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ABSTRACT
A trajectory contains both positional and temporal information.
Despite many trajectory simplification algorithms being proposed,
not many works focus on both positional and temporal informa-
tion. In this paper, we propose velocity-vector-based error mea-
surement which is closely related to speed and direction infor-
mation, and also introduce the notion of Velocity Vector Preserv-
ing Trajectory Simplification (VVPTS). We present a linear-space
optimal algorithm with O(n2 logn) time complexity, and another
approximate linear-time linear-space algorithm with a theoreti-
cally bounded compression rate. We present extensive analytic
and empirical studies in our measurement and two algorithms.
Notably, our VVPTS algorithms have a quality guarantee under
existing error metrics and have a good scalability performance.

1. INTRODUCTION
GPS-enabled devices generate large amounts of spatio-temporal

data of moving objects, which can be used in various applica-
tions. A trajectory is composed of a series of points containing
both positional and temporal information. To relieve storage bur-
den and fasten data processing, it is often necessary to simplify
such trajectory with a subset of its points while ensuring that the
error or the size of the result has a specified upper bound. There
are two types of trajectory simplification problems. min-# prob-
lem aims to find a simplification whose simplification error does
not exceed a given error tolerance and has the minimum size.
min-ε problem aims to find a simplification whose size does not
exceed a given threshold and has the minimum simplification er-
ror. In this paper, we consider a common situation where the
storage capacity is very limited and as long as the error of the
simplified trajectory is under a predefined threshold, we would
focus on reducing its size. Therefore, min-# problem is our ma-
jor concern. A trajectory is different from a polygonal line since
it incorporates the time dimension. From positional and tem-
poral information, the velocity of the movement can be derived.
Velocity information is of vital importance to a wide range of ap-
plications, including traffic analysis.

This paper studies trajectory simplification which preserves
velocity vector information. The reminder of this paper is orga-
nized as follows. Section 2 defines the min-# velocity vector pre-
serving trajectory simplification (min-# VVPTS) problem. Sec-
tion 3 introduces some of the popular trajectory simplification
error measurements and algorithms and discusses how they are
related to the newly defined velocity-vector-based error measure-
ment and algorithms of trajectory simplification under this new
metric. Section 4 and Section 5 develop algorithms to find the
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Figure 1: An example trajectory

optimal and approximate solutions to the min-# VVPTS problem,
respectively. Section 6 gives empirical studies for the error met-
rics and algorithms concerned in this paper. Section 7 summa-
rizes the work.

2. PROBLEM DEFINITION
A trajectory of a moving object consists of a sequence of points

with their positions in a two dimensional space and time stamps.
A point pi in such a trajectory is represented by (xi , yi , ti ) where
ti is the time when the point is recorded and (xi , yi ) is the co-
ordinate of the moving object in the 2D Euclidean space at time
ti . T = (p1, p2, . . . , pn ) represents a trajectory T with n ordered
points (t1 < t2 < ·· · < tn ). A simplification of trajectory T can
be represented by Ts = (ps1 , ps2 , . . . , psm ) where 1 = s1 < s2 · · · <
sm = n. The number of vertices, or the size of Ts , denoted by |Ts |,
does not exceed the size of the original trajectory, i.e., |Ts | = m ≤
|T | = n. A segment is defined by two consecutive points on a tra-
jectory. pi pi+1 (i ∈ [1,n)) is the i th segment of T and psk psk+1

(k ∈ [1,m)) is the k th segment of Ts . The sub-trajectory of T from
pi to p j (1 ≤ i < j ≤ n), denoted by T [i , j ], refers to the portion
(pi , pi+1, . . . , p j ) of T . The segment psk psk+1 of Ts is a simplifica-
tion of the sub-trajectory of T from psk to psk+1 . Figure 1 shows
a trajectory T = (p1, p2, p3, p4, p5, p6). Its simplification should
preserve the starting point p1 and ending point p6 and remove
some of the points in between. Ts = (p1, p3, p5, p6) is a simpli-
fication of T . |Ts | = 4, s1 = 1, s2 = 3, s3 = 5 and s4 = 6. p1p2 is
a segment of T . p1p3 is not a segment of T but a segment of Ts
since the two end points are not consecutive on T but consec-
utive on Ts . p1p3 on Ts is a simplification of the sub-trajectory
T [1,3], namely (p1, p2, p3) on T .

Velocity of a moving object is the rate of change of the object’s
position, which reveals both speed and direction of the move-
ment. The velocity of a segment pi pi+1, denoted by ~V (pi pi+1),
equals the displacement in 2D Euclidean space divided by the
time interval from pi to pi+1, i.e., ~V (pi pi+1) =−−−−−→pi pi+1/∆T (pi pi+1)
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Notation Description
pi = (xi , yi , ti ) a point on (xi , yi ) at time stamp ti

T = (p1 , p2 , . . . , pn ) a trajectory with n ordered points
Ts = (ps1 , ps2 , . . . , psm ) a simplification of trajectory T

T [i , j ] the sub-trajectory of T from pi to p j
|T | the size of trajectory T

pi pi+1 the i th segment of T
−−−→pi p j

the displacement from pi to p j in 2D Euclidean
space

θ(pi p j ) the direction of −−−→pi p j

θ(
−→
AB) the direction of

−→
AB

~V (pi p j ) the average velocity of T [i , j ]

∆T (pi p j ) the time interval from pi to p j

Vi− j
the point representing ~V (pi p j ) in 2D Euclidean
space

Vx (pi p j ), Vy (pi p j ) the x-coordinate and y-coordinate of Vi− j

Ev , Ecd , Esed , Ed

velocity-vector-based, closest Euclidean dis-
tance, synchronous Euclidean distance and
direction-based trajectory simplification error
measurements

opt (T,εt )
the optimal solution of the min-# VVPTS problem
whose input trajectory is T and error tolerance is
εt

di st (A,B)
distance between point A and point B in 2D Eu-
clidean space

εv (pi p j )
the simplification error of potential segment
pi p j under Ev

εcd (pi p j )
the simplification error of potential segment
pi p j under Ecd

εsed (pi p j )
the simplification error of potential segment
pi p j under Esed

εd (pi p j )
the simplification error of potential segment
pi p j under Ed

εv (Ts ) the simplification error of Ts under Ev
Ii−( j−1) the feasible velocity area of potential segment pi p j

