CERN Accelerating science

 
  • 1
  • 1
  • 1
  • 1
  • 1 Impact of Nucleation on Global CCN
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2 et al. Connections Between Atmospheric Sulphuric Acid and New Particle Formation During QUEST III-IV Campaigns in Heidelberg and Hyytiala
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3 III
  • 3
  • 3
  • 3 et al. The Role of Sulfuric Acid in Atmospheric Nucleation
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4 Formation and Growth Rates of Ultrafine Atmospheric Particles: A Review of Observations
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5 et al. Role of Sulphuric Acid, Ammonia and Galactic Cosmic Rays in Atmospheric Aerosol Nucleation
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6 Measured Atmospheric New Particle Formation Rates: Implications for Nucleation Mechanism1996
  • 7
  • 7
  • 7 Simulating the Size Distribution and Chemical Composition of Ultrafine Particles During Nucleation Events2006
  • 8
  • 8 Yu, J. H
  • 8
  • 8 Ternary Homogeneous Nucleation of H2SO4, NH3, and H2O Under Conditions Relevant to The Lower Troposphere
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9 et al. Acid- Base Chemical Reaction Model for Nucleation Rates in the Polluted Atmospheric Boundary Layer
  • 10
  • 10
  • 10
  • 10 Stable Ammonium Bisulfate Clusters in the Atmosphere
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11 Insights into the Chemistry of Nucleation Bursts and Particle Growth Events in Pittsburgh Based on Aerosol Mass Spectrometry
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12 et al. Molecular Understanding of Sulphuric Acid-Amine Particle Nucleation in the Atmosphere
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13 et al. Molecular Understanding of Atmospheric Particle Formation from Sulfuric Acid and Large Oxidized Organic Molecules
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14 et al. The Role of VOC Oxidation Products in Continental New Particle Formation
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15 Formation of Nanoparticles of Blue Haze Enhanced By Anthropogenic Pollution
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16
  • 16 How do Organic Vapors Contribute to NewParticle Formation?2013
  • 17
  • 17
  • 17
  • 17
  • 17
  • 17
  • 17
  • 17
  • 17
  • 17
  • 17 et al. Carbon Oxidation State as a Metric for Describing the Chemistry of Atmospheric Organic Aerosol2011
  • 18
  • 18
  • 18
  • 18
  • 18
  • 18
  • 18
  • 18
  • 18
  • 18
  • 18 et al. Direct Observations of Atmospheric Aerosol Nucleation
  • 19
  • 19 SIMPOL.1: A Simple Group Contribution Method for Predicting Vapor Pressures and Enthalpies of Vaporization of Multifunctional Organic Compounds
  • 20
  • 20
  • 20
  • 20 Two-Dimensional Volatility Basis Set: 1. Organic-Aerosol Mixing Thermodynamics
  • 21
  • 21
  • 21
  • 21 Two-Dimensional Volatility Basis Set - Part 2: Diagnostics of Organic-Aerosol Evolution
  • 22
  • 22
  • 22
  • 22
  • 22
  • 22
  • 22
  • 22 From Quantum Chemical Formation Free Energies to Evaporation Rates
  • 23 Density Functional Thermochemistry. III. The Role of Exact Exchange
  • 24
  • 24
  • 24
  • 24 Complete Basis Set Model Chemistry. VI. Use of Density Functional Geometries and Frequencies
  • 25
  • 25
  • 25
  • 25
  • 25
  • 25
  • 25
  • 25
  • 25
  • 25
  • 25 et al. Gaussian 09, Revision B01
  • 25 Gaussian, Inc.: Wallingford, CT
  • 26
  • 26 CC2 Excitation Energy Calculations on Large Molecules Using the Resolution of the Identity Approximation
  • 27 Jr
  • 27
  • 27 Gaussian Basis Sets for Use in Correlated Molecular Calculations. X The Atoms Aluminum Through Argon Revisited
  • 28
  • 28
  • 28
  • 28
  • 28 Kölmel Calculations on Workstation Computers: The Program System Turbomole
  • 29
  • 29
  • 29
  • 29
  • 29
  • 29 Electrical Charging Changes the Composition of Sulfuric Acid-Ammonia/Dimethylamine Clusters
  • 30
  • 30
  • 30
  • 30
  • 30 Energetics of Atmospherically Implicated Clusters Made of Sulfuric acid, Ammonia and Dimethylamine 3819-3825
  • 31
  • 31
  • 31
  • 31 Molecular Interaction of Pinic Acid with Sulfuric Acid: Exploring the Thermodynamic Landscape of Cluster Growth 7892-7900
  • 32
  • 32
  • 32
  • 32 Amine Substitution Into Sulfuric Acid-Ammonia Clusters
  • 33
  • 33
  • 33
  • 33
  • 33
  • 33
  • 33
  • 33
  • 33
  • 33
  • 33 et al. Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric
  • 34
  • 34
  • 34 Computational Study of the Hydration of Sulfuric Acid Dimers: Implications for Acid Dissociation and Aerosol Formation 9745-9758
  • 35
  • 35 Binary Nucleation of Water- Sulfuric Acid System: Comparison of Classical Theories with Different H2SO4 Saturation Vapor Pressures
  • 36
  • 36
  • 36 Gomes Molecular Thermodynamics of Fluid-Phase Equilibria
  • 36 Pearson Education: Upper Saddle River, NJ
  • 37
  • 37
  • 37
  • 37 Parametrization of Ternary Nucleation Rates for H2SO4-NH3-H2O Vapors
  • 38
  • 38
  • 38
  • 38
  • 38
  • 38
  • 38
  • 38
  • 38
  • 38
  • 38 et al. Determination of Isoprene and A-/B-Pinene Oxidation Products in Boreal Forest Aerosols from Hyytiala,̈ Finland: Diel Variations and Possible Link with Particle Formation Events
  • 39
  • 39
  • 39
  • 39
  • 39
  • 39
  • 39 M
  • 39
  • 39
  • 39 lee, B
  • 39 et al. A Large Source of Low-Volatility Secondary Organic Aerosol
  • 40
  • 40
  • 40
  • 40
  • 40
  • 40
  • 40
  • 40
  • 40
  • 40
  • 40 et al. The Formation of Highly Oxidized Multifunctional Products in the Ozonolysis of Cyclohexene
  • 41
  • 41
  • 41
  • 41
  • 41
  • 41
  • 41
  • 41
  • 41
  • 41
  • 41 et al. Rapid Autoxidation Forms Highly Oxidized RO2 Radicals in the Atmosphere
  • 42
  • 42
  • 42
  • 42
  • 42
  • 42
  • 42 holst, T
  • 42
  • 42
  • 42
  • 42 et al. Warming-Induced Increase in Aerosol Number Concentration Likely to Moderate Climate Change Nature Geo.,6,438-4422013