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ABSTRACT

In this paper, we investigate how field programmable gate arrays can serve as hardware accelerators
for real-time semantic segmentation tasks relevant for autonomous driving. Considering compressed
versions of the ENet convolutional neural network architecture, we demonstrate a fully-on-chip
deployment with a latency of 4.9 ms per image, using less than 30% of the available resources on
a Xilinx ZCU102 evaluation board. The latency is reduced to 3 ms per image when increasing the
batch size to ten, corresponding to the use case where the autonomous vehicle receives inputs from
multiple cameras simultaneously. We show, through aggressive filter reduction and heterogeneous
quantization-aware training, and an optimized implementation of convolutional layers, that the power
consumption and resource utilization can be significantly reduced while maintaining accuracy on the
Cityscapes dataset.

Keywords deep learning · FPGA · convolutional neural network

1 Introduction

Deep Learning has strongly reshaped computer vision in the last decade, bringing the accuracy of image recognition
applications to unprecedented levels. Improved pattern recognition capabilities have had a significant impact on the
advancement of research in science and technology. Many of the challenges faced by future scientific experiments,
such as the CERN High Luminosity LHC [1] or the Square Kilometer Array observatory [2], and technological
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challenges faced by, for example, the automotive industry, will require the capability of processing large amounts of
data in real-time, often through edge computing devices with strict latency and power-consumption constraints. This
requirement has generated interest in the development of energy-effective neural networks, resulting in efforts like
tinyML [3], which aims to reduce power consumption as much as possible without negatively affecting the model
accuracy.

Advances in Deep Learning for computer vision have had a crucial impact on the development of autonomous vehicles,
enabling the vehicles to perceive their environment at ever-increasing levels of accuracy and detail. Deep Neural
Networks are used for finding patterns and extracting relevant information from camera images, such as the precise
location of the surrounding vehicles and pedestrians. In order for an autonomous vehicle to drive safely and efficiently,
it must be able to react fast and make quick decisions. This imposes strict latency requirements on the neural networks
that are deployed to run inference on resource-limited embedded hardware in the vehicle.

In addition to algorithmic development, computer vision for autonomous vehicles has benefited from technological
advances in parallel computing architecture [4]. The possibility of performing network training and inference on
graphics processing units (GPUs) has made large and complex networks computationally affordable and testable on
real-life problems. Due to their high efficiency, GPUs have become a common hardware choice in the automotive
industry for on-vehicle Deep Learning inference.

In this paper, we investigate the possibility of exploiting field-programmable gate arrays (FPGAs) as a low-power,
inference-optimized, highly parallelisable alternative to GPUs. By applying aggressive filter-reduction and quantization
of the model bit precision at training time, and by introducing a highly optimized firmware implementation of
convolutional layers, we achieve the compression required to fit semantic segmentation models on FPGAs. We do so by
exploiting and improving the hls4ml library, which provides an automatic conversion of a given Deep Neural Network
into C++ code, which is given as input to a high level synthesis (HLS) library. The HLS library then translates this
into FPGA firmware, to be deployed on hardware. Originally developed for scientific applications in particle physics
that require sub-microsecond latency [5–11], hls4ml has been successfully applied outside the domain of scientific
research [12, 13], specifically in the context of tinyML applications [14].

Applying model compression at training time is crucial in order to minimize resource-consumption and maximize the
model accuracy. To do so, we rely on quantization-aware training through the QKeras [15] library, which has been
interfaced to hls4ml in order to guarantee an end-to-end optimal training-to-inference workflow [12].

As a baseline, we start from the ENet [16] architecture, designed specifically to perform pixel-wise semantic segmenta-
tion for tasks requiring low latency operations. We modify the architecture, removing resource-consuming asymmetric
convolutions, and dilated or strided convolutions. In addition, we apply filter ablation and quantization at training time.
Finally, we optimize the implementation of convolutional layers in hls4ml in order to significantly reduce the resource
consumption. With these steps, we obtain a good balance between resource utilization and accuracy, enabling us to
deploy the whole network on a Xilinx ZCU102 evaluation board [17].

This paper is organized as follows: The baseline dataset and model are described in sections 2 and 3, respectively. The
model compression and the specific optimization necessary to port the compressed model to the FPGA are described in
section 4 and 5. Conclusions are given in section 6.

