انتقل إلى المحتوى

حساب المثلثات الكروية: الفرق بين النسختين

من ويكيبيديا، الموسوعة الحرة
[نسخة منشورة][نسخة منشورة]
تم حذف المحتوى تمت إضافة المحتوى
لا ملخص تعديل
وسوم: تحرير من المحمول تعديل ويب محمول تعديل المحمول المتقدم
لا ملخص تعديل
وسوم: تحرير من المحمول تعديل ويب محمول تعديل المحمول المتقدم
سطر 12: سطر 12:


=== المضلعات الكروية ===
=== المضلعات الكروية ===
المضلع الكروي هو مضلع يقع على سطح الكرة يحدده عدد من [[قوس (هندسة)|أقواس]] الدوائر العظمى، والتي هي تقاطع السطح مع [[مستو (رياضيات)|مستويات]] مارة بمركز الكرة.
المضلع الكروي هو متعدد الجوانب يقع على سطح الكرة يحدده عدد من [[قوس (هندسة)|أقواس]] الدوائر العظمى، والتي هي تقاطع السطح مع [[مستو (رياضيات)|مستويات]] مارة بمركز الكرة.
قد يكون لهذه المضلعات أي عدد من الأضلاع. مستويان يحددان [[هلال (رياضيات)|هلالًا]]، يُطلق عليه أيضًا اسم "[[مضلع ثنائي]]" أو ثنائي الزاويا. النظير ثنائي الأضلاع للمثلث: مثال شائع هو السطح المنحني لقطعة كروية لبرتقالة. تحدد ثلاث مستويات مثلثا كرويا، الموضوع الرئيسي لهذه المقالة. تحدد أربع مستويات رباعيا كرويا: مثل هذا الشكل، والمضلعات ذات عدة أضلاع، يمكن دائمًا اعتبارها على أنها عدد من المثلثات الكروية.
قد يكون لهذه متعددات الجوانب (أو الأقواس) أي عدد من الجوانب. مستويان يحددان [[هلال (رياضيات)|هلالًا]]، يُطلق عليه أيضًا اسم "[[مضلع ثنائي]]" أو ثنائي الزوايا. النظير ثنائي الأضلاع للمثلث: مثال شائع هو السطح المنحني لقطعة كروية لبرتقالة. تحدد ثلاث مستويات مثلثا كرويا، الموضوع الرئيسي لهذه المقالة. تحدد أربع مستويات رباعيا كرويا: مثل هذا الشكل، والمضلعات ذات عدة أضلاع، يمكن دائمًا اعتبارها على أنها عدد من المثلثات الكروية.


من هذه النقطة سيقتصر المقال على مثلثات كروية، يشار إليها ببساطة على أنها "مثلثات".
من هذه النقطة سيقتصر المقال على مثلثات كروية، يشار إليها ببساطة على أنها "مثلثات".

نسخة 11:32، 1 يونيو 2020

مختصر لأهم العلاقات المثلثية في الهندسة الكروية


في الرياضيات، حساب المثلثات الكروية (بالإنجليزية: Spherical Trigonometry)‏ هو فرع من فروع الهندسة الكروية، يهتم بالعلاقة الموجودة بين الدوال المثلثية لزوايا المضلعات الكروية (وبالتحديد المثلثات الكروية، مثلثات رُسمن على كرة) محددات من قبل عدد من الدوائر العظمى المتقاطعة على الكرة. حساب المثلثات الكروية له أهمية كبيرة للحسابات في علم الفلك والجيوديسيا والملاحة.

من أجل المزيد من المعلومات حول أصول حساب المثلثات الكروية عند الإغريق والتطورات المهمة اللائي عرفها هذا المجال في العصر الإسلامي، انظر إلى تاريخ الحساب المثلثي وإلى الرياضيات في عصر الحضارة الإسلامية.

جاء هذا الموضوع ليؤتي ثماره في العصور الحديثة المبكرة مع تطورات مهمة قام بها جون نابير وديلامبر وآخرون، وحصل على شكل كامل بشكل أساسي بحلول نهاية القرن التاسع عشر مع نشر كتاب تودهنتر "Spherical trigonometry for the use of colleges and Schools".[1] ومنذ ذلك الحين، تطورات مهمة كانت تطبيق طرق المتجهات واستخدام الطرق العددية.

التمهيدات

ثمانية مثلثات كروية محددة بتقاطع ثلاث دوائر عظمى.

المضلعات الكروية

المضلع الكروي هو متعدد الجوانب يقع على سطح الكرة يحدده عدد من أقواس الدوائر العظمى، والتي هي تقاطع السطح مع مستويات مارة بمركز الكرة. قد يكون لهذه متعددات الجوانب (أو الأقواس) أي عدد من الجوانب. مستويان يحددان هلالًا، يُطلق عليه أيضًا اسم "مضلع ثنائي" أو ثنائي الزوايا. النظير ثنائي الأضلاع للمثلث: مثال شائع هو السطح المنحني لقطعة كروية لبرتقالة. تحدد ثلاث مستويات مثلثا كرويا، الموضوع الرئيسي لهذه المقالة. تحدد أربع مستويات رباعيا كرويا: مثل هذا الشكل، والمضلعات ذات عدة أضلاع، يمكن دائمًا اعتبارها على أنها عدد من المثلثات الكروية.

من هذه النقطة سيقتصر المقال على مثلثات كروية، يشار إليها ببساطة على أنها "مثلثات".

