CERN Accelerating science

CERN Document Server Pronađeno je 541 zapisa  1 - 10slijedećikraj  idi na zapis: Pretraživanje je potrajalo 0.77 sekundi 
1.
The hypothetical track-length fitting algorithm for energy measurement in liquid argon TPCs / DUNE Collaboration
This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. [...]
arXiv:2409.18288; FERMILAB-PUB-24-0561-LBNF-PPD; CERN-EP-2024-256.- 2024-09-26 - 44 p. Fulltext: 2409.18288 - PDF; 5ebd9b53b0989890bee405d2a58efefa - PDF; External link: Fermilab Library Server
2.
Supernova Pointing Capabilities of DUNE / DUNE Collaboration
The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. [...]
arXiv:2407.10339 ; FERMILAB-PUB-24-0319-LBNF.
- 25.
Fermilab Library Server - Fulltext - Fulltext
3.
Accelerating Machine Learning Inference with GPUs in ProtoDUNE Data Processing / Cai, Tejin (York U., Canada) ; Herner, Kenneth (Fermilab) ; Yang, Tingjun (Fermilab) ; Wang, Michael (Fermilab) ; Flechas, Maria Acosta (Fermilab) ; Harris, Philip (MIT) ; Holzman, Burt (Fermilab) ; Pedro, Kevin (Fermilab) ; Tran, Nhan (Fermilab)
We study the performance of a cloud-based GPU-accelerated inference server to speed up event reconstruction in neutrino data batch jobs. Using detector data from the ProtoDUNE experiment and employing the standard DUNE grid job submission tools, we attempt to reprocess the data by running several thousand concurrent grid jobs, a rate we expect to be typical of current and future neutrino physics experiments. [...]
arXiv:2301.04633; FERMILAB-PUB-22-944-ND-PPD-SCD.- 2023 - 13 p. - Published in : Comput. Softw. Big Sci. 7 (2023) 11 Fulltext: 2301.04633 - PDF; Publication - PDF; FERMILAB-PUB-22-944-ND-PPD-SCD - PDF; External link: Fermilab Accepted Manuscript
4.
DUNE Offline Computing Conceptual Design Report / DUNE Collaboration
This document describes the conceptual design for the Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE). [...]
arXiv:2210.15665 ; FERMILAB-DESIGN-2022-01.
- 229.
Fermilab Library Server - Fulltext - Fulltext
5.
Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora / DUNE Collaboration
The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. [...]
arXiv:2206.14521; FERMILAB-PUB-22-488-AD-ESH-LBNF-ND-SCD; CERN-EP-DRAFT-MISC-2022-007.- 2023-07-14 - 39 p. - Published in : Eur. Phys. J. C 83 (2023) 618 Fulltext: jt - PDF; 2206.14521 - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
6.
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network / DUNE Collaboration
Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). [...]
arXiv:2203.17053; FERMILAB-PUB-22-240-AD-ESH-LBNF-ND-SCD; CERN-EP-2022-077.- Geneva : CERN, 2022-10-12 - 31 p. - Published in : Eur. Phys. J. C 82 (2022) 903 Fulltext: CERN-EP-DRAFT-MISC-2022-002 - PDF; 2203.17053 - PDF; jt - PDF; Fulltext from Publisher: PDF; Fulltext from publisher: PDF; External link: Fermilab Library Server
7.
Nuclear modification of $\Upsilon$ states in pPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV / CMS Collaboration
Production cross sections of $\Upsilon$(1S), $\Upsilon$(2S), and $\Upsilon$(3S) states decaying into ${\mu^{+}\mu^{-}}$ in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at ${\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. [...]
arXiv:2202.11807; CMS-HIN-18-005; CERN-EP-2020-181; CMS-HIN-18-005-004.- Geneva : CERN, 2022-08-28 - 40 p. - Published in : Phys. Lett. B 835 (2022) 137397 Fulltext: 2202.11807 - PDF; jt - PDF; Fulltext from Publisher: PDF; Fulltext from publisher: PDF; External link: Fermilab Library Server
8.
Extracting low energy signals from raw LArTPC waveforms using deep learning techniques — A proof of concept / Uboldi, Lorenzo (CERN) ; Ruth, David (Unlisted, US, IL) ; Andrews, Michael (Carnegie Mellon U.) ; Wang, Michael H.L.S. (Fermilab) ; Wenzel, Hans Joachim (Fermilab) ; Wu, Wanwei (Fermilab) ; Yang, Tingjun (Fermilab)
We investigate the feasibility of using deep learning techniques, in the form of a one-dimensional convolutional neural network (1D-CNN), for the extraction of signals from the raw waveforms produced by the individual channels of liquid argon time projection chamber (LArTPC) detectors. A minimal generic LArTPC detector model is developed to generate realistic noise and signal waveforms used to train and test the 1D-CNN, and evaluate its performance on low-level signals. [...]
arXiv:2106.09911; FERMILAB-PUB-21-030-ND-SCD.- 2022-04-01 - 9 p. - Published in : Nucl. Instrum. Methods Phys. Res., A 1028 (2022) 166371 Fulltext: fermilab-pub-21-030-nd-scd - PDF; 2106.09911 - PDF; External link: Fermilab Library Server
9.