2 Dataset

Our experiments are performed using the Cityscapes dataset [18], which involves 5,000 traffic scene images collected
in 50 different cities with varying road types and seasons. These images have fine-grained semantic segmentation
annotations with pixel-level classification labels. We have limited ourselves to the four semantic classes Road, Car,
Person and Background. According to the standard Cityscapes split, 2975 images are used for training, 500 for
validation and 1525 for testing. We crop and resize the original images to have an input resolution of 240×152 pixels.
As a pre-processing step, we normalize all pixel values (integer values in the range [0, 255]) to be in the [0, 1] range by
dividing each one by 256. In this way all inputs are smaller than one and can be represented by a fixed-point datatype
using only 8 bits (log2(256)) (see section 4). An example image from the dataset is shown in Fig. 1, together with a
visualization of its semantic segmentation mask.

For evaluation metrics we use two typical figures of merit for semantic segmentation:

• The model accuracy (Acc), defined as Acc = TP+TN
TP+TN+FP+FN , where TP , TN , FP , and FN are the

fraction of true positives, true negatives, false positives, and false negatives, respectively.
• The mean of the class-wise Intersection over Union (mIoU), i.e., the average across classes of the Intersection-

Over-Union (defined as IOU = TP
TP+FP+FN ).
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Figure 1: An downsampled image from the Cityscapes dataset (left) and the corresponding semantic segmentation target
(right), in which the pixels belong to one of the classes {background (blue), road (teal), car (yellow), person (red)}.

3 Baseline model

The architecture we use is inspired by a fully convolutional residual network called Efficient Neural Network (ENet) [16].
This network was designed for low latency and minimal resource usage. It is designed as a sequence of blocks,
summarized in Table 1. The initial block, shown in the left figure in Fig. 2, encodes the input into a 32×120×76 tensor,
which is then processed by a set of sequential blocks of bottlenecks. The first three blocks constitute the downsampling
encoder, where each block consists of a series of layers as summarized in the left diagram in Fig. 3. The final two
blocks provide an upsampling decoder, as illustrated in the right diagram in Fig. 3. The final block is shown in the right
diagram of Fig. 2.

Layer Type Output resolution
Initial downsample f0 × 120× 76

3× bottleneck 1 downsample f1 × 60× 38
3× bottleneck 2 downsample f2 × 30× 19
3× bottleneck 3 f3 × 30× 19
3× bottleneck 4 upsample f4 × 60× 38
3× bottleneck 5 upsample f5 × 120× 76

Final upsample 4× 240× 152
Table 1: Model architecture parametrized by the number of filters in the bottlenecks fi, with i = 1, ..., 5.

Some differences from the original architecture in [16] is that we do not use asymmetric, dilated, or strided convolutions.
To further reduce the resource usage, we use three bottlenecks per block instead of five, and we merge convolutional
layers with batch normalization layers by rescaling convolutional filter weights with batch normalization parameters
(implemented through a QConv2DBatchnorm layer [19]). When we use quantization-aware training, this allows us to
directly quantize the merged weights during the forward pass, rather than quantizing the batch normalization parameters
and the convolutional filters separately. This merging of layers saves resources on the FPGA, since only the merged
weights are used. Performing the merging already during training, ensures that the weights used during training and
during inference are quantized the same way. The baseline ENet model is obtained fixing the six f hyperparameters
of Table 1 to (32, 64, 64, 64, 128, 48). This choice results in an architecture with 1.1 · 106 parameters, yielding a
mIoU=63.2% and an accuracy of 91.5%.

4 Model compression

We consider two compression techniques for the model at hand: filter-wise homogeneous pruning, obtained by reducing
the number of filters on all the convolutional layers; and quantization, i.e., reducing the number of bits allocated for the
numerical representation of the network components and the output of each layer computation.

In addition, we use the AutoQKeras library [12], distributed with QKeras, to optimize the numerical representation of
each component at training time as a hyperparameter. This is done using a mathematical model of the inference power
consumption as a constraint in the loss function.
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Figure 2: Initial (left) and final (right) block architecture. In the two diagrams, conv(k, f ) represents a convolutional
layer with f k × k filters; maxpool(k) and upsample(k) represent a k × k max pooling or upsample layer, respectively;
and pad(p) represents padding by p pixels in the lower and right directions.

