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Abstract

We investigate the feasibility of using deep learning techniques, in the form of a one-dimensional convolutional neural
network (1D-CNN), for the extraction of signals from the raw waveforms produced by the individual channels of liquid
argon time projection chamber (LArTPC) detectors. A minimal generic LArTPC detector model is developed to generate
realistic noise and signal waveforms used to train and test the 1D-CNN, and evaluate its performance on low-level
signals. We demonstrate that our approach overcomes the inherent shortcomings of traditional cut-based methods by
extending sensitivity to signals with ADC values below their imposed thresholds. This approach exhibits great promise
in enhancing the capabilities of future generation neutrino experiments like DUNE to carry out their low-energy neutrino
physics programs.
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1. Introduction

The liquid argon time projection chamber (LArTPC)
has been successfully deployed in a number of recent and
currently running neutrino experiments and is the tech-
nology of choice for massive, next-generation neutrino ex-
periments like the Deep Underground Neutrino Experi-
ment (DUNE) [1]. Born out of combining the novel three-
dimensional imaging capabilities of the time projection
chamber (TPC) [2] with the unique properties of lique-
fied noble gases like liquid argon (LAr), it represents the
modern, electronic equivalent of the bubble chamber [3].

Unlike the latter, LArTPC detectors are “always-on”
devices, continuously detecting and acquiring signals in-
duced by ionization charges on wire planes at the end
of the drift path. Furthermore, the electronic readout of
these signals from multiple wire planes with different an-
gular orientations that provide 2 spatial coordinates, to-
gether with a third determined from drift times, enables
the automated reconstruction of detailed topologies, while
simultaneously performing calorimetry from the integrated
charge.

Alongside the unique benefits provided by the TPC
are the excellent characteristics of LAr which include high
ionization and scintillation yields. The ability to trans-
port electrons efficiently across long drift distances due to
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the vanishing electronegativity and low dispersion in LAr
permits the high spatial resolution possible with finely seg-
mented wire planes. This allows very large detectors like
the DUNE far detectors [1] to be built. Finally, the high
density of LAr makes it an ideal neutrino detector due to
the low neutrino-nucleon interaction cross sections.

The powerful capabilities of the LArTPC make it an
excellent choice for DUNE’s long baseline physics program
with goals that include determining the neutrino mass hi-
erarchy, observing CP violation in the lepton sector, and
making precise measurements of the oscillation parameters
using the wide-band beam from Fermilab [4, 5]. Perform-
ing these measurements with a LArTPC will not be too
challenging due to the relatively high incident neutrino en-
ergies, ranging from hundreds of MeVs to a few GeVs, and
the reduced background levels from cosmogenic and at-
mospheric sources made possible by the deep underground
location of the far detectors.

Beyond its long-baseline program, DUNE’s physics goals
also include the detection of neutrinos from core-collapse
supernovas, searches for nucleon decay, studies of solar
neutrinos, and atmospheric neutrino oscillation studies to
supplement the long-baseline measurements [6–8]. Of these,
the solar and core-collapse supernova neutrinos involve low
energy neutrinos in the 1 MeV (solar) to 10 MeV (super-
nova) range. Ionization from the products of their inter-
actions in the LAr can induce signals that are close to the
noise threshold, making them challenging to detect. This
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is further exacerbated by the conventional approach of ap-
plying minimum ADC threshold cuts to discriminate sig-
nal waveforms from noise which results in poor low-energy
efficiency.

In this paper, we take a deep learning (DL) approach
to address the drawbacks of conventional threshold-based
methods and to optimize the efficiency to low-energy neu-
trinos. We develop deep learning techniques and apply
them to the raw waveforms from individual LArTPC wires,
to detect the presence of a signal and narrow down its lo-
cation in the full waveform in terms of a region of interest
(ROI). While DL methods have been applied to LArTPC
data, they tend to be applied at later stages in offline
reconstruction and on 2D “images” based on wire plane
views. To our knowledge, this is the first attempt to ap-
ply such methods directly to the raw waveforms associ-
ated with single LArTPC wires. This implies potentially
promising applications of this method in low-level filtering
and triggering in online DAQ systems.