Di the feasible velocity area of segment pi pi+1
Ii & j the intersection of Di and D j

Ar ck (Ii− j )
the arc which is the part of the boundary of Ii− j
on the circumference of Dk

Ar ck (Ii & j )
the arc which is the part of the boundary of Ii & j
on the circumference of Dk

Ar ck (Ii− j ).P1, Ar ck (Ii− j ).P2 the two end points of Ar ck (Ii− j )

Ar ck (Ii− j ).θ1, Ar ck (Ii− j ).θ2
the directions of vectors from Vk−(k+1) to the two
end points of Ar ck (Ii− j )

Ar ck (Ii− j ).K1, Ar ck (Ii− j ).K2
the indexes of the disks on which the end points
of Ar ck (Ii− j ) falls, K1 ,K2 ∈ [i ,k)∪ (k, j ]

Ri
reference point for the preprocessing of checking
whether Vi− j belongs to Ii−( j−1) for j ∈ [i ,n)

Ar ck (Ii− j ).α1, Ar ck (Ii− j ).α2
the directions of vectors from Ri to the two end
points of Ar ck (Ii− j )

minVx (T [i , j ]), maxVy (T [i , j ])
the minimum and maximum x component of ve-
locities of each segment on T [i , j ]

minVy (T [i , j ]), maxVy (T [i , j ])
the minimum and maximum y component of ve-
locities of each segment on T [i , j ]

∆Vx (T [i , j ]), ∆Vy (T [i , j ])
the ranges of the x and y component of velocities
of each segment on T [i , j ]

Table 1: Notations

where −−−−−→pi pi+1 = (xi+1−xi , yi+1− yi ) and ∆T (pi pi+1) = ti+1− ti .
Similarly, the average velocity of a sub-trajectory between pi and
p j , ~V (pi p j ) =−−−→pi p j /∆T (pi p j ) = (x j −xi , y j − yi )/(t j − ti ). Same
as [8], the direction of the sub-trajectory from pi to p j , denoted
by θ(pi p j ), is defined to be the angle of anticlockwise rotation

from positive x-axis to −−−→pi p j and has a range of [0,2π). In the
following discussion, the direction of a vector refers to the an-
gle of anticlockwise rotation from the positive x-axis to that vec-
tor. A velocity can be decomposed into two linearly indepen-
dent components, namely a component of ~V (pi p j ) along the

x-axis and a component of ~V (pi p j ) along the y-axis. The com-

ponents of ~V (pi p j ) along the x-axis and the y-axis are computed

as ~V (pi p j )cosθ(pi p j ) and ~V (pi p j )sinθ(pi p j ) respectively. Ve-

locity ~V (pi p j ) can be represented by point Vi− j whose coordi-
nate is (Vx (pi p j ),Vy (pi p j )) in a 2D Euclidean space, Vx (pi p j ) =
‖~V (pi p j )‖cosθ(pi p j ) and Vy (pi p j ) = ‖~V (pi p j )‖sinθ(pi p j ). Con-
sider the example trajectory T shown in Figure 1, the unit of x and

y coordinates is meter and the unit of time is second, the data of
each point are as follows. p1 = (0,0,0), p2 = (1,1,1), p3 = (6,2,2),
p4 = (15,−7,5), p5 = (17.5,−7,6), p6 = (19.25,−5.75,6.5). By the
definitions above, it can be computed that ~V (p2p3) = (5,1) where
Vx (p2p3) = 5 and Vy (p2p3) = 1. ~V (p2p3) can be represented
by point V2−3 whose coordinate is (5,1). The speed and direc-
tion of ~V (p2p3), denoted by ‖~V (p2p3)‖ and θ(p2p3), are

p
26

and 11.310 degree, respectively. Similarly, ~V (p1p3) = (3,1) where
Vx (p1p3) = 3 and Vy (p1p3) = 1. ~V (p1p3) can be represented by
point V1−3 whose coordinate is (3,1).

We developed a velocity-vector-based error measurement Ev .
For a trajectory T and its simplification Ts = (ps1 , ps2 , . . . , psm ),
the simplification error of a segment psk psk+1 on Ts under Ev ,
denoted by εv (psk psk+1 ), is defined to be the greatest distance
between Vsk−sk+1 and Vi−(i+1) for i ∈ [sk , sk+1). Recall that Vsk−sk+1
is the point representing the velocity of psk psk+1 and Vi−(i+1) is
the point representing the velocity of pi pi+1. For i ∈ [sk , sk+1),
pi pi+1 are segments of the sub-trajectory T [sk , sk+1], which is
simplified by segment psk psk+1 of Ts .

εv (psk psk+1 ) = maxsk≤i<sk+1
di st (Vsk−sk+1 ,Vi−(i+1)), wher e

di st (Vsk−sk+1 ,Vi−(i+1)) =
√
∆V 2(psk psk+1 , pi pi+1)

=
√
∆V 2

x (psk psk+1 , pi pi+1)+∆V 2
y (psk psk+1 , pi pi+1),

∆Vx (psk psk+1 , pi pi+1) =Vx (psk psk+1 )−Vx (pi pi+1) and

∆Vy (psk psk+1 , pi pi+1) =Vy (psk psk+1 )−Vy (pi pi+1)

In our example, since ~V (p1p2) = (1,1), ~V (p2p3) = (5,1) and
~V (p1p3) = (3,1), the distance between V1−3 and V1−2 and the
distance between V1−3 and V2−3 are 2. εv (p1p3) = 2. This velocity-
vector-based error measurement allows us to quantify the differ-
ence in velocities in a way which is independent of the coordi-
nate system used. That is, the directions along which the velocity
is decomposed do not affect the value of simplification error. The
simplification error of Ts under Ev , denoted by εv (Ts ), is defined
to be the greatest simplification error of a segment on Ts under
Ev . εv (Ts ) = max1≤k<m εv (psk psk+1 ). Given a non-negative real
number εt , Ts is called an εt -simplification of T if the simplifica-
tion error of Ts does not exceed εt , i.e., ε(Ts ) ≤ εt . The min-# ve-
locity vector preserving trajectory simplification problem (VVPTS)
is defined as follows.