4.1 Filter multiplicity reduction

Model name fi f1 f2 f3 f4 f5 Parameters mIoU(%) Accuracy(%)
Enet 32 64 64 64 128 48 1.1 · 106 63.2 91.5

Enet16 32 16 16 16 16 16 5 · 104 54.3 87.9
Enet12 32 12 12 12 12 12 3 · 104 52.0 86.8
Enet8 32 8 8 8 8 8 1.4 · 104 49.4 85.6
Enet6 32 6 6 6 6 6 9 · 103 45.9 84.0
Enet4 32 4 4 4 4 4 5 · 103 36.6 81.5

Table 2: Architecture reduction through internal filter ablation and corresponding performance. As a reference, the
baseline architecture is reported on the first row. Highlighted in bold the three models considered further in this work.

Normally, network pruning consists of zeroing specific network parameters that have little impact on the model
performance. This could be done at training time or after training. In the case of convolutional layers, a generic
pruning of the filter kernels would result in sparse kernels. It would then be difficult to take advantage of pruning
during inference. To deal with this, filter ablation (i.e., the removal of an entire kernel) was introduced [20]. When
filter ablation is applied, one usually applies a restructuring algorithm (e.g., Keras Surgeon [21]) to rebuild the model
into the smaller-architecture model that one would use at inference. In this work, we take a simpler (and more drastic)
approach: we treat the number of filters in the convolutional layers as a single hyperparameter, fixed across the entire
network. We then reduce its value and repeat the training, looking for a good compromise between accuracy and
resource requirements.

We repeat the procedure with different target filter multiplicities. The result of this procedure is summarized in Table 2,
where different pruning configurations are compared to the baseline Enet model.

Out of these models, we select two configurations that would be affordable on the FPGA at hand: a four-filters (Enet4)
and an eight-filter (Enet8) configuration. As a reference for comparison, we also consider one version with 16 filters,
Enet16, despite it being too large to be deployed on the FPGA in question. We then proceed by quantizing these models
through quantization-aware training to further reduce the resource consumption.
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Figure 3: Downsample encoder (left) and upsample decoder (right) blocks. In the figures, Conv(k, f ) represents a
convolutional layer with f k × k filters, Maxpool(k) represents a k × k max pooling layer, Upsample(k) represents
a k × k upsampling layer, and Pad(p) represents padding by p pixels in the lower and right directions. Blue boxes
represent convolutional and batch normalization layers that in the model used are single merged layers.

4.2 Homogeneous quantization-aware training

Homogeneous quantization-aware training (QAT) consists of repeating the model training while forcing the numerical
representation of its weight and activation functions to a fixed 〈T, I〉 precision, where T is the total number of bits and
I is the number of integer bits. Doing so, the model training converges to a minimum that might not be the absolute
minimum of the full-precision training, but that would minimize the performance loss once quantization is applied.

In practice, we perform a homogeneous QAT replacing each layer of the model with its QKeras equivalent and exploiting
the existing QKeras-to-hls4ml interface for FPGA deployment.

We study the impact of QAT for T ∈ 2, 4, 8 with I = 0, on the pruned models desribed above (Enet4, Enet8, and
Enet16). The resulting performance is shown in Table 3, where we label the three quantization configurations as Q2,
Q4, and Q8, respectively.

The resulting resource utilization for Enet4 and Enet8 falls within the regime of algorithms that we could deploy on the
target FPGA. We observe similar drops in accuracy when going from full precision to Q8 and from Q4 to Q2, but little
differences between the Q4 and Q8 models. In this respect, Q4 would offer a better compromise between accuracy and
resources than Q8.

Out of these, the models with the highest accuracy and mIoU that would be feasible to fit on the FPGA, is the 8 filter
model quantized to 8 bits (Enet8Q8) and the 8 filter model quantized to 4 bits (Enet8Q4).
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Model name Quantization fi f1 f2 f3 f4 f5 mIoU (%) Accuracy (%)
Enet16 - 32 16 16 16 16 16 54.3 87.9
Enet8 - 32 8 8 8 8 8 49.4 85.6
Enet4 - 32 4 4 4 4 4 36.6 81.5

Enet16Q8 8 32 16 16 16 16 16 35.0 79.1
Enet8Q8 8 32 8 8 8 8 8 33.4 77.1
Enet4Q8 8 32 4 4 4 4 4 13.6 53.8

Enet16Q4 4 32 16 16 16 16 16 34.1 77.9
Enet8Q4 4 32 8 8 8 8 8 33.9 77.6
Enet4Q4 4 32 4 4 4 4 4 13.5 53.6

