1.
|
Analysis of the Leakage Events in the Thermal Shield Cooling Pipes of the ITER Magnet System
/ Sgobba, Stefano (CERN) ; Santillana, Ignacio Aviles (CERN) ; Celuch, Michal (CERN) ; Crouvizier, Mickaël (CERN) ; Perez Fontenla, Ana Teresa (CERN) ; Castro, Enrique Rodriguez (CERN) ; Mitchell, Neil (Euratom, St. Paul Lez Durance) ; Koizumi, Norikiyo (Euratom, St. Paul Lez Durance) ; Pearce, Robert (Euratom, St. Paul Lez Durance) ; Worth, Liam (Euratom, St. Paul Lez Durance) et al.
The ITER Thermal Shields (TS) consist of actively cooled stainless steel panels. Their role is to minimise the radiation heat load from warm components, such as the Vacuum Vessel (VV) and the cryostat, hence contributing to insulating the magnet system operating at 4.5 K. [...]
2024 - 5 p.
- Published in : IEEE Trans. Appl. Supercond. 34 (2024) 4203405
|
|
2.
|
Microstructure and Mechanical Properties of the Enclosure Welding Joint for ITER Correction Coils Cases
/ Xin, Jijun (Hefei, Inst. Plasma Phys.) ; Fang, Chao (Hefei, Inst. Plasma Phys.) ; Yang, Wuxiong (Beijing U. of Tech.) ; Huang, Chuanjun (Beijing, Tech. Inst. Phys. Chem.) ; Dai, Wenhua (Hefei, Inst. Plasma Phys.) ; Wei, Jing (Hefei, Inst. Plasma Phys.) ; Song, Yuntao (Hefei, Inst. Plasma Phys.) ; Li, Laifeng (Beijing, Tech. Inst. Phys. Chem.) ; Fabrice, Simon (Euratom, St. Paul Lez Durance) ; Paul, Libeyre (Euratom, St. Paul Lez Durance) et al.
To resist the alternating electromagnetic loads, the International Thermonuclear Experimental Reactor (ITER) correction coils are protected by a 20-mm-thick 316LN austenitic stainless steel case. According to the strict tolerance requirement of the case manufacture, laser welding was applied to enclosure welding of the cases with a 20-kW high-power laser for root pass and Tungsten Inert Gas welding was applied for filler and cover passes. [...]
2020 - 8 p.
- Published in : IEEE Trans. Appl. Supercond. 30 (2020) 8401208
|
|
3.
|
Microstructure and Mechanical Properties of ITER Correction Coil Case Material
/ Xin, Jijun (Hefei, Inst. Plasma Phys.) ; Fang, Chao (Hefei, Inst. Plasma Phys.) ; Song, Yuntao (Hefei, Inst. Plasma Phys.) ; Wei, Jing (Hefei, Inst. Plasma Phys.) ; Huang, Chuanjun (Beijing, Tech. Inst. Phys. Chem.) ; Libeyre, Paul (Euratom, St. Paul Lez Durance) ; Simon, Fabrice (Euratom, St. Paul Lez Durance) ; Sgobba, Stefano (CERN)
The modified 316LN austenitic stainless steel was selected as ITER correction coils case material to provide structural reinforcement to the winding pack. Considering the case structure, high-assembling accuracy and other strict requirements, 316LN in special extruded form has been developed. [...]
2017 - 7 p.
- Published in : IEEE Trans. Appl. Supercond. 27 (2017) 4201707 - Published in : IEEE Trans. Appl. Supercond. 30 (2019) 9700101
|
|
4.
|
The ITER In-Vessel Coils – design finalization and challenges
/ Vostner, Alexander (Euratom, St. Paul Lez Durance) ; Bontemps, Vincent (Euratom, St. Paul Lez Durance) ; Encheva, Anna (Euratom, St. Paul Lez Durance) ; Jin, Huan (Hefei, Inst. Plasma Phys.) ; Laquiere, Julien (Euratom, St. Paul Lez Durance) ; Macioce, Davide (Euratom, St. Paul Lez Durance) ; Mariani, Nicola (Euratom, St. Paul Lez Durance) ; Mcintosh, Simon (Euratom, St. Paul Lez Durance) ; Peng, Xuebing (Euratom, St. Paul Lez Durance) ; Singh, Shuvay (CERN) et al.
ITER In-Vessel Coils (IVCs), resistive magnets to be installed in close proximity to ITER plasma to compensate fast perturbations of the plasma itself, have undergone a comprehensive revision of their requirements and operational loads, leading to design modifications and R&D; activities. An update of the plasma operating scenarios has been done and the maximum currents during transient plasma events have been assessed considering actual operating currents and the surrounding vacuum vessel support structure leading to more representative load cases. [...]
2019 - 6 p.