PROBLEM 1. Given a trajectory T and an error tolerance εt (εt ≥
0), the min-# velocity vector preserving trajectory simplification
problem is to find an εt -simplification of T under Ev with mini-
mum size.

3. PREVIOUS WORK

3.1 Existing Error Measurements
Different metrics have been developed to evaluate error of the

simplified trajectory. Closest Euclidean distance (CD) and syn-
chronous Euclidean distance (SED) are two prevalent ones [4, 2,
10]. For a trajectory T = (p1, p2, . . . , pn ), T [i , j ] (1 ≤ i < j ≤ n)
denotes the sub-trajectory of T from pi to p j . For a simplifica-
tion of T , Ts = (ps1 , ps2 , . . . , psm ), the simplification error of seg-
ment psk psk+1 (k ∈ [1,m)) under closest Euclidean distance er-
ror measurement Ecd , denoted by εcd (psk psk+1 ), is defined to be
the maximum of the smallest Euclidean distance between seg-
ment psk psk+1 and each point on sub-trajectory T [sk , sk+1]. Ecd
does not take into account the time dimension of the trajectory.
SED error measurement considers temporal as well as spatial in-
formation. SED error measurement introduces the concept of
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temporally synchronized position. For any point pi = (xi , yi , ti )
on the sub-trajectory T [sk , sk+1], its approximated temporally
synchronized position on Ts is p ′

i = (x′
i , y ′i , t ′i ), where x′

i = xsk +
ti−tsk

tsk+1
−tsk

(xsk+1 −xsk ), y ′i = ysk +
ti−tsk

tsk+1
−tsk

(ysk+1 − ysk ) and t ′i = ti .

The simplification error of segment psk psk+1 under SED error
measurement Esed , denoted by εsed (psk psk+1 ), is defined to be
the maximum of the distances between each point pi on T [sk , sk+1]
and its temporally synchronized position p ′

i . According to the
definitions, the computations of εcd (psk psk+1 ) and εsed (psk psk+1 )
take O(sk+1 − sk ) time. Local integral square error (LISE) and
local integral square synchronous Euclidean distance (LSSD) are
variations of closest Euclidean distance and SED with improved
computational efficiency [2]. The simplification error of segment
psk psk+1 under LISE and LSSD, denoted by εl i se (psk psk+1 ) and
εl ssd (psk psk+1 ), are defined as follows.

εl i se (psk psk+1 ) =∑sk+1
i=sk

D2(pi , psk psk+1 )

εl ssd (psk psk+1 ) =∑sk+1
i=sk

SED2(pi , psk psk+1 )

Here, D(pi , psk psk+1 ) denotes the closest Euclidean distance
between point pi and segment psk psk+1 , and SED(pi , psk psk+1 )
denotes the distance between pi and its temporally synchronized
position on psk psk+1 . It has been proved that after O(n) time pre-
calculation of some accumulative terms, LISE and LSSD errors of
any segment of Ts can be obtained in constant time.

There are several other error metrics for trajectory or polyg-
onal path simplification. Long et al. dpts proposed direction-
based error measurement Ed . The simplification error of segment
psk psk+1 under Ed , denoted by εd (psk psk+1 ), is defined to be
the maximum of the angular differences between the direction of
psk psk+1 and the direction of each segment on T [sk , sk+1]. Here,
the angular difference between θ1 and θ2 is defined to be the
minimum of |θ1 −θ2| and 2π− |θ1 −θ2|. The time cost of com-
puting εd (psk psk+1 ) is O(sk+1−sk ). Bose et al. [1] proposed three
area-based error measurements. There are applications (e.g., land
boundary mapping) in which area distortion is a primary con-
cern but the time complexities of finding optimal solution of tra-
jectory simplification problem under area-based error measure-
ments are usually high. Gudmnundsson et al. [5] introduced dis-
tance preserving polygonal path approximation. The simplifica-
tion error of segment psk psk+1 under the distance-based error
measurement Edi st , denoted by εdi st (psk psk+1 ), is the ratio of
δ(psk , psk+1 ) to di st (psk , psk+1 ), where δ(psk psk+1 ) is the sum of
the lengths of all segments on T [sk , sk+1]. The time complexities
of optimal min-# and min-ε trajectory simplification under Edi st
are O(n2) and O(n2 logn). Preservation of distance is meaningful
for the representations of roads and rivers.

We now discuss the relationship between Ev and some exist-
ing error measurements. Ev gives certain guarantees on the sim-
plification errors under Ecd and Esed . These guarantees can be
expressed in terms of the error tolerance under Ev , the distance
and time interval between two consecutive points on the sim-
plified trajectory. The proof of Lemma 1 and Lemma 2 could be
found in Section A and B in the appendix.

LEMMA 1. Let T be a trajectory and Ts be an εt -simplification
of T under Ev . For each segment psk psk+1 of Ts , εcd (psk psk+1 ) ≤
di st (psk , psk+1 )/2+εt∆T (psk psk+1 ).

LEMMA 2. Let T be a trajectory and Ts be an εt -simplification
of T under Ev . For each segment psk psk+1 of Ts , εsed (psk psk+1 ) <
di st (psk , psk+1 )+εt∆T (psk psk+1 )/2.