In the discussion that follows, we begin by describing a
minimalist but realistic toy LArTPC detector simulation
that we created and used to develop and test our deep
learning models. This is followed by a detailed description
of the neural network architecture. The model’s perfor-
mance on training and validation sets is presented. It is
then tested on an independent sample to determine various
performance metrics including the detection efficiency as
functions of energy deposited and ADC counts produced.
The main purpose of this paper is to demonstrate a proof-
of-principle for using deep learning networks in extracting
signals from raw LArTPC waveforms. After successfully
accomplishing this, we conclude by summarizing the re-
sults and discussing future work and application of the
method.

2. A minimal toy LArTPC detector

To test the idea of using DL-based methods for ex-
tracting signals from raw LArTPC waveforms, we first de-
veloped a software simulation of a minimal toy LArTPC
detector. It consists of a LAr volume defined by a rectan-
gular prism measuring 50 × 50 × 180 cm3, with the long
dimension oriented along the z axis and the two shorter
ones along the x and y axes, centered at (x, y) = (25, 0).
There are two instrumented anode wire planes lying in the
y−z plane consisting of an induction plane at x = 0.075 cm
and a collection plane at x = −0.075 cm. Both planes con-
sist of 280 equally spaced parallel wires with a pitch of 0.25
cm, and whose axes are oriented at +60◦and −60◦with re-
spect to the y axis for the induction and collection planes,
respectively. A uniform electric field is oriented along the
x axis with a field strength of 500 V/cm in the main drift
region.

The propagation of particles through the LAr volume
was simulated using the Geant4 simulation toolkit [9, 10]
with a step limit of 100 microns through the LArG4 pack-
age in the LArSoft framework [11]. If the particle’s in-

teraction with the medium in a given step led to energy
deposition, the amount of this energy and the position of
the interaction was recorded in a SimEnergyDeposit ob-
ject. This information from the Geant4 simulation was
passed on to the next stage which simulated the propaga-
tion of electrons to the readout planes and the response
of the detector that ultimately produced the digitized raw
wire waveforms from the LArTPC electronics.

The detector response was simulated by first calculat-
ing the initial number of ionization electrons resulting from
the energy deposition, based on the ionization work func-
tion in LAr (#electrons/GeV = 1/2.36×10−8GeV) [12]. Electron-
ion recombination effects were taken into account by mul-
tiplying this initial number by a factor determined from
the box model of recombination [13] modified to extend
into the low dE/dx region [14]. Diffusion effects were then
simulated by first splitting up the total number of electrons
after recombination into clusters of 600 electrons [15]. The
initial drift time for all clusters was calculated from the
drift velocity and the distance between the original en-
ergy deposition and the wire plane. Diffusion in the lon-
gitudinal direction was simulated by smearing this drift
time according to a Gaussian distribution for each clus-
ter. Diffusion in the transverse direction was simulated
by smearing the transverse positions of the original energy
deposition by a Gaussian distribution for each cluster, pro-
viding their spatial coordinates at the wire planes. These
smeared coordinates were used to determine the wire clos-
est to a cluster in a plane, on which an induced signal
would be simulated. The amount of energy and number
of electrons for that cluster were recorded in a SimChan-
nels object, and were identified by the channel number
corresponding to the wire. Only channels associated with
clusters were stored in the object, and the cluster infor-
mation was saved in the time bin (TDC) corresponding
to its drift time. The waveforms from all LArTPC wires
were assumed to be digitized at a rate of 5.05 MHz (198
ns/sample), starting from the instant energy was deposited
by the Geant4 simulated tracks (assumed to all occur si-
multaneously), and lasting for a duration corresponding to
2,048 samples.

