一般解: ax+by=cax + by = cax+by=c の整数解は、 x=x0+bgcd(a,b)t,y=y0−agcd(a,b)tx = x_0 + \frac{b}{\gcd(a, b)} t, \quad y = y_0 - \frac{a}{\gcd(a, b)} tx=x0+gcd(a,b)bt,y=y0−gcd(a,b)at ここで、gcd(a,b)\gcd(a, b)gcd(a,b) は aaa と bbb の最大公約数であり、x0,y0x_0, y_0x0,y0 は特殊解です。
ax2+bxy+cy2+dx+ey+f=0ax^2 + bxy + cy^2 + dx + ey + f = 0ax2+bxy+cy2+dx+ey+f=0 の整数解が存在する条件や特殊解の求め方には様々な手法がありますが、一般的に公式化された解法は存在しません。問題に応じて場合分けや代数的手法で解を求めることが一般的です。
ペルの方程式: x2−Dy2=1x^2 - Dy^2 = 1x2−Dy2=1 の整数解 (x,y)(x, y)(x,y) を求める方法が知られています。特に DDD が平方数でない場合、無限個の整数解が存在します。
二次式の因数分解: ax2+bx+c=0ax^2 + bx + c = 0ax2+bx+c=0 の整数解 xxx を求めるために、因数分解を用いる方法があります。