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Qingsong Zhu, Zhanpeng Zhang, Zhan Song, Member, IEEE, Yaoqin Xie, and Lei Wang, Member, IEEE

Abstract—Current image matting approaches are often imple-
mented based upon color samples under various local assumptions.
In this letter, a novel image matting algorithm is investigated by
treating the alpha matting as a regression problem. Specifically, we
learn spatially-varying relations between pixel features and alpha
values using support vector regression. Via the learning-based
approach, limitations caused by local image assumptions can be
greatly relieved. In addition, the computed confidence terms in
learning phase can be conveniently integrated with other matting
approaches for the matting accuracy improvement. Qualitative
and quantitative evaluations are implemented with a public mat-
ting benchmark. And the results are compared with some recent
matting algorithms to show its advantages in both efficiency and
accuracy.

Index Terms—Foreground extraction, imagematting, image seg-
mentation, support vector machine.

I. INTRODUCTION

I MAGE matting and compositing are essential operations in
a variety of multimedia editing systems [1]. It refers to the

problem of extracting foreground objects from still images or
video sequences. Mathematically, in image matting, the input
image can be modeled as a linear combination of the fore-
ground image and the background image

(1)

where is the opacity mask (alpha matte) of the foreground.
The opacity (alpha value) of every pixel ranges from 0 to 1.
Equation (1) is under constrained since and are all un-
known. A practical means is the trimap method which demands
for some user-input labels as shown in Fig. 1.
Generally, current image matting techniques can be classi-

fied as sampling-based or propagation-based approaches. Sam-
pling-based techniques select color samples from the labeled
regions to estimate the alpha values [2]–[4]. Propagation-based
techniques interpolate the alphamatte by propagating constrains
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Fig. 1. (a) Original image (b) Trimap (c) Unlabeled region segmentation (d)
Alpha matte produced by our approach (e) New composite.

from the labeled regions to the unlabeled regions with local as-
sumptions such as local smoothness etc. [5]. However, fore-
ground and background color samples are sometimes difficult
to determine or even not retreievable (e.g., for the translucent
objects). Meanwhile, some local assumptions may not always
hold, especially to the scenarios with thin structures or gaps.
And that degrades the performance of propagation-based mat-
ting methods. In [6], a learning-based approach is presented
based on the matting Laplacian matrix. But the errors occurred
in the learning processmay accumulate quickly. In [7], a support
vector machine (SVM) classifier is used for the image matting
so as to provide global discriminative information of foreground
and background.
In this letter, a learning-based image matting algorithm is in-

troduced for the estimation of alpha matte. Specifically, we treat
alpha matting as a nonlinear regression problem and learn spa-
tially-varying relations between pixel features (like raw intensi-
ties, derivative filter response) and alpha values (i.e., features-
models) using support vector regression (SVR) [8]. A training
samples selection algorithm is designed and the adaptive param-
eters are adopted in the SVR to improve its learning accuracy.
Compared with the SVM-based matting algorithm [7], the the
spatially-varying features- relations can be effective learned
via -SVR [9] method.

II. SVR MATTING

A. Overview

Our approach requires a trimap as the user input. Firstly, the
algorithm segments the unlabeled region into pieces and then
learns a features- model for each piece. To deal with the dis-
continuities which may appear in the alpha matte, the learning
results are smoothed by a matting Laplacian matrix [5] in the
post-processing phase. Algorithm 1 shows the flow chart of the
proposed approach.

B. Segmentation of Unlabeled Region

In an image, adjacent pixels are usually with similar charac-
teristics. These pixels can share a features- model to reduce
computation. The segmentation of unlabeled region aims to di-
vide the unlabeled region into small pieces and decide the order
of training models for them. Because our approach uses previ-
ously estimated pixels as training samples, accumulative errors
are unavoidable. An appropriate order should make good use
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of labeled pixels in the trimap. The accumulative errors can be
reduced by starting from the slim regions in the trimap. The seg-
mentation algorithm is as shown in Algorithm 2.
Segmentation results are circular or fan-shaped

pieces as illustrated by Fig. 1(c), where indicates the order
to train models for these pieces. At the beginning of this algo-
rithm, we find the largest connected component of and ignore
the rest. This is because in the trimap, users may add some small
scribbles besides the largest one, but the foreground samples in
these regions are usually not enough. Besides, is com-
puted for later use.