الترميز

  • يُشار إلى كل من الرؤوس والزوايا في الرؤوس بالحروف الكبيرة نفسها A و B و C.
  • الزوايا A، وB وC للمثلث متساوية مع الزوايا بين المستويات التي تتقاطع مع سطح الكرة. تقاس الزوايا بالراديان. تكون زوايا المثلثات الكروية "العادية" (بالاتفاقية) أقل من π بحيث تكون π < A + B + C < 3π.[1]
  • يُشار إلى الأضلاع (الأقواس أو جوانب المثلث) بأحرف صغيرة a، وb و c. على كرة الوحدة (كرة نصف قطرها يساوي 1)، أطوالها تساوي عدديًا قياس الزوايا التي تقابل أقواس الدائرة العظمى في المركز بالراديان. أضلاع المثلثات الكروية "العادية" تكون (بالاتفاقية) أقل من π بحيث يكون 0 < a + b + c < 2π.[1]
  • نصف قطر الكرة يؤخذ كوحدة (يساوي 1). بالنسبة للمعضلات العملية المحددة في نصف قطر الكرة R، يجب قسمة الأطوال المقاسة للأضلاع على R قبل استخدام المتطابقات الواردة أدناه. بطريقة مماثلة، بعد حساب في كرة الوحدة، يجب ضرب الأضلاع a، وb وc في R.

المثلثات القطبية

المثلث القطبي A'B'C'

على الكرة التي مركزها O، نعتبر نقطتين A و B متمايزتين وليست متعاكستين قطريا. المستقيم الذي يشمل O ويعامد المستوي OAB ويقطع الكرة في نقطتين تسمى أقطاب المستوي (OAB).

بالنسبة للمثلث "العادي" ABC المرسوم على كرة، نسمي C' قطب المستوي (OAB) الواقع على نفس نصف الكرة التي تقع فيه C. نقوم بانشاء النقطتين A' وB' بنفس الطريقة. يسمى المثلث (A'B'C) بالمثلث القطبي للمثلث ABC.

تثبت مبرهنة مهمة جدًا[1] أن زوايا وأضلاع المثلث القطبي تُعطى بواسطة:

لذلك، إذا تم إثبات أي متطابقة للمثلث ABC، فيمكننا على الفور اشتقاق متطابقة ثانية بتطبيق المتطابقة الأولى على المثلث القطبي عن طريق إجراء التعويضات المذكورة أعلاه. هذه هي الطريقة التي يتم اشتقاق معادلات جيب التمام التكميلية من معادلات جيب التمام. المثلث القطبي للمثلث القطبي هو المثلث الأصلي.

مجموع زوايا المثلثات

قد يصل مجموع زوايا المثلثات الكروية إلى أي 900°، وقد يصل مجموع زوايا المثلثات الكروية "العادية" إلى أي 540°.

قوانين الجيب وجيب التمام

قانون جيب التمام

قانون جيب التمام هي المتطابقة الأساسية لحساب المثلثات الكروية: جميع المتطابقات الأخرى، بما في ذلك قانون الجيب، قد تكون مشتقة من قاعدة جيب التمام.

تقارب هذه المتطابقات قاعدة جيب التمام للمثلثات المسطحة إذا كانت الأضلاع أصغر بكثير من نصف قطر الكرة. (في كرة الوحدة، إذا كانت a, b, c << 1: نضع و وهكذا.)

في حال كانت أطوال الأقواس الثلاثة بالمثلث الكروي معلومة فيمكن استنتاج قيمة الزاوية المقابلة لكل قوس هكذا :

قانون الجيب

تعطى قانون الجيب للمثلثات الكروية بواسطة الصيغة التالية:

تقارب هذه المتطابقات قانون الجيب للمثلثات المسطحة عندما تكون الأضلاع أصغر بكثير من نصف قطر الكرة.

المتطابقات

قواعد جيب التمام التكميلية

تطبيق قواعد جيب التمام على المثلث القطبي يعطي، أي تعويض A بـ π-a، وa ب π-A ...، إلخ.

صيغ ظل التمام للأجزاء الأربعة للمثلث

يمكن كتابة الأجزاء الستة للمثلث بترتيب دائري كـ (aCbAcB). تربط "صيغ ظل التمام"، أو "صيغ الأجزاء الأربعة"، قوسين وزاويتين مشكلة أربعة أجزاء متتالية حول المثلث، على سبيل المثال (aCbA) أو (BaCb). في مثل هذه المجموعة توجد أجزاء داخلية وخارجية: على سبيل المثال في المجموعة (BaCb) تكون الزاوية الداخلية C، والقوس الداخلي هو a، والزاوية الخارجية B، والقوس الخارجي هو b. يمكن كتابة قاعدة ظل التمام على النحو التالي: [1]

cos (القوس الداخلي) cos(الزاوية الداخلية) = cot(القوس الخارجي) sin(القوس الداخلي) - cot(الزاوية الخارجية) sin(الزاوية الداخلية)

والمعادلات الستة الممكنة هي (مع المجموعة ذات الصلة الموضحة على اليمين):

متطابقات نصف الزاوية ونصف الضلع

مع و:

يبدأ إثبات [1] الصيغة الأولى من المتطابقة ، باستخدام قانون جيب التمام للتعبير عن A بدلالة القوسين وتعويض مجموع جيب التمام بجداء (طالع متطابقات التحويل من المجموع إلى الجداء). تبدأ الصيغة الثانية من المتطابقة ، والصيغة الثالثة هي حاصل القسمة ويتبع الباقي بتطبيق النتائج على المثلث القطبي.

صيغ ديلامبر (أو غاوس)

صيغ نابير

مراجع

  1. ^ ا ب ج د ه و Isaac Todhunter (1886). Spherical Trigonometry (بالإنجليزية) (5 ed.). MacMillan. Archived from the original on 2020-04-14.

انظر أيضا

وصلات خارجية