Trajectory simplifications under Ecd and Esed , however, do
not limit velocity error. Consider a trajectory T = (p1, p2, . . . , pn )
where all pi (i ∈ [1,n]) are on a straight line in 2D Euclidean space.
For any pair of i , j (1 ≤ i < j ≤ n), regardless of the speeds of each
segment on T [i , j ] and the average speed of pi p j , εcd (pi p j ) al-
ways is zero. That is, though located on the same straight line, the
distance between any two Vi− j for 1 ≤ i < j ≤ n can be infinitely
large and thus, εv (pi p j ) can be unbounded when εcd (pi p j ) is
zero. Similarly, consider another trajectory T = (p1, p2, . . . , pn )
where all pi (i ∈ [1,n]) are on a straight line in 2D Euclidean space
and p1, pn are two end points of the line. For any pair of i , j
(1 ≤ i < j ≤ n), εsed (pi p j ) is not greater than ‖p1 −pn‖. How-
ever, the distance between any two Vi− j for 1 ≤ i < j ≤ n can be
infinitely large and therefore, εv (pi p j ) can be unbounded.

Whether VVPTS offers error bounds on direction and distance
information depends on the velocities of each segment of the in-
put trajectory and the error tolerance set.

LEMMA 3. Let T be a trajectory and Ts be a εt -simplification
of T under Ev . For each segment psk psk+1 of Ts , εd (psk psk+1 ) will
be unbounded if εt is greater than the smallest speed of segments
on T [sk , sk+1]. εd (psk psk+1 ) ≤ arcsin(εt /minsk≤i<sk+1

‖~V (pi pi+1)‖)
if εt is smaller than the speeds of all segments on T [sk , sk+1].

LEMMA 4. Let T be a trajectory and Ts be a εt -simplification
of T under Ev . For each segment psk psk+1 of Ts , εdi st (psk psk+1 )
will be unbounded if εt is greater than the speeds of all segments
on T [sk , sk+1]. If εt is smaller than the greatest speed of segments
on T [sk , sk+1], εdi st (psk psk+1 ) ≤ 1/(1−εt /maxsk≤i<sk+1

‖~V (pi pi+1)‖).

The proofs of Lemma 3 and 4 are trivial.

3.2 Existing Simplification Algorithms
Ying et al. [13] proposed Velocity-Preserving Trajectory Sim-

plification (VPTS) to minimize both geometric and velocity er-
ror. Actually, the velocity-based error measurement defined in
VPTS is an equivalent deformation of Edi st , so the compression
of VPTS ignores the temporal information. Lin et al. [7] proposed
the Adaptive Trajectory Simplification (ATS) algorithm to preserve
the position feature and the velocity feature from the given tra-
jectories. The ATS algorithm partitions the trajectories into velocity-
preserving segments by grouping the velocity values into several
intervals. This simplification indeed is derived from the position
preserving simplification approach on each segment. Moreover,
ATS and VPTS only focused on the speed component of the ve-
locity, but the direction information was not considered. On the
other hand, Long et al. [8] introduced Direction-Preserving Tra-
jectory Simplification (DPTS) with its focus on direction com-
ponent of the velocity. DPTS has a bad performance under Ev
as shown in Experiment 6.2, because it does not take into ac-
count the time dimension of the trajectory. Different from previ-
ous problems, our target is to simplify a trajectory while preserv-
ing both speed and direction components of the velocity, more
specifically, velocity vector.

Algorithms have been developed to find the optimal and ap-
proximate solutions of the min-# and min-ε trajectory simplifi-
cation problems.
Optimal Algs. Graph-based approach is one of the popular algo-
rithms to compute the optimal solution of the min-# problem [8].
It has two major steps, namely directed acyclic graph construc-
tion and shortest path computation. Let ε(pi p j ) be the simpli-
fication error of segment pi p j (i ≤ j ). For min-# problem with
input trajectory T = (p1, p2, . . . , pn ) and error tolerance εt , in the
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graph construction step, a graph with n vertices Vi (i ∈ [1,n]) is
created. There should be an edge between two vertices Vi and V j
(1 ≤ i < j ≤ n) if the simplification error of pi p j is within the er-
ror tolerance, i.e., ε(pi p j ) ≤ εt . A path from Vi to V j on the graph
corresponds to a εt -simplification of the sub-trajectory from pi
to p j . In the shortest path search step, breadth-first search can
be applied. The search starts at p1 and ends at pn . The short-
est path obtained corresponds to a solution Ts of the min-# tra-
jectory simplification problem. pi (i ∈ [1,n]) is a point of Ts if
and only if Vi is on the corresponding shortest path from V1 to
Vn . How this graph-based approach can be adapted to solve the
min-# VVPTS problem will be introduced in Section 4.
Approx. Algs. Many trajectory simplification ideas can be adapted
to our VVPTS problem to return approximate solutions.Two pop-
ular algorithms are greedy [6, 9] and split [9, 3].

Greedy is an approach which sequentially scans the trajectory
T = (p1, p2, . . . , pn ) once from the starting point to the ending
point and iteratively finds the largest number of consecutive seg-
ments which can be discarded and links the two end points of
this sub-trajectory until reaching the last point. The time com-
plexity of greedy is O(n2), because, in the worst case, the sim-
plified trajectory Ts contains only starting and ending points of
T . It has to compute εv (p1p3), εv (p1p4), εv (p1p5),. . . , εv (p1pn ).
Since computing εv (pi p j ) takes O( j−i ) time, the total time com-

plexity is O(n2).
Split is an approach which finds a segment in a given trajec-

tory T = (p1, p2, . . . , pn ), where the segment has the largest error
under Ev , to split the whole trajectory into two sub-trajectories
and recursively continues this process on each sub-trajectories
until the sub-trajectory can be simplified by a line segment link-
ing its start point and end point.The time complexity of split is
O(n2), because, in the worst case, it always chooses the second
point to split the trajectory.

A heuristic algorithm to approximately solve the min-# VVPTS
problem in a more efficient way will be introduced in Section 5.