Algorithm 1 SVR Matting Algorithm

Input: Image & Trimap

Begin

1. Segmentation of Unlabeled Region;
2. For each segmented unlabeled piece:
3. step1: Training samples selection;
4. step2: Learning a features- model with SVR;
5. Result smoothing with a matting Laplacian matrix;

End

Algorithm 2 Segmentation of Unlabeled Region

Begin

1. Find the largest connected component of ;
2. For every pixel , compute

where denotes spatial distance;
3. Let . All pixels in are
sorted by in ascending
order;

4. Set for all and ;
5. for to
6. if ;
7. then , Find all pixels with
8. . Set

;
9. else ;
10. end if
11. end for

End

C. Model Training for an Unlabeled Piece

1) Support Vector Regression: SVR is an extension of SVM
for regression problems. Like SVM, SVR is also based on the
maximum margin separation and kernel method [9]. Given a
training set , where
denotes the space of the input patterns (e. g. ),

is the input vector and is the output scalar. According to the
principle of -SVR [10], it aims to find a function which
has -deviation at most from the actually obtained targets for
all the training data. -SVR can be formulated as the following
convex optimization problem:

Fig. 2. An illustration of candidate samples collection.

(2)

The regression function can be described as: ,
where , and denotes the inner product in . The
second term of the objective function in (2) represents the soft
margin with as the penalty parameter, and are the slack
variables. is the normal vector of the objective hyperplane
that maximize the margin between patterns, and is the largest
deviation without penalty.
2) Training Samples Selection: For an unlabeled piece, our

goal is to obtain training samples which are similar to the un-
labeled pixels and represent both local foreground and back-
ground characteristics. We first collect candidate samples from
the trimap and previously estimated pixels, and then select the
best candidate samples.
Candidate samples collection. Given the current unlabeled

piece , two empty sample sets and (i.e.,
), the collection method can be described as following steps
(also illustrated by Fig. 2):

Step 1: Define the smallest rectangle that can enclose
(like the small red rectangle in Fig. 2).

Step 2: For every labeled pixel newly enclosed by , if
and , then ; else if and
, then .

Step 3: If and , turn to step 4, else
increase the width and height of (by one pixel) and go back
to step 2.

Step 4: Shot rays from (like the blue pixel in Fig. 2)
with the length of . The rays are separated by the equal angle

. Add labeled pixels on the rays to if their alpha
values , to if their alpha values .
In the experiments, the parameters of are set to 1.3,

6, 300 respectively. An expanding rectangle is used to collect
nearby samples, so as to avoid the calculation of spatial dis-
tances between pixels. The samples on the rays are also col-
lected, because similar pixels may not fall into adjacent labeled
regions.
Samples selection. We define to measure the simi-

larity between an unlabeled pixel in and a candidate sample
:

(3)

where denotes the Euclidean distance between two vec-
tors, and are the feature vectors of the pixel and is a
weighting factor which is set to 0.8 in the experiments, and the
subscripts and denote horizontal and vertical coordinates re-
spectively. For every pixel in , we select most similar pixels
and most dissimilar pixels as the training samples. The value
of is usually small, and is set to 3 empirically in the experi-
ments. This is because we want to obtain samples similar to
while preserve the comprehensiveness. All the selected pixels
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for are treated as the training samples after removal of re-
dundant samples. In addition, a value is assigned to every
pixel in , which measures the confidence of alpha values es-
timated with these training samples. The confidence values are
computed for later use and can be formulated as:

(4)

where and are the pa-
rameters for normalization (e.g., ).

D. -SVR Training

The feature- model is trained via -SVRwith the radial basis
function (RBF) kernel as:

(5)

where is the kernel width, which affects the similarity mea-
surement between two feature vectors. According to optimiza-
tion condition (2), we can get the dual problem of SVR:

(6)

Therefore, we can obtain the regression estimation expression
of SVR as:

(7)

Inappropriate selection of parameter , and and in -SVR,
may cause underfitting or overfitting problems [11]. In the fol-
lowing, we will show how these parameters can be selected
adaptively.
Let the training sample set be , and is a set contains the

Euclidean distance between every two features vectors in ,
and the variance of is . According to [11], the penalty
parameter can be computed as:

(8)

where and are the mean and standard deviation of the alpha
values of . As the alpha values range from 0 to 1 and affects
the precision of the model, we set

(9)

which is a combination of the method in [11] and our specific
problem.With these calculated parameters, the feature- model
can be trained. After that, the alpha values for can be esti-
mated by the regression function (7).

E. Result Smoothing

Although nearby pixels share a feature- model, roughness
may still arise in smooth regions. This is partly because spa-
tial information is not involved in the training process. So after
learning the alpha values for all unlabeled pixels, a post-pro-
cessing method is implemented as did in [2]–[4]. By combining

the learning result with the matting Laplacian matrix [5]
that can be treated as a smoothness term, the final alpha matte
can be obtained by minimizing the following function:

(10)
where and are the parameters for weighting and normaliza-
tion. is relative large (e.g., 100) while is small (e.g., 0.1).
and are treated as vectors, where is the number

of unlabeled pixels in the trimap. and are diagonal
matrices. Diagonal elements in are one for labeled pixels in
the trimap and zero for the others. Diagonal elements in are
the confidence values for unlabeled pixels in the trimap
and zero for the others. Finally, with the estimated alpha matte,
we can further use a closed-form method in [5] to estimate the
foreground color.