To simulate the waveforms produced by the LArTPC
wires, we followed a procedure similar to that outlined in
References [16–18]. Each waveform is composed of a pure
signal waveform and noise waveform which are generated
separately and then added together. To generate a pure
signal waveform, we began with a parameterization of the
signal induced by a single electron on a wire, as a function
of the j’th TDC bin, in terms of a quadratic (∝ j2) for
the collection plane, and an asymmetric sinusoid, where
the amplitude of the negative-going half cycle was 10%
larger, for the induction plane. This induced signal was
then convoluted with the electronics response which was
modeled using the parameterization described in Refer-
ence [18], resulting in the single electron waveforms shown
in Figure 1. For each LArTPC wire, the total number
of ionization electrons stored in the SimChannels object
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Figure 1: Signal waveforms induced by a single electron on (a) induction and (b) collection plane wires convolved with the electronics response.

for each TDC bin, was convoluted with the single elec-
tron waveform for the appropriate wire plane in order to
produce the pure signal waveform.

The generation of noise waveforms began in the fre-
quency domain where the complex amplitudes of 1,025
(2,048/2+1) equally spaced noise frequencies from 0-2,525
KHz were generated [17]. The mean of the modulus r of
these complex amplitudes was parameterized according to:

r(fj) = |re−iϕ|

= p0 × e
− 1

2

(
fj−p1

p2

)2

× e
− 1

2

(
fj
p3

)p4

+ p5 + e−p6(fj−p7)

(1)

where fj represents the midpoint of the j’th frequency bin
in kHz and the parameters pk are given by p0 = 4450,
p1 = −530, p2 = 280, p3 = 110, p4 = −0.85, p5 = 18, p6 =
0.064, and p7 = 74. Figure 2 shows a plot r(fj). The mod-
ulus was fluctuated around this mean according to a modi-
fied Poisson distribution of the form P (x) = e−µµx/(x−1)!
with µ = 0.28, while the phase ϕ was generated uniformly
from 0 → 2π. The parameters used in this model were
chosen to generate noise very similar to that observed in
actual detectors like that described in Reference [19]. Once
the complex amplitudes at each frequency bin were gen-
erated, an inverse fast Fourier transform was performed
to produce a 2,048-bin time sequence representing a noise
waveform. These noise waveforms were generated uniquely
for each channel and for every event.

A pure signal waveform was added to a noise waveform
to produce the simulated LArTPC waveform for a wire if
it was associated with a SimChannels object; otherwise,
only the noise waveform was used. From here on, we will
refer to the simulated waveform formed from the sum of a
pure signal and a noise waveform simply as a signal wave-
form. Examples of these simulated waveforms are shown
in Figure 3 for the generated samples used in training and
testing the DL model described below, and in evaluating

its performance.
The toy detector simulation described above was not

meant to be the most detailed and realistic simulation of
a LArTPC detector. Some simplifications and approxima-
tions were made for the purpose of demonstrating a proof-
of-concept. One main approximation is the assignment of
a drifted cluster to the closest wire, simulating an induced
signal only on that wire, and ignoring the influence of clus-
ters assigned to neighboring wires. The dependence of the
induced signal on the distance of the wire from the cluster
that produced it was also not taken into account. These
simplifications will have an effect on the size and shape
of the simulated signals, but not in a fundamental way
that would mask the major features and capabilities of our
method, which we are trying to highlight, relative to those
of the traditional threshold-based approach. Our primary
purpose here is to introduce and provide a detailed descrip-
tion of the technique and demonstrate its effectiveness on
a simplified toy simulation. The validity of these assump-
tions are put to the test in a separate paper [19], where we
focus on the application of this technique to actual data
from the ArgoNeuT experiment.

3. Deep learning approach to LArTPC waveform
recognition

3.1. 1D-CNN model architecture
The architecture of the neural network we developed

for detecting signal waveforms in a LArTPC is the one-
dimensional convolutional neural network (1D-CNN) shown
in Figure 4. Starting on the left is the waveform presented
to the input of the network, which consists of three one-
dimensional convolutional layers (Conv1Ds), all of which
use rectified linear unit (ReLU) activation functions, de-
fined by f(x) = max(0, x). Each Conv1D is immediately
followed by a pooling layer that reduces the size of the
input feature map. The first two are maximum pooling
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Figure 2: The plot above shows the noise spectrum used to simulate noise waveforms. More precisely, it shows the mean value of the modulus
r of the complex amplitude of each noise frequency component given by Equation 1.