4. FINDING OPTIMAL SOLUTION

4.1 Graph-based Approach
Graph-based approach introduced in Section 3.2 can be di-

rectly adapted to obtain the optimal solution of the min-# VVPTS
problem. We further illustrate this algorithm by running it on the
example trajectory T shown in Figure 1. The coordinate in the
2D Euclidean space and time stamp of each point on the exam-
ple trajectory can be found in Section 2. The error tolerance εt
is set to be 3. In the graph construction step, a directed acyclic
graph with 6 vertices Vi (i = 1,2, . . . ,6) is constructed. Each ver-
tex Vi corresponds to a point pi of T . ~V (pi p j ) is computed for
each pair of points pi and p j (1 ≤ i < j ≤ 6). Based on these com-
puted velocities, εv (pi p j ) is computed for each pair of pi and
p j . If εv (pi p j ) ≤ 3, we will construct an edge between Vi and
V j . Note that εv (pi pi+1) = 0 for i ∈ [1,6). Computation shows
that εv (p1p3) = 2, εv (p3p5) = 2.281 and εv (p4p6) = 1.795. Other
simplification errors computed are greater than the error toler-
ance 3. Therefore, the edges of the graph are (V1,V2), (V1,V3),
(V2,V3), (V3,V4), (V3,V5), (V4,V5), (V4,V6) and (V5,V6). The re-
sulted graph is shown in Figure 2. In the shortest path search
step, a shortest path from V1 to V6 on the graph is found by breadth-
first search. The shortest path found, (V1,V3,V5,V6), suggests
one of the optimal solutions to the problem Ts = (p1, p3, p5, p6).
Complexity Analysis. In the graph construction step, for each
pair of points pi and p j (1 ≤ i < j ≤ n), the simplification error
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Figure 2: Directed acyclic graph for VVPTS with example trajec-
tory and error tolerance 3

εv (pi p j ) has to be computed. According to the definition of Ev ,
the time complexity of obtaining εv (pi p j ) is O( j − i ) since we
need to compute di st (Vi− j ,Vk−(k+1)) for each k ∈ [i , j ). Thus,

the graph construction step takes O(n3) time. The shortest path
search step takes O(|V | + |E |) time where |V | and |E | denote the
number of vertices and the number of edges on the graph. Thus,
the time complexity of the naive implementation of the graph-
based approach is O(n3). The algorithm takes O(|V |+ |E |) space.
Since |V | =O(n) and |E | =O(n2), the space complexity is O(n2).

An improvement of the graph-based approach will be intro-
duced in Section 4.2 which proposes a method to reduce the time
complexity and space complexity.

4.2 Complexity Improvement
According to the time complexity analysis, graph construction

is the dominant step of the graph-based approach. Reducing the
time cost of simplification error computation could reduce the
time cost of graph construction. The main idea of our method
is that when checking whether εv (pi p j ) (1 ≤ i < j ≤ n) is within
εt , instead of comparing Vi− j against each Vk−(k+1) for k ∈ [i , j ),
we maintain a feasible velocity area Ii−( j−1) which is defined by
Vk−(k+1) for k ∈ [i , j ) and εt , and check whether Vi− j falls inside
this area. The definition of feasible velocity area is as follows.

DEFINITION 1. For a segment pi pi+1 (1 ≤ i < n) of T , its fea-
sible velocity area, denoted by Ii−i , is defined to be a disk whose
center is Vi−(i+1) and radius is εt . For a potential segment pi p j
(1 ≤ i < j ≤ n) of Ts , its feasible velocity area, denoted by Ii−( j−1),
is defined to be the intersection of the feasible velocity areas of all

pk pk+1 for k ∈ [i , j ), that is, Ii−( j−1) =
⋂ j−1

k=i Ik−k .

For concise representation, the feasible velocity area Ii−i of
segment pi pi+1 (1 ≤ i < n) of the original trajectory is denoted
by Di , i.e., Di is the disk whose center is Vi−(i+1) and radius is εt .
The feasible velocity areas Di of all segments pi pi+1 (i ∈ [1,6))
on the example trajectory T (see Figure 1) are shown in Figure
3. For a potential segment p2p6 of Ts , I2−5 is the common in-
tersection of D2, D3, D4 and D5. It can be observed from Figure
3 that the boundaries of I2−5 consist of parts of the circumfer-
ences of D2, D3 and D5. Note that p2p6 cannot be a segment of
Ts since our previous computation shows that εv (p2p6) > εt =
3. However, in the graph-based approach with complexity im-
provement, we do not know whether εv (p2p6) is within the error
tolerance before the feasible velocity area of p2p6 is obtained.

LEMMA 5. The simplification error of pi p j (1 ≤ i < j ≤ n) un-
der Ev is within εt if and only if Vi− j falls inside the feasible ve-
locity area of segment pi p j .
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Figure 3: Feasible velocity areas of segments on the example tra-
jectory

PROOF. “if”: Assume that Vi− j falls inside Ii−( j−1). According
to the definition of feasible velocity area, Vi− j falls inside every
Dk for k ∈ [i , j ). Since Dk is a disk with center Vk−(k+1) and ra-
dius εt , the distance between Vi− j and Vk−(k+1) will not exceed
εt . Therefore, εv (pi p j ) = maxi≤k< j di st (Vi− j ,Vk−(k+1)) ≤ εt .
“only if”: Assume that εv (pi p j ) ≤ εt . di st (Vi− j ,Vk−(k+1)) ≤ εt
for k ∈ [i , j ). Since Dk is a disk with center Vk−(k+1) and radius
εt , Vi− j falls inside every Dk for k ∈ [i , j ). According to the defi-
nition of feasible velocity area, Vi− j falls inside the Ii−( j−1).

According to Lemma 5, checking whether εv (pi p j ) is within
εt is equivalent to checking whether Vi− j falls inside Ii−( j−1). To
construct a complete directed acyclic graph, we need to check
whether Vi− j belongs to Ii−( j−1) for each pair of i , j (1 ≤ i < j ≤
n). During this process, O(n2) feasible velocity area computa-
tions and point in region checks need to be performed. In Sec-
tion 4.2.1, we introduce the data structure to store feasible ve-
locity area. In Section 4.2.2, we present an efficient method of
obtaining all feasible velocity areas required for the graph con-
struction. In Section 4.2.3, we propose an efficient method of
performing point in region check and illustrate how the feasible
velocity area computations and point in region checks are com-
bined under O(n2 logn) computations.