First measurement of large area jet transverse momentum spectra in heavy-ion collisions / CMS Collaboration
Jet production in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV is studied with the CMS detector at the LHC, using PbPb and pp data samples corresponding to integrated luminosities of 404 $\mu$b$^{-1}$ and 27.4 pb$^{-1}$, respectively. Jets with different areas are reconstructed using the anti-$k_{\mathrm{T}}$ algorithm by varying the distance parameter $R$. [...]
arXiv:2102.13080; FERMILAB-PUB-21-160-CMS; CMS-HIN-18-014; CERN-EP-2020-226; CMS-HIN-18-014-004.- Geneva : CERN, 2021-05-31 - 48 p. - Published in : JHEP 2105 (2021) 284 Article from SCOAP3: PDF; Fulltext: PDF; External links: Additional information for the analysis; CMS AuthorList
10.
Evidence for X(3872) in Pb-Pb Collisions and Studies of its Prompt Production at $\sqrt {s_{NN}}$=5.02  TeV / CMS Collaboration
The first evidence for X(3872) production in relativistic heavy ion collisions is reported. The X(3872) production is studied in lead-lead (PpPb) collisions at a center-of-mass energy of ${\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 5.02 TeV per nucleon pair, using the decay chain ${\mathrm{X}(3872)} \to \mathrm{J}/\psi\,\pi^{+}\pi^{-}\to \mu^{+}\mu^{-}\pi^{+}\pi^{-}$. [...]
arXiv:2102.13048; CMS-HIN-19-005; CERN-EP-2021-023; CMS-HIN-19-005-003.- Geneva : CERN, 2022-01-19 - 18 p. - Published in : Phys. Rev. Lett. 128 (2022) 032001 Fulltext: PDF; Fulltext from Publisher: PDF; External links: Additional information for the analysis; CMS AuthorList

CERN Document Server : Pronađeno je 541 zapisa   1 - 10slijedećikraj  idi na zapis:
Također vidi: slična imena autora
432 WANG, Mengzhen
483 Wang, M
2 Wang, M -H
1 Wang, M -J
1 Wang, M -X
1 Wang, M -Y
108 Wang, M -Z
1 Wang, M C
1 Wang, M G
60 Wang, M H
27 Wang, M H L
39 Wang, M H L S
155 Wang, M J
2 Wang, M L
1 Wang, M M
1 Wang, M O
13 Wang, M Q
1 Wang, M R
5 Wang, M S
16 Wang, M T
15 Wang, M Y
219 Wang, M Z
1 Wang, M –Z
3 Wang, M-H
170 Wang, M.
4 Wang, M. -Z.
1 Wang, M.-H
1 Wang, M.-H.
8 Wang, M.-Z.
1 Wang, M.F.
3 Wang, M.H. L.S.
24 Wang, M.H.L.S.
1 Wang, M.W.
1 Wang, M.Y.
1 Wang, M.Z.
2 Wang, MH
1 Wang, Maggie Fen
2 Wang, Mao
1 Wang, Maogang
2 Wang, May D
3 Wang, McKenzie
4 Wang, McKenzie Y
3 Wang, Mckenzie
4 Wang, Mckenzie Y
2 Wang, Mei
1 Wang, Mei-Hui
4 Wang, Mei-Juan
1 Wang, Mei-Yan
9 Wang, Mei-Yu
3 Wang, Meifen
2 Wang, Meijuan
1 Wang, Meiqing
3 Wang, Meiyu
1 Wang, Meizhong
33 Wang, Meng
1 Wang, Meng-Xin
2 Wang, Menghan
1 Wang, Menghang
1 Wang, Menghao
10 Wang, Mengjie
227 Wang, Mengliang
7 Wang, Mengmeng
1 Wang, Mengqiu
3 Wang, Mengyao
1 Wang, Mengye
432 Wang, Mengzhen
1 Wang, Mi
1 Wang, Miao
2 Wang, Michael H L S
2 Wang, Michael H.L.S.
37 Wang, Michael HLS
1 Wang, Milly KeQi
16 Wang, Min
17 Wang, Min-Huey
6 Wang, Min-Zu
1 Wang, MinHuey
1 Wang, Ming L
1 Wang, Ming-Feng
2 Wang, Ming-Jer
1 Wang, Ming-Jye
1 Wang, Ming-Min
1 Wang, Ming-wei
2 Wang, Mingde
1 Wang, Mingjing
1 Wang, Mingqiang
1 Wang, Mingquan
1 Wang, Mingwen
2 Wang, Mingxi
1 Wang, Mingxing
24 Wang, Mingyi
1 Wang, Mingzheng
2 Wang, Mingzhi
1 Wang, Minhong
6 Wang, Minmin
323 Wang, Minzu
1 Wang, Moming
8 Wang, Mu
2 Wang, Mu-Hao
32 Wang, Mu-Tao
1 Wang, Mu-Yuan
483 wang, M
Interested in being notified about new results for this query?
Set up a personal email alert or subscribe to the RSS feed.
Niste pronašli ono što ste htjeli? Pokušajte pretražiti na ovim serverima:
Wang, Michael u Amazon
Wang, Michael u CERN EDMS
Wang, Michael u CERN Intranet
Wang, Michael u CiteSeer
Wang, Michael u Google Books
Wang, Michael u Google Scholar
Wang, Michael u Google Web
Wang, Michael u IEC
Wang, Michael u IHS
Wang, Michael u INSPIRE
Wang, Michael u ISO
Wang, Michael u KISS Books/Journals
Wang, Michael u KISS Preprints
Wang, Michael u NEBIS
Wang, Michael u SLAC Library Catalog
Wang, Michael u Scirus