III. EXPERIMENTS AND EVALUATIONS

A. Implementation

The proposed approach is implemented in Matlab with
LIBSVM (implemented in C++) [12] for -SVR. For the pixel
features, we use the gradient and raw intensity of every color
channel in the image. The algorithm runs on a 3.0 GHz CPU. It
takes 75 seconds for an image (with the resolution of 800 600
pixels) in [13] on average. The time spent in LIBSVM is about
5 seconds per image.

B. Quantitative Evaluation

We compare the alpha matte produced by the proposed ap-
proach with that of the state-of-the-art matting algorithms on the
matting benchmark provided by Rhemann et al. [13]. The on-
line benchmark has 8 natural test images and 3 different trimaps
for each test image. Results of many recent image matting algo-
rithms (including the proposed one) are available on website of
the benchmark (www.alphamatting.com).
For every approach, the benchmark uses ground truth alpha

mattes to evaluate the 24 results (8 test images and 3 trimaps or
each test image in the benchmark). Fig. 3 lists the average mean
squared errors (MSE) and sum of absolute differences (SAD)
of the 24 results by different approaches. Specifically, closed-
form matting uses pure propagation-based technique. Segmen-
tation-based [14] and shared matting [3] methods are combined
by the sampling-based and propagation-based techniques. The
average MSE by our approach is smaller than other approaches,
while the average SAD is just larger than that of share matting
method. However, share matting uses trimap expansion [3] as a
preprocessing to reduce the unknown pixels. So, we also inte-
grate the trimap expansion into our approach and the results are
indicated by ‘our*’ in Fig. 3. In comparison, our methods can
outperform in both metrics.
The benchmark can rank the approaches with respect to four

different error metrics: SAD, MSE, gradient and connectivity.
We list the overall ranks in Table I. The results show that our ap-
proach can outperform in three metrics. Generally, approaches
combining sampling and propagation-based techniques can
produce better results than the pure propagation-based [5],
[15] methods. However, pure propagation-based approaches
perform better on the fourth metric. This is mainly because
the Laplacian matrices of the propagation-based approaches
concentrate on the neighboring relations and thus can preserve
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Fig. 3. An illustration of candidate samples collection.

TABLE I
OVERALL RANKS OF THE TOP PERFORMING APPROACHES ON THE

BENCHMARK OF [13] WITH RESPECT TO FOUR METRICS

TABLE II
AVERAGE MSE AND SAD ERROR IN COMPARISON WITH THE METHOD IN [6]

the connectivity of the foreground objects. Table II shows the
comparison with another learning-based approach in [6]. From
the results, we can see that better matting accuracy can be
achieved by the proposed method.

C. Quantitative Evaluation

Fig. 4 shows some cropped images in the benchmark [13]
and alpha mattes produced by different approaches. In the first
image of Fig. 4(a), we can see that the closed-from and learning-
based matting methods fail in the gaps of the foreground be-
cause of the pure propagation-based style, while our approach
can preserve the details. For the second image in Fig. 4(a), the
foreground is a plastic bag. The closed-form matting fails due
to the rope (indicated by the red arrow in the image) violating
the color line model [5]. The learning-based and our matting
approach can reveal the transparency. For the two images in
Fig. 4(b), the background is complex and colors of the dolls hair
and leaves are close to that of the background. The color ambi-
guity poses a great challenge for all of the three algorithms. But
the proposed approach can still resolve the ambiguity to some
extent and achieve better matting quality, which demonstrates
the advantages of the learning technique and effective sampling
method.

IV. CONCLUSION

This letter presents a novel image matting method which
treats the alpha matting as a regression problem. In the
algorithm, the -SVR method is introduced to learn the spa-
tially-varying relations between pixel features and alpha values.
We also use effective training samples selection method and

Fig. 4. Visual comparison of various matting algorithms on benchmark [13].

adaptive parameters selection mechanism for SVR to improve
the learning accuracy. Various experiments on a public bench-
mark and comparisons with recent algorithms are used to
demonstrate its advantages in matting accuracy. Future work
can address how to improve its robustness under complex sce-
narios, especially to the image regions with color ambiguities.
Another interesting work is to investigate some other regression
techniques instead of SVR algorithms.
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