4.2.1 Data Structure of Feasible Velocity Area
Ii− j (1 ≤ i < j < n) can be described by a set of arcs Ar ck (Ii− j )

(k ∈ [i , j ]) forming its boundary. Ar ck (Ii− j ) denotes the arc which
is a part of the boundary of Ii− j and a part of the circumfer-
ence of Dk . We introduce some notations for the non-empty
Ar ck (Ii− j ). Ar ck (Ii− j ).P1 and Ar ck (Ii− j ).P2 denote the end points
of Ar ck (Ii− j ). Suppose Ar ck (Ii− j ) is an arc from A to B in anti-
clockwise direction on the circumference of Dk . Ar ck (Ii− j ).P1 =
A and Ar ck (Ii− j ).P2 = B . Ar ck (Ii− j ).θ1 and Ar ck (Ii− j ).θ2 de-
note the direction of the vector from the center of Dk to A and
the direction of the vector from the center of Dk to B , respec-
tively. If Ar ck (Ii− j ).θ1 = θa and Ar ck (Ii− j ).θ2 = θb , we can say
Ar ck (Ii− j ) = [θa ,θb ]. Ar ck (Ii− j ).K1 and Ar ck (Ii− j ).K2 denote
the indexes of the disks whose circumferences intersect with the
circumference of Dk at the end points of Ar ck (Ii− j ). Suppose
Ar ck (Ii− j ) 6= [0,2π], Ar ck (Ii− j ).θ1 6= Ar ck (Ii− j ).θ2, Ar ck (Ii− j ).P1
is one of the intersection points of the circumferences of Dk and
Dk1

and Ar ck (Ii− j ).P2 is one of the intersection points of the
circumferences of Dk and Dk2

. Ar ck (Ii− j ).K1 is the smallest k1
and Ar ck (Ii− j ).K2 is the smallest k2 (k1,k2 ∈ [i ,k)∪(k, j ]). When
Ar ck (Ii− j ) = [0,2π] or Ar ck (Ii− j ).θ1 = Ar ck (Ii− j ).θ2, Ar ck (Ii− j )
.K1 = Ar ck (Ii− j ).K2 = k. Take I2−5 in Figure 3 as an example.

Figure 4: Linked list and reference array after computing I2−5

The arcs which form the boundary of I2−5 and thus define I2−5
are Ar c2(I2−5), Ar c3(I2−5) and Ar c5(I2−5). Ar c3(I2−5) is the arc
from C to A in anticlockwise direction on the circumference of
D3. Ar c3(I2−5).P1 = C and Ar c3(I2−5).P2 = A. Ar c3(I2−5).θ1 =
θ(
−−−−→
P3−4C ) = 61.80 and Ar c3(I2−5).θ2 = θ(

−−−−→
P3−4 A) = 105.25. Thus,

Ar c3(I2−5) = [61.80,105.25]. C is one of the intersection points of
the circumferences of D3 and D5, and A is one of the intersection
points of the circumferences of D3 and D2. Ar c3(I2−5).K1 = 5
and Ar c3(I2−5).K2 = 2.

For a feasible velocity area Ii− j , we construct a circular dou-
bly linked list to store its boundary. Each node of the list corre-
sponds to an arc. In the node, the data field stores the arc infor-
mation including its P1, P2, θ1, θ2 and K1, K2. The next link and
previous link are references to the nodes which correspond to the
next and previous arcs in anticlockwise direction of the arc repre-
sented by the current node on the boundary of Ii− j , respectively.
For quick access to the nodes in a list, an array whose elements
are references to the list nodes will be maintained. If the left-to-
right computation illustrated in Section 4.2.2 is adopted, when
computing Ii− j , the size of the array will be n − i and the k th

(k ∈ [1, j − i +1]) element of the array is a reference to the node
corresponding to Ar ci+k−1(Ii− j ) in the list. Consider I2−5 of our
example trajectory. After the computation of I2−5 (the computa-
tion of feasible velocity areas will be introduced in Section 4.2.2),
the circular doubly linked list and the reference array are shown
in Figure 4.

4.2.2 Left-to-Right Computation
For an input trajectory T = (p1, p2, . . . , pn ), the feasible veloc-

ity areas required for graph construction are shown in Table 2.
Ii−(i+1) (1 ≤ i < n) is the intersection of two disks and can be
obtained in constant time. Since Ii− j = Ii−( j−1) ∩D j , Ii− j can
be calculated from known Ii−( j−1). Ii− j is obtained by “cutting”
Ii−( j−1) with Ar c j (Ii− j ). Regarding our example trajectory, sup-
pose I2−4 whose boundary consists of Ar c2(I2−4), Ar c4(I2−4) and
Ar c3(I2−4), and Ar c5(I2−5) which is the arc from B to C in anti-
clockwise direction on the circumference of D5 are known. In-
tuitively, I2−5 can be obtained by cutting I2−4 with Ar c5(I2−5).
Since Ar c5(I2−5).K1 = 2 and Ar c5(I2−5).K2 = 3. Ar c2(I2−4) and
Ar c3(I2−4) are cut and Ar c5(I2−5) becomes a part of the bound-
ary of the new feasible velocity area. How this cutting process can
be strictly implemented will be introduced in this section. Note
that in actual implementation, the data of Ii−( j−1) will be up-
dated to the data of Ii− j , which means that Ii−( j−1) will not be
maintained when Ii− j is available. Therefore whether Vi− j falls
inside Ii−( j−1) may need to be decided before the computation
of Ii− j . An efficient approach to perform point in region check
will be introduced in Section 4.2.3.

This section focuses on the computation of feasible velocity
area. As is introduced, we would like to compute the unknown
Ii− j from known Ar c j (Ii− j ) and Ii−( j−1). Our first step is to
make related arcs which may be used in this process available.
Since we need to compute Ii− j for all pairs of i , j (1 ≤ i < j < n)
for graph construction, the potentially useful arcs are Ar c j (Ii− j )
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I1−2, I1−3, I1−4, . . . , I1−(n−2), I1−(n−1)
I2−3, I2−4, . . . , I2−(n−2), I2−(n−1)
I3−4, . . . , I3−(n−2), I3−(n−1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
I(n−2)−(n−1)

Table 2: Feasible velocity areas required for graph construction
(from the last row to the first row, from left to right in each row)

Disk Arcs
D2 Ar c2(I1−2)
D3 Ar c3(I1−3), Ar c3(I2−3)
D4 Ar c4(I1−4), Ar c4(I2−4), Ar c4(I3−4)
. . . . . . . . . . . .