Enet16Q2 2 32 16 16 16 16 16 27.4 68.6
Enet8Q2 2 32 8 8 8 8 8 28.7 71.1
Enet4Q2 2 32 4 4 4 4 4 13.4 53.5
EnetHQ Heterogeneous 8 2 4 8 4 3 36.8 81.1

Table 3: Homogeneously and heterogeneously quantized models with indicated bitwidth and filter architecture together
with their validation mean IOU trained with quantization aware training using QKeras. The corresponding values before
quantization (from Table 2) are also reported in the three first rows.
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Figure 4: Validation accuracy versus number of bits for the models tested during heterogeneous QAT with AUTO-
QKERAS, for the six blocks in the network. The circle size represents the number of filters, while the color refers
to the median bits for the convolutions in the corresponding block. Details on the grid of options considered in the
optimization are given in the text.

The quantization of the model does not have to be homogeneous across layers. In fact, it has been demonstrated that a
heterogeneous quantization is the best way to maintain high accuracy at low resource-cost [22]. We therefore define
one final model with an optimized combination of quantizers.

4.3 Heterogeneous quantization aware training

Heterogeneous QAT consists in applying different quantization to different network components. For deep networks,
one typically deals with the large number of possible configurations by using an optimization library. In our case, we
use AUTOQKERAS [12]. In AUTOQKERAS, a hyperparameter search over individual layer quantization conditions
and filter counts is performed. Since the model contains skip connections, the scan over number of filters needs to be
handled with care. In particular, we use the block features of AUTOQKERAS to ensure that the filter count matches
throughout a bottleneck, so that the tensor addition of the skip connection will have valid dimensions.

The search for best hyperparameters, including the choice of indivdual quantizers for kernels and activations, is carried
out using a Bayesian strategy where the balance between accuracy and resource usage is controlled by targeting a metric
derived from them both[12]. In our search we permit e.g. a 4% decrease in accuracy if the resource usage also is halved
at the same time.
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Figure 5: Schematic representation of the new hls4ml implementation of Convolutional layers, as described in the text.

The hyperparameter scan is done sequentially over the blocks, i.e. the Bayesian search over quantization and filter count
of the initial layer is performed first and is then frozen for the hyperparameter scan of the first bottleneck and so on.
The rest of the model is kept in floating point until everything in the end is quantized.

Figure 4 shows the outcome of the heterogeneous QAT, in terms of validation accuracy and total number of bits for
the six blocks in the network. The optimal configuration search is performed taking as a baseline the Enet4 model,
scanning the kernel bits in {4, 8} and fixing the number of kernels to four times a by-layer multiplicative chosen in
{0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0}. The optimal configuration (EnetHQ) is obtained for fi = 8, f1 = 2, f2 = 4,
f3 = 8, f4 = 4, and f5 = 3, resulting in 4.7 · 103 parameters, a mIoU=36.8% and an accuracy of 81.1%. Out of all the
quantized models, both homogeneous and heterogeneous, this is the one which performs the best.

5 FPGA implementation, deployment and results

5.1 Resource-efficient convolution algorithm

The hls4ml library has an implementation of convolutional layers that is aimed at low-latency designs [13]. However,
this implementation comes at the expense of high resource utilization. This is due to the number of times pixels of the
input image are replicated to maintain the state of a sliding input window. For convolutional layers operating on wider
images, like in our case, this overhead can be prohibitively large. In order to reduce the resource consumption of the
convolutional layers of the model, we introduce a new algorithm that is more resource efficient.

The new implementation, dubbed "line buffer", uses shift registers to keep track of previously seen pixels. The primary
advantage of the line buffer implementation over the previous one is the reduction of the size of the buffer needed to
store the replicated pixels. For an image of size H×W , with a convolution kernel of size K×L, the line buffer allocates
K − 1 buffers (chain of shift registers) of depth W for the rows of the image, while the previous implementation
allocates K2 buffers of depth K × (W −K + 1) for the elements in the sliding input window.

The algorithm is illustrated on Fig. 5. Initially, each new pixel read from the input image stream is pushed into the
shift register chain. If the shift register is full, the first element will be popped and it will be pushed into the next shift
register in chain. The process is repeated for all K − 1 shift registers in the chain. The popped pixels are stacked with
the input pixel into a column vector and are pushed as the rightmost column of the input window. The pixels popped
from the leftmost column of the input window are not used further. In our implementation, the propagation of new
pixels through the shift register chain and the insertion into the sliding input window are completed in a single clock
cycle, making the implementation as efficient as the existing hls4ml implementation.

