CERN Accelerating science

Article
Report number arXiv:2205.07690 ; FERMILAB-PUB-22-435-PPD
Title Real-time semantic segmentation on FPGAs for autonomous vehicles with hls4ml
Author(s) Ghielmetti, Nicolò (CERN ; Milan, Polytech.) ; Loncar, Vladimir (CERN ; Belgrade, Inst. Phys.) ; Pierini, Maurizio (CERN) ; Roed, Marcel (CERN ; Oxford U.) ; Summers, Sioni (CERN) ; Aarrestad, Thea (Zurich, ETH) ; Petersson, Christoffer (Zurich, ETH) ; Linander, Hampus (U. Gothenburg (main)) ; Ngadiuba, Jennifer (Fermilab) ; Lin, Kelvin (Washington U., Seattle) ; Harris, Philip (MIT)
Publication 2022-11-04
Imprint 2022-05-16
Number of pages 11
In: Mach. Learn. Sci. Tech. 3 (2022) 045011
DOI 10.1088/2632-2153/ac9cb5
Subject category Computing and Computers ; Detectors and Experimental Techniques
Abstract In this paper, we investigate how field programmable gate arrays can serve as hardware accelerators for real-time semantic segmentation tasks relevant for autonomous driving. Considering compressed versions of the ENet convolutional neural network architecture, we demonstrate a fully-on-chip deployment with a latency of 4.9 ms per image, using less than 30% of the available resources on a Xilinx ZCU102 evaluation board. The latency is reduced to 3 ms per image when increasing the batch size to ten, corresponding to the use case where the autonomous vehicle receives inputs from multiple cameras simultaneously. We show, through aggressive filter reduction and heterogeneous quantization-aware training, and an optimized implementation of convolutional layers, that the power consumption and resource utilization can be significantly reduced while maintaining accuracy on the Cityscapes dataset.
Copyright/License preprint: (License: arXiv nonexclusive-distrib 1.0)
publication: © 2022-2025 The Author(s) (License: CC-BY-4.0)



Corresponding record in: Inspire


 Registro creado el 2022-11-09, última modificación el 2023-03-31


Fulltext from Publisher:
Descargar el texto completoPDF
Texto completo:
2205.07690 - Descargar el texto completoPDF
Publication - Descargar el texto completoPDF
f2d50a583ff4bb97db9c9fa1e30b704c - Descargar el texto completoPDF
Enlace externo:
Descargar el texto completoFermilab Library Server