Dn−2
Ar cn−2(I1−(n−2)), Ar cn−2(I2−(n−2)), . . . ,
Ar cn−2(I(n−3)−(n−2))

Dn−1
Ar cn−1(I1−(n−1)), Ar cn−1(I2−(n−1)), . . . ,
Ar cn−1(I(n−3)−(n−1)), Ar cn−1(I(n−2)−(n−1))

Table 3: Arcs computed before the computation of feasible veloc-
ity area (from the last column to the first column)

for 1 ≤ i < j < n (see Table 3). For each arc, we record its P1,
P2, θ1, θ2 and K1, K2. The potentially useful arcs which are on
the circumference of the same disk can be calculated by intersect
operation. For k ∈ (1,n), Ar ck (I(k−1)−k ) involves only two disks
and can be obtained in constant time. Then, Ar ck (Ii−k ) where i
takes the value from k−2 to 1 can be calculated in sequence. Here
we introduce two extra notations. Ii & j denotes the common in-
tersection of Di and D j . Ar ck (Ii & j ) (k = i or k = j ) denotes the
arc which is a part of the boundary of Ii & j and a part of the cir-
cumference of Dk . The computation of potentially useful arcs is
based on the equation Ar ck (Ii−k ) = Ar ck (I(i+1)−k )∩Ar ck (Ii &k ).
In a special case where Di and D j overlap, Ar c j (Ii & j = Ar ci (Ii & j )
= [0,2π]. Ar ck (Ii &k ) involves only two disks and can be obtained
in constant time. The intersect operation takes constant time.
Thus, if Ar ck (I(i+1)−k ) is known, Ar ck (Ii−k ) can be computed
in constant time. From known Ar ck (I(k−1)−k ), we can compute
Ar ck (I(k−2)−k ), Ar ck (I(k−3)−k ), . . . , Ar ck (I1−k ) in sequence by
intersect operations and the total time cost is O(k). The time
complexity of computing all arcs required is O(n2). Consider back
the example trajectory. The fourth row of the arc table, i.e., the
potentially useful arcs on the circumference of D5, can be com-
puted as follows: Ar c5(I4−5) = ÙDE , Ar c5(I3−5) = Ar c5(I4−5) ∩
Ar c5(I3&5) = ØFC , Ar c5(I2−5) = Ar c5(I3−5) ∩ Ar c5(I2&5) = ÙBC ,
Ar c5(I1−5) = Ar c5(I2−5)∩ Ar c5(I1&5) = ØB I .

The second step is to compute the feasible velocity areas in
Table 2. If we take a closer look at Table 2 and Table 3 simultane-
ously, we can find that all related arcs used by i th (1 ≤ i < n −1)
row of Table 2 are those from i th (1 ≤ i < n−1) column of Table 3.
Therefore, we only need to keep an array of size n −2 to save in-
formation of arcs which are from i th column of Table 3 when we
compute i th row of Table 2. The order of computation for Table 2
is from the last row to the first row, from left to right in each row.
At the same time, we update the array of related arcs accordingly.

As is introduced in Section 4.2.1, a circular doubly linked list
and a reference array will be used to compute and store a feasi-
ble velocity area. For each row of the feasible velocity area table,
we keep updating the same circular doubly linked list and the ref-
erence array as we compute the feasible velocity areas from left

to right. At the beginning of the i th (1 ≤ i < n−1) row, the process
of computing Ii−(i+1) and initiating the linked list and reference
array is as follows.
(1) If Ar ci+1(Ii−(i+1)) is empty, Ii−(i+1) will be empty and no
linked list and reference array will be constructed.
(2) If Ar ci+1(Ii−(i+1)) is non-empty, compute Ar ci (Ii−(i+1)) and
construct an array with n − i elements.
(a) If Ar ci+1(Ii−(i+1)).θ1 = Ar ci+1(Ii−(i+1)).θ2 or Ar ci+1(Ii−(i+1))
= [0,2π], Ii−(i+1) will be a point or a disk. Construct a circular
doubly linked list with one node. The data field of the node stores
the information of Ar ci (Ii−(i+1)). The first element of the refer-
ence array is a reference to the node of Ar ci (Ii−(i+1)).
(b) If Ar ci+1(Ii−(i+1)).θ1 6= Ar ci+1(Ii−(i+1)).θ2 and Ar ci+1(Ii−(i+1))
6= [0,2π], construct a circular doubly linked list with two nodes.
The data fields of the first and second nodes store the informa-
tion of Ar ci (Ii−(i+1)) and Ar ci+1(Ii−(i+1)), respectively. The first
two elements of the reference array are references to the node of
Ar ci (Ii−(i+1)) and the node of Ar ci+1(Ii−(i+1)), respectively.

This initiation takes constant time. The process of computing
Ii− j from known Ii−( j−1) (i +1 < j < n) is as follows.
(1) If the current linked list is empty, i.e., Ii−( j−1) is empty, Ii− j
will be empty. There will be no update to the linked list and ref-
erence array.
(2) If the current linked list is a point, check whether this point is
inside D j .
(a) If the point is inside D j , Ii− j will still be a point.
(b) If the point is outside D j , Ii− j will be empty.
(3) If the current linked list is non-empty and not a point, check
Ar c j (Ii− j ) from the arc table.
(a) If Ar c j (Ii− j ) is empty, Ii−( j−1) will be either completely in-
side or completely outside D j . Find any point which is an end
point of the arc represented by any node in the current linked
list and check it against D j . If the point belongs to D j , Ii− j =
Ii−( j−1) and there will be no update to the linked list and refer-
ence array. If the point does not belong to D j , Ii− j will be empty,
delete all nodes in the linked list and set all elements of the refer-
ence array to null.
(b) If Ar c j (Ii− j ) = [0,2π], Ii− j = Ii−( j−1) will be a disk and there
will be no update to the linked list and reference array.
(c) If Ar c j (Ii− j ).θ1 = Ar c j (Ii− j ).θ2, i.e., Ar c j (Ii− j ) is a point,
Ii−( j−1) will be either completely inside D j or overlap with D j at
one point. Find any point which is inside Ii−( j−1). If such point
does not belong to D j , Ii− j will become a point. Save this point.
Delete all nodes in the linked list and set all elements of the ref-
erence array to null. If such point belongs to D j , Ii− j = Ii−( j−1)
and there will be no update to the linked list and reference array.
(d) If non-empty Ar c j (Ii− j ).θ1 6= Ar c j (Ii− j ).θ2 and Ar c j (Ii− j ) 6=
[0,2π], build a node for Ar c j (Ii− j ) with its previous and next

