CERN Accelerating science

Article
Report number arXiv:2405.11689
Title Investigation of suppression of Υ(nS) in relativistic heavy-ion collisions at sNN=200 GeV and 5.02 TeV
Related titleInvestigation of suppression of $\Upsilon(nS)$ in relativistic heavy-ion collisions at RHIC and LHC energies
Author(s) Kim, Junlee (CERN) ; Park, Jaebeom (Colorado U.) ; Hong, Byungsik (Korea U.) ; Hong, Juhee (IPAP, Seoul) ; Kim, Eun-Joo (Chonbuk Natl. U.) ; Kim, Yongsun (Sejong U.) ; Kweon, MinJung (Inha U.) ; Lee, Su Houng (IPAP, Seoul) ; Lim, Sanghoon (Pusan Natl. U.) ; Seo, Jinjoo (U. Heidelberg (main))
Publication 2025-01-06
Imprint 2024-05-19
Number of pages 8
In: Phys. Rev. C 111 (2025) 014902
DOI 10.1103/PhysRevC.111.014902 (publication)
Subject category nucl-ex ; Nuclear Physics - Experiment ; nucl-th ; Nuclear Physics - Theory
Abstract The primary purpose of studying quarkonium production in relativistic heavy-ion collisions is to understand the properties of the quark-gluon plasma. At various collision systems, measurements of quarkonium states of different binding energies, such as $\Upsilon(nS)$, can provide comprehensive information. A model study has been performed to investigate the modification of $\Upsilon(nS)$ production in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=$ 5.02 TeV and Au-Au collisions at $\sqrt{s_{\mathrm{NN}}}=$ 200 GeV. The Monte-Carlo simulation study is performed with a publicly available hydrodynamic simulation package for the quark-gluon plasma medium and a theoretical calculation of temperature-dependent thermal width of $\Upsilon(nS)$ considering the gluo-dissociation and inelastic parton scattering for dissociation inside the medium. In addition, we perform a systematic study with different descriptions of initial collision geometry and formation time of $\Upsilon(nS)$ to investigate their impacts on yield modification. The model calculation with a varied parameter set can describe the experimental data of $\Upsilon(nS)$ in Pb-Pb collisions at 5.02 TeV and $\Upsilon(2S)$ in Au-Au collisions at 200 GeV but underestimates the modification of $\Upsilon(1S)$ at the lower collision energy. The nuclear absorption mechanism is explored to understand the discrepancy between the data and simulation.
Copyright/License publication: © 2025 American Physical Society
preprint: (License: CC BY 4.0)



Corresponding record in: Inspire


 Záznam vytvorený 2024-06-07, zmenený 2025-01-23


Plný text:
Nahraj plný text
PDF