layers with pool sizes of 2, and the last is a global pool-
ing layer. There are 16, 32, and 64 filters or kernels in
the first, second, and third Conv1D layers, respectively.
The kernel sizes in this sequence of three layers are 3, 5,
and 9, respectively, with stride lengths of 2 for the first
two and 1 for the last. Two dropout layers are used, one
with a dropout fraction of 0.1 after the second maximum
pooling layer, and the other with a dropout fraction of
0.2 after the global pooling layer. By randomly ignoring
a fraction of their inputs, dropout layers help prevent the
formation of co-adaptations between layers, which do not
generalize well to unseen data and could therefore cause
overfitting [20]. The outputs of the global pooling layer
terminate into a dense layer with a single node that is acti-
vated by a sigmoid function, defined by f(x) = 1/(1+e−x).
This function yields an output bounded between 0 and 1,
which can be conveniently interpreted as the probability
that the waveform contains a signal or not. This network
has a total of 21,217 trainable parameters.

3.2. Training the model
To create the simulated sample of digitized LArTPC

waveforms used to train the model, radiological events
from the β decay of the Ar39 nuclide contaminating LAr
were first generated. The interactions of the particles pro-
duced in these events with the LAr volume were then sim-
ulated using the Geant4 toolkit, followed by the detector
response simulation, both of which are described in Sec-
tion 2. Next, all the particles in an event that deposited
energy in the LAr, leading to a detectable signal from at
least one wire, were then identified. This was ensured

by requiring the maximum ADC value of the pure signal
component of the digitized wire waveform to be > 3 ADC
counts. In addition, the minimum energy of the parent
ionizing particle was required to be ≥ 50 keV, and the
maximum number of ionization electrons associated with
the signal was required to be < 11, 000. For each par-
ticle identified above, we randomly selected a single wire
channel among all those with signals associated with this
particle, satisfying the requirements above. This was done
in order to minimize possible correlations between signals
from neighboring wires originating from the same particle,
which could impact the training process negatively. Since
there can be multiple signal contributions from different
particles in a given channel, only the largest contribution,
based on the energy deposited, was selected. A cutout
of the full waveform consisting of 200 time bins, with the
selected signal region randomly positioned within it, was
then created. The training set used in the procedure de-
scribed below consisted of such 200-tick waveforms.

The model was trained separately for the induction and
collection planes of the LArTPC described in Section 2.
The total number of samples used to train the model was
≈2.88 M (≈3.30 M) for the induction (collection) plane. A
separate validation sample of ≈721 K (≈824 K) in the in-
duction (collection) plane was not used to train the model
directly, but to monitor its performance in the course of
training. Both training and validation samples were split
roughly equally between signal waveforms and noise wave-
forms. Prior to feeding the waveforms to the model, the
mean x̄ and standard deviation σ of all ADC values over
all waveforms in the sample were first computed. Each
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Figure 3: Plots (a) and (b) show simulated wire waveforms for the Ar39 sample in the induction and collection planes, respectively. Plots (c)
and (d) show simulated wire waveforms for the isotropic electron sample in the induction and collection planes, respectively. The first row in
each plot shows the pure signal waveform, followed by the noise waveform in the second row, and the sum of these two components in the
third row. Details on the simulation of these waveforms is described in Section 2 of the text.
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Figure 4: Architecture of the one-dimensional convolutional neural network used to recognize signals in LArTPC waveforms.

waveform, identified by the index i, was then standardized
by scaling its ADC values xi by a factor si = (xi − x̄)/σ.
To fit for the optimal model weights in the training pro-
cess, we made use of the Adam (adaptive moment estima-
tion) optimization algorithm [21]. This is an extension
of the mini-batch stochastic gradient method that uses
per-parameter learning rates, whose values are adapted
based on how quickly the weights have been changing.
The weights were determined and updated iteratively us-
ing random batches of 2,048 waveforms (batch size), in
which a full pass over the entire sample was completed
in one epoch. A total of 8 (12) training epochs were per-
formed for the induction (collection) plane. We used the
binary cross-entropy loss function, calculated according to
L = − 1

N

∑N
i=1 yi · log(pi) + (1 − yi) · log(1 − pi), where

the index i runs over the number of observations N . pi
is the model output representing the predicted probability
for observation i to contain a signal, and yi is the correct
label for that observation (1 for signal and 0 otherwise).