To compute the output from the populated sliding input window, we rely on the existing routines of hls4ml. We rely on
a set of counters to keep track of input window state to know when to produce an output. The algorithm for maintaining
the chain of shift registers and populating the sliding input window can be adapted for use in the pooling layers as well.
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To compare the two implementations, we consider the resource utilization of an ENet bottleneck block consisting of 8
filters, implemented using either method. The results are summarized in Table 4. We observe a substantial reduction in
BRAM usage, at the price of a small increase in LUT utilization.

Implementation BRAM DSP FF LUT
Encoded [13] 4,752 5,632 195,344 291,919
Line buffer 4,064 5,632 176,620 305,494

Improvement -15% 0% -1% +5%
Table 4: Comparison of previous and proposed hls4ml implementation of the convolutional layer, in terms of relative
reduction of resource utilization. The estimates are made targeting an xczu9eg-2ffvb1156 MPSoC device on a ZCU102
development kit.

5.2 FIFO depth optimization

With the dataflow compute architecture of hls4ml, layer compute units are connected with FIFOs, implemented as
memories in the FPGA. These FIFOs contribute to the overall resource utilisation of the design. The read and write
pattern of these FIFOs depends on the dataflow through the model, which is not predictable before the design has
been scheduled by the HLS compiler, and is generally complex. With previous hls4ml releases, these memories have
therefore been assigned a depth corresponding to the dimensions of the tensor in the model graph as a safety precaution.

To optimize this depth and thereby reduce resource consumption, we implemented an additional step in the compilation
of the model to hardware. By using the clock-cycle accurate RTL simulation of the scheduled design, we can monitor
the actual occupancy of each FIFO in the model when running the simulation over example images. This enables us to
extract and set the correct size of the FIFOs, reducing memory usage compared to the baseline.

By applying this procedure, we observe a memory efficiency
∑

l Ol∑
l Fl

= 19.5%, where the index l runs across the layers,

Ol is the observed occupancy for the l-th layer, and Fl is the corresponding FIFO depth. The corresponding mean

occupancy is found to be
∑

l

Ol

Fl
= 4.7%.

We then resize every FIFO to its observed maximum occupancy and rerun the C-Synthesis, thereby saving FPGA
resources and allowing larger models to fit on the FPGA. Table 5 shows the impact of such an optimization on the
FPGA resources for one example model, Enet8Q8, demonstrating a significant reduction of resources.

Optimisation BRAM LUT FF DSP Latency
No 7,270 676,760 230,913 228 3.577 ms
Yes 1,398 437,559 146,392 228 3.577 ms

Improvement -81% -35% -37% 0% 0%
Table 5: Effect of FIFO depth optimization on FPGA resource usage and model latency. The values in the table are
taken from Vivado HLS estimates of resource usage. A comparison using physical resource usage is unfeasible since the
model without optimization can not be synthesized. The estimates are made targeting an xczu9eg-2ffvb1156 MPSoC
device on a ZCU102 development kit.

5.3 Results

The hardware we target is a Zynq UltraScale+ MPSoC device (xczu9eg-2ffvb1156) on a ZCU102 development kit,
which targets automotive applications. After reducing the FPGA resource consumption through the methods described
above, the highest accuracy models highlighted in Table 3 are synthesized. These are the homogeneously quantized
Enet8Q8 and Enet8Q4 models, as well as the heterogeneously quantized EnetHQ model. To find the lowest latency
implementation, we run several attempts varying the reuse factor (RF) and the clock period. The RF indicates how
many times a multiplier can be reused (zero for a fully parallel implementation). Lower RF leads to lower latency,
but higher resource usage. We targeted reuse factors of 10, 20, 50, 100, and clock periods of 5, 7, 10 ns. For each
model, we then chose the configuration yielding the lowest latency. For Enet8Q8, this is a target clock period of 7 ns
and RF=10. For Enet8Q4 and EnetHQ we use a clock period of 7 ns and RF = 6.

