページをご覧いただき、ありがとうございます。 ここでは、情報量規準 WAIC を紹介しています。 ベイズ推測のための情報量規準(WAIC)が導出されました。 WAIC は(真の分布、確率モデル、事前分布)がどのような場合でも使う ことができます。他の規準と異なり理論的な基盤を持っています。 (0) モデル選択やハイパーパラメータの最適化に使えます。 (1) 漸近的に汎化損失と同じ平均値と同じ分散を持ちます。 (2) WAIC は簡単に計算できます。 (3) 真の分布が確率モデルで実現可能でなくても使えます。事前分布が真の事前分布でなくても使えます。 (4) 平均対数損失を最小にするパラメータがユニークでなくても使えます。 平均対数損失を最小にするパラメータが特異点を含む解析的集合であっても 使えます(注1)。 (5) フィッシャー情報行列が正則でなくても使えます。 (6) 事後分布が正

  • Watanabe理論勉強会で発表してきました - ほくそ笑む

    このブログの読者には AIC (赤池情報量基準) をご存じの方は多いと思います. AIC は統計モデルの評価指標として世界中で広く使われていますが、これは赤池弘次という日人統計学者により考案されたものです。 これに対し、近年、ベイズ統計学で利用可能な WAIC という情報量基準が考案され、世界中で爆発的に普及しています。 この WAIC を考案したのも日人であり、東工大の渡辺澄夫先生です。 �L‚­Žg‚¦‚é�î•ñ—Ê‹K�€(WAIC) WAIC は、算出すること自体は簡単なのですが、その理論的な根拠として非常に高度な数学が使われています。 この理論について、渡辺先生ご自身が書かれた書籍があります。 Algebraic Geometry and Statistical Learning Theory (Cambridge Monographs on Applied and Com

    Watanabe理論勉強会で発表してきました - ほくそ笑む
  • 1