The evolution of the accuracy and the loss as a func-
tion of training epoch is shown separately in Figure 5 for
the induction and collection planes. We define accuracy =

TP+TN
TP+FN+TN+FP , where TP, TN, FP, and FN are the num-
ber of true positives, true negatives, false positives, and
false negatives, respectively. Loss is as defined above. For
each plane, the accuracy and loss curves are shown for
both the training (solid) and validation (dashed) samples.
In all cases, the validation curves follow the general trend
of the training curves, reassuring us that overfitting is not
an issue. The values for TN, FP, FN, and TP (elements of
the 2× 2 confusion matrix) at the end of the final training
epoch are shown for the training and validation samples
in the first two rows of Table 1.

3.3. Verifying with independent test set
When the training and validation samples were cre-

ated, a separate and independent test sample of Ar39 wave-
forms was also generated. This served as an unbiased sam-
ple that was not used to train the sample and did not influ-
ence the hyperparameter choices for the model. The size
of this sample was ≈899 K (≈1.29 M) for the induction
(collection) plane, consisting of roughly equal portions of
signal and noise waveforms. We applied the fully trained
model described in Section 3.2 to the test sample after scal-
ing its ADC values with the same standardization param-
eters used for the training sample. The results, in terms of
the elements of the confusion matrix, are shown in the last
row of Table 1. From these numbers, we calculate precision
= p = TP

TP+FP , negative predictive value = npv = TN
TN+FN ,

recall = r = TP
TP+FN , specificity = s = TN

TN+FP , and accu-
racy as defined previously. The values for these metrics for
the test sample are shown in Table 2. In Figure 6, the true
positive rate is plotted against the false positive rate to
show the receiver operating characteristic curves (ROCs)
from applying the fully trained model on the test sample
for each plane. The diagonal dash-dotted line in each plot
represents the reference case when a model has absolutely
no ability to tell two classes apart, in which case the area
under the ROC curve (AUC) is 0.5. In comparison, our
model is able to achieve AUC=0.97 on the induction plane
and AUC=0.99 on the collection plane, indicating useful
discriminating power between signal and noise waveforms.

4. Region of interest finding and model performance

4.1. Extending the model to localize signals
The results presented in Section 3.3 demonstrate that

our 1D-CNN model can make useful predictions about
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Figure 5: Plots (a) and (b) show how accuracy and loss evolve as a function of training epoch for the induction plane. Plots (c) and (d) shows
the evolution of the same quantities as a function of training epoch for the collection plane.

Induction Plane Collection Plane
Sample TN FP FN TP TN FP FN TP
training 0.477 0.023 0.052 0.448 0.483 0.017 0.028 0.472

validation 0.476 0.024 0.052 0.448 0.482 0.017 0.028 0.473
testing 0.476 0.024 0.052 0.448 0.483 0.017 0.028 0.472

Table 1: The table above shows the elements of the confusion matrix when applying the fully trained 1D-CNN model on the training,
validation, and testing samples. Results are shown for both planes.
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Figure 6: Receiver operating characteristic curves (ROCs) and the associated areas under the ROC curves (AUCs) for the independent test set
are shown for the induction plane in (a) and the collection plane in (b). Shown for reference in each plot is the dash-dotted line representing
the case when there is absolutely no discriminating power.