Inference performance of this model was measured on the ZCU102 target device. The final latency and resource
utilization report is shown in Table 5.3.
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Table 6: Accuracy, mIoU, latency and resource utilization for the EnetHQ, Enet8Q4 and Enet8Q8 models. The latency
is quoted for a batch size b = 1 and b = 10. Resources are expressed as a percentage of those available on the
xczu9eg-2ffvb1156 MPSoC device on the ZCU102 development kit. The last row is a comparison to work presented in
Ref. [23].

Model Acc. mIoU Latency [ms] BRAM LUT FF DSP
b=1 b=10

EnetHQ 81.1% 36.8 % 4.9 30.6 224.5 (25%) 76,718 (30%) 87,059 (16%) 450 (18%)
Enet8Q4 77.6% 33.9 % 4.8 30.2 342.0 (37%) 166,741 (61%) 90,536 (16%) 0
Enet8Q8 77.1% 33.4 % 4.8 30.0 508.5 (56%) 126,458 (46%) 134,385 (25%) 1,502 (60%)
ENet [23] - 63.1% 30.38 (720)a - 257 62,599 192,212 689

a The former is without considering data transfer, pre- and post-processing. The number in parenthesis includes these additional
overheads, averaged over 58 images, and is more comparable to the numbers we present.

We measured the time taken by the accelerator to produce a prediction on batches of images, with batch sizes of b = 1
and b = 10. The same predictions have been executed 105 times, and the time average is taken as the latency. The
single image latency (batch size of 1) is 4.8-4.9 ms for all three models. Exploiting the data flow architecture, the
latency to process images in a batch size of 10 is less than 10 times the the latency observed for a batch size of 1. While
in a real-world deployment of this model the latency to return the predictions of a single image is the most important
metric, a system comprised of multiple cameras may be able to benefit from the speedup of batched processing by
batching over the images captured simultaneously from different cameras. The model with the highest accuracy and
lowest resource consumption is the heterogeneously quantized EnetHQ model. This model has an mIoU of 36.8% and
uses less than 30% of the total resources.

Similar work on performing semantic segmentation on FPGAs include Ref. [23] and a comparison is given in Table 5.3.
Here, the original ENet model [16] is trained and evaluated on the Cityscapes dataset, and then deployed on a Xilinx
Zynq 7035 FPGA using the Xilinx Vitis AI Deep Learning Processor Unit (DPU). There are some crucial differences
between the approach taken here and that of Ref. [23]. In order to achieve the lowest possible latency, we implement
a fully on-chip design with high layer parallelism. We optimize for latency, rather than frame rate, such that in a
real-life application the vehicle response time could be minimized. Keeping up with the camera frame rate is a minimal
requirement, but a latency lower than the frame interval can be utilized. In our approach, each layer is implemented as a
separate module and data is streamed through the architecture layer by layer. Dedicated per-layer buffers ensure that
just enough data is buffered in order to feed the next layer. This is highly efficient, but limits the number of layers that
can be implemented on the FPGA. Consequently, in order to fit onto the FPGA in question, our model is smaller and
achieves a lower mIoU. Ref. [23] does not quote a latency, but a frame rate. A best-case latency is then computed as the
inverse of this frame rate, which corresponds to 30.38 ms. However, this does not include any overhead latency like
data transfer, pre- and post-processing. Including these, the average time per image increases to 720 ms.

6 Conclusions

In this paper, we demonstrate that we can perform semantic segmentation on a single FPGA on a Zynq MPSoC device
using a compressed version of ENet. The network is compressed using automatic heterogeneous quantization at training
time and a filter ablation procedure, and is then evaluated on the Cityscapes dataset. Inference is executed on hardware
with a latency of 4.9 ms per image, utilizing 18% of the DSPs, 30% of the LUTs, 16% of the FFs and 25 % of the
BRAMs. Processing the images in batches of ten results in a latency of 30 ms per batch, which is significantly faster
than ten times the single-image batch inference latency. This is relevant when batching over images captured from
different cameras simultaneously. By introducing an improved implementation of convolutional layers in hls4ml, we
significantly reduce resource consumption, allowing for a fully-on-chip deployment of larger convolutional neural
networks. This avoids latency overhead caused by data transfers between off-chip memory and FPGA processing
elements, or between multiple devices. Also taking into account the favorable power-efficiency of FPGAs, we conclude
that FPGAs offer highly interesting, low-power alternatives to GPUs for on-vehicle deep learning inference and other
computer vision tasks requiring low-power and low-latency.
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