- Published in : Fusion Eng. Des. 146 (2019) 1490-1495
|
|
5.
|
Application of High Voltage Insulation on the Magnet Feeder Superconducting Joints During ITER Machine Assembly
/ Clayton, Nicholas (Euratom, St. Paul Lez Durance) ; Marushin, Egor (Euratom, St. Paul Lez Durance) ; Pasdeloup, Florian (Euratom, St. Paul Lez Durance ; CERN) ; Kim, Hyungjun (Euratom, St. Paul Lez Durance) ; Gung, Chen-yu (Euratom, St. Paul Lez Durance)
The ITER Magnet Feeders are composed of three main sections which are connected together on the ITER site. During this process, the superconducting busbars which carry the electrical current to the ITER magnets are connected together via superconducting joints. [...]
2024 - 4 p.
- Published in : IEEE Trans. Appl. Supercond. 34 (2024) 4204304
|
|
6.
|
Superconductors for fusion: a roadmap
/ Mitchell, Neil (Euratom, St. Paul Lez Durance) ; Zheng, Jinxing (Hefei, Inst. Plasma Phys.) ; Vorpahl, Christian (EFDA-CSU, Garching) ; Corato, Valentina (ENEA, Frascati) ; Sanabria, Charlie (Unlisted, US) ; Segal, Michael (Unlisted, US) ; Sorbom, Brandon (Unlisted, US) ; Slade, Robert (Unlisted, GB) ; Brittles, Greg (Unlisted, GB) ; Bateman, Rod (Unlisted, GB) et al.
With the first tokamak designed for full nuclear operation now well into final assembly (ITER), and a major new research tokamak starting commissioning (JT60SA), nuclear fusion is becoming a mainstream potential energy source for the future. A critical part of the viability of magnetic confinement for fusion is superconductor technology. [...]
2021 - 57 p.
- Published in : Supercond. Sci. Technol. 34 (2021) 103001
|
|
7.
|
|
8.
|
Characterization of low temperature high voltage axial insulator breaks for the ITER cryogenic supply line
/ Fernandez Pison, P (CERN ; Carlos III U., Madrid) ; Sgobba, S (CERN) ; Santillana, I Aviles (CERN ; Carlos III U., Madrid) ; Langeslag, S A E (CERN) ; Su, M (Euratom, St. Paul Lez Durance) ; Piccin, R (Euratom, St. Paul Lez Durance) ; Journeaux, J Y (Euratom, St. Paul Lez Durance) ; Laurenti, A (Euratom, St. Paul Lez Durance) ; Pan, W (Hefei, Inst. Plasma Phys.)
Cable-in-conduit conductors of the ITER magnet system are directly cooled by supercritical helium. Insulation breaks are required in the liquid helium feed pipes to isolate the high voltage system of the magnet windings from the electrically grounded helium coolant supply line. [...]
2017 - 8 p.
- Published in : IOP Conf. Ser. Mater. Sci. Eng. 279 (2017) 012007
Fulltext: PDF; External link: Fulltext
In : 2017 Cryogenic Engineering Conference and International Cryogenic Materials Conference, Madison, WI, USA, 9 - 13 Jul 2017, pp.012007
|
|
9.
|
Post-mortem analysis of ITER CS helium inlets fatigue tested at cryogenic temperature
/ Aviles Santillana, I (CERN) ; Sgobba, S (CERN) ; Castillo Rivero, S (CERN) ; Libeyre, P (BIAM, St Paul lez Durance) ; Jong, C (BIAM, St Paul lez Durance) ; Everitt, D (Oak Ridge, U.S. ITER)
In the ITER Magnet System, ten thousand tonnes of superconducting Cable In Conduit Conductor (CICC) arecooled down by a forcedflow of supercritical helium, which is supplied from helium inlets. For the ITER CentralSolenoid (CS), consisting of six independent pancake wound modules, the He inlets consist of three overlappingholes covered by an oblong shaped boss, welded to the CS jacket through full penetration, multi-pass TungstenInert Gas (TIG) welding [...]
2019 - 5 p.
- Published in : Fusion Eng. Des. 146 (2019) 642-646
|
|
10.
|
Manufacture of the ITER Central Solenoid Components
/ Libeyre, Paul (Euratom, St. Paul Lez Durance) ; Cormany, Carl (Euratom, St. Paul Lez Durance) ; Dolgetta, Nello (Euratom, St. Paul Lez Durance) ; Gaxiola, Enrique (Euratom, St. Paul Lez Durance) ; Jong, Cornelis (Euratom, St. Paul Lez Durance) ; Lyraud, Charles (Euratom, St. Paul Lez Durance) ; Mitchell, Neil (Euratom, St. Paul Lez Durance) ; Journeaux, Jean-Yves (Euratom, St. Paul Lez Durance) ; Pearce, Robert (Euratom, St. Paul Lez Durance) ; Evans, David (Euratom, St. Paul Lez Durance) et al.
The ITER central solenoid (CS) components are currently being manufactured. This Nb$_{3}$Sn superconducting magnet will provide the magnetic flux swing required to induce up to 15 MA as plasma current. [...]
2018
- Published in : IEEE Trans. Appl. Supercond. 28 (2018) 4200805
In : 25th International Conference on Magnet Technology, Amsterdam, The Netherlands, 27 Aug - 1 Sep 2017, pp.4200805
|
|