whether 200-tick waveform snippets contain signals or not.
This section describes how we extended this capability
to the localization of signals within the full waveforms in
terms of ROIs. This was done in a straightforward manner
by simply scanning a window across the entire waveform
starting from the leftmost edge and shifting it repeatedly
to the right with some finite stride length until it reached
the rightmost edge. By performing an inference on the
portion of the waveform contained within the window at
each step, the signal region could effectively be localized.
In our implementation in this paper, the full 2,048-tick
simulated LArTPC waveform was subdivided into 14 over-
lapping 200-tick windows, beginning with the first, whose
left edge was aligned with the start of the waveform. Each
of the 12 subsequent windows after the first was offset from
the previous one by a stride length of 150 ticks, while the
last window (13th after the first) was offset from the pre-
ceding one by 48 ticks, so that its right edge aligned with
the last tick of the full waveform. An inference was then
performed on each of these 14 windows to identify the

ROI/s within the full waveform. Examples of such ROIs
are shown in Figure 7.

4.2. Evaluating efficiency with single electrons
To further quantify the performance and capabilities of

our 1D-CNN model, we generated a single electron sam-
ple with electron momenta ranging from 1 MeV to 1 GeV.
The initial position of each electron was generated uni-
formly within a rectangular prism that centered on the
LAr volume and which measures 30 × 30 × 90 cm3, with
the long dimension oriented along the z axis and the two
shorter ones along the x and y axes. The initial direction of
each electron was generated pseudo-isotropically with an-
gles θxz and φyz distributed uniformly within ±180◦ and
±90◦, respectively. After this, the electrons were propa-
gated through the detector using Geant4 and the detector
response simulated as described in Section 2, to produce
the raw LArTPC wire waveforms. The fully trained 1D-
CNN, described in Section 3.2, was then applied to each
waveform to find the signal ROI as detailed in Section 4.1.

Metric Induction Plane Collection Plane
precision 0.950 0.965

negative predictive value 0.901 0.946
recall 0.896 0.944

specificity 0.953 0.966
accuracy 0.924 0.955

Table 2: The table above summarizes the performance of the fully trained 1D-CNN model on the test sample.
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The signal detection efficiency for the isotropic elec-
tron sample is presented here as a function of the peak
ADC value associated with the pure signal component of
a digitized waveform, which shall be referred to hereon
as ADCpk. We choose to work with ADC values because
they are ultimately what the 1D-CNN directly “sees”. This
avoids the need to convert from some other quantity like
energy to ADC values, which would be experiment specific.

To calculate efficiency, two histograms are created to
represent the numerator (HN) and denominator (HD) of
the ratio. Each histogram has 12 bins representing ADCpk

ranging from 1 to 12. If a signal is present within the full
2,048-tick waveform, an entry is made in the HD bin cor-
responding to the ADCpk associated with the signal. In
case multiple signals are present within the full waveform,
only the one with the largest ADCpk is selected for cal-
culating efficiency. Following the procedure described in
Section 4.1, the 1D-CNN is used to scan the entire wave-
form for ROIs. If the signal lies within an ROI identified
by the 1D-CNN, an entry is also made in the same bin
of HN. Once the two histograms are filled, their ratio is
taken to yield the efficiency as a function of ADCpk. This
is done separately for the induction and collection planes,
and the results are represented in Figure 8 by the trian-
gular markers. The average energy deposited and average
number of ionization electrons associated with the signal,
for each bin of ADCpk, are also shown below each plot.
The CNN output is required to be > 0.91 (> 0.95) in
order to classify a waveform as a signal in the induction
(collection) plane.

Also shown for comparison in each plot are the effi-
ciencies for the traditional over-ADC-threshold approach,
represented by the circular markers. In this case, signal
waveforms are discriminated from noise by requiring the
measured ADC values in a region containing the signal to
be above noise threshold. The mean ADC value of the
pure noise waveforms generated as described in Section 2
is 1.77, with a standard deviation of 1.05. In these plots,
we require |ADC| > 6 counts for the induction plane and
ADC > 6 counts for the collection plane. These corre-
spond to ≈ 4 standard deviations above the noise average.
Such a requirement achieves a background rejection rate
of 0.926 (0.962) on the induction (collection) plane, which
closely matches the rate of 0.931 (0.966) from the CNN-
based method when requiring the output to be > 0.91
(> 0.95).

The fact that the efficiency plots for the over-ADC-
threshold method do not exhibit a sharp cutoff at ADCpk =
6 might seem counter-intuitive at first. However, this is
to be expected because ADCpk represents the ADC value
associated with the pure signal prior to any noise fluctua-
tions. A signal with ADCpk ≤ 6 could satisfy the require-
ment of ADC > 6 if it fluctuates above this threshold after
the addition of noise. To demonstrate more clearly how
the 1D-CNN is able to detect signals in regions inacces-
sible to the traditional approach, the 1D-CNN efficiencies
are shown as a function of the actual ADC value produced

by the detector (ADCpk+noise) in Figure 9. The hatched
region represents the region above the ADC cut that is
accessible to the over-ADC-threshold method.

It is not difficult to see from Figure 8 that the CNN-
based method outperforms the traditional approach through-
out the range from ADCpk = 2 to 8, after which both
achieve essentially 100% efficiency. The former begins to
achieve better than 90% efficiency at ADCpk = 6, while
the latter only reaches this level at around ADCpk = 8.

5. Conclusion

In this work, we have successfully demonstrated that
deep learning methods can be applied directly to the raw
wire waveforms produced by the individual channels in a
LArTPC detector in order to discriminate signal wave-
forms from background. This was achieved using a 1D-
CNN which was implemented in a way that allowed the
ROI of the signal to be identified within the full waveform.
The discriminating power of CNNs derives from their abil-
ity to learn and detect subtle features that distinguish sig-
nal from background such as, but not limited to, shape
characteristics. Because of this, they are not constrained
by user defined cuts imposed in traditional threshold based
signal ROI finders and can maintain signal sensitivity in
energy regions inaccessible to such methods. The impli-
cations are significant for the rich low-energy physics pro-
gram of future neutrino experiments like DUNE.

A major advantage of our approach over other ML-
based ones, is its use of a simple neural network archi-
tecture consisting of a mere ≈20K trainable parameters
compared with the millions found on typical designs. To
get a rough idea of resource utilization and performance on
an FPGA, we did a quick test using hls4ml [22] without
investing effort in optmization, to translate our 1DCNN
model into a synthesized IP core. With 16 bit precision,
this quick and dirty implementation consumed less than
half of the resources on a mid-range FPGA (e.g. Xilinx
KU15P [23] used in the SmartSSD [24]) while achieving
maximum latencies of ≈20 µs per inference on a 200-tick
time window, which is half the time to read out the wave-
form in this window for our toy detector simulation. With
further optimizations, it would be worthwhile to investi-
gate the feasibility of implementing this in the online DAQ
systems of future LArTPC based experiments such as on
DUNE’s DAQ front-end computers (FECs) [25] to perform
filtering operations like zero suppression on raw wire data
from the detector. One idea is to realize an intermediate-
level trigger by implementing this on the FPGA of a com-
putational storage drive [24] installed on an FEC to pro-
cess buffered Supernova candidates awaiting transfer to
the surface and back to Fermilab. This approach can help
achieve optimal signal efficiency and background rejection
that can benefit and complement downstream selection al-
gorithms, including more complex ML-based ones. While
the feasibility of such applications is beyond the scope of
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Figure 8: Efficiencies of the 1D-CNN ROI finder as a function of ADCpk determined using the isotropic electron sample for the (a) induction
and (b) collection planes. Results are shown in each case for the traditional over-ADC-threshold and the 1D-CNN based approaches. The
average energy deposited in MeV and the average number of electrons associated with the signal, for each ADCpk bin, are shown below each
plot.
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Figure 9: Efficiencies of the 1D-CNN ROI finder for the (a) induction and (b) collection planes as a function of the actual ADC value produced
by the detector, which is the sum ADCpk + noise. The hatched region represents the efficiency of the over-ADC-threshold method.
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this paper, we are currently investigating them and hope
to report our findings in the future.

This paper set out to establish a proof-of-concept and
provide a detailed description of the methodology, and
it has succeeded in this task. In subsequent and related
papers, this method will be used in actual applications,
including those involving real experimental data [19].
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