links pointing to itself and update the j − i +1th element of the
reference array to the address of the node. Let p1 = Ar c j (Ii− j ).P1,
p2 = Ar c j (Ii− j ).P2, k1 = Ar c j (Ii− j ).K1, k2 = Ar c j (Ii− j ).K2. Get

from the k1−i +1th and the k2−i +1th elements of the reference
array the node of Ar ck1

(Ii− j ) and the node of Ar ck2
(Ii− j ). Start-

ing from the node of Ar ck1
(Ii− j ), traverse the doubly linked list

through the next links of the nodes until Ar ck2
(Ii− j ) is reached,

delete all nodes encountered between the nodes of Ar ck1
(Ii− j )

and Ar ck2
(Ii− j ) (exclusively) and update corresponding elements

in the reference array to null. Update the P2, θ2, K2 and next link

of the node of Ar ck1
(Ii− j ) to p1, the direction of

−−−−−−−−−−→
Vk1−(k1+1)p1, j

and the address of the node of Ar c j (Ii− j ). Update the P1, θ1, K1
and previous link of the node of Ar ck2

(Ii− j ) to p2, the direction
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Figure 5: Linked list and reference array after computing I2−3

of
−−−−−−−−−−→
Vk2−(k2+1)p2, j and the address of the node of Ar c j (Ii− j ). Up-

date previous and next links of the node of Ar c j (Ii− j ) to the ad-
dresses of the nodes of Ar ck1

(Ii− j ) and Ar ck2
(Ii− j ), respectively.

We continue to use the example trajectory to illustrate how a
row of the feasible velocity area table is computed. Suppose the
arc table is already available and we are now computing the sec-
ond row of the feasible velocity area table. The process of com-
puting I2−3 and initiating the linked list and reference array is
as follows: since Ar c3(I2−3) is non-empty, compute Ar c2(I2−3)
and construct an array with 4 elements. Since Ar c3(I2−3).θ1 6=
Ar c3(I2−3).θ2 and Ar c3(I2−3) 6= [0,2π], construct a circular dou-
bly linked list with 2 nodes. The data fields of the first and sec-
ond nodes store the information of Ar c2(I2−3) and Ar c3(I2−3),
respectively. The first and second elements of the reference array
are references to the node of Ar c2(I2−3) and the node of Ar c3(I2−3),
respectively. The linked list and reference array after this step are
shown in Figure 5.

We then compute I2−4 from I2−3 and Ar c4(I2−4): since the
current linked list is non-empty, Ar c4(I2−4).θ1 6= Ar c4(I2−4).θ2
and Ar c4(I2−4) 6= [0,2π], build a node for Ar c4(I2−4) with its pre-
vious and next links pointing to itself and update the third ele-
ment of the reference array to the address of the node. Let p1 =
Ar c4(I2−4).P1 and let p2 = Ar c4(I2−4).P2. Ar c4(I2−4).K1 = 2 and
Ar c4(I2−4).K2 = 3, get from the first and second elements of the
reference array the node of Ar c2(I2−4) and the node of Ar c3(I2−4).
Since the next link of the node of Ar c2(I2−4) is a reference to
the node of Ar c3(I2−4), there will be no delete operation. Up-
date the P2, θ2, K2 and next link of the node of Ar c2(I2−4) to
p1, θ(

−−−−−→
V2−3p1), 4 and the address of the node of Ar c4(I2−4). Up-

date the P1, θ1, K1 and previous link of the node of Ar c3(I2−4)

to p2, θ(
−−−−−→
V3−4p2), 4 and the address of the node of Ar c4(I2−4).

Update the previous and next links of the node of Ar c4(I2−4) to
the addresses of the nodes of Ar c2(I2−4) and Ar c3(I2−4), respec-
tively. The linked list and reference array after computing I2−4
are shown in Figure 6.

The computation of I2−5 from I2−4 and Ar c5(I2−5) is similar:
since the current linked list is non-empty, Ar c5(I2−5) 6= [0,2π]
and Ar c5(I2−5).θ1 6= Ar c5(I2−5).θ2, build a node for Ar c5(I2−5)
with its previous and next links pointing to itself and update the
fourth element of the reference array to the address of the node.
Ar c5(I2−5).P1 = B , Ar c5(I2−5).P2 = C , Ar c5(I2−5).K1 = 2 and
Ar c5(I2−5) = 3. Get from the first and second elements of the ref-
erence array the node of Ar c2(I2−5) and the node of Ar c3(I2−5).
The next link of the node of Ar c2(I2−5) is a reference to the node
of Ar c4(I2−5), and the next link of the node of Ar c4(I2−5) is a
reference to the node of Ar c3(I2−5). Thus, delete the node of
Ar c4(I2−5) and update the third element of the reference array to
null. Update the P2, θ2, K2 and next link of the node of Ar c2(I2−5)

to B , θ(
−−−−→
V2−3B), 5 and the address of the node of Ar c5(I2−5). Up-

date the P1, θ1, K1 and previous link of the node of Ar c3(I2−5) to

C , θ(
−−−−→
V3−4C ), 5 and the address of the node of Ar c5(I2−5). Update

the previous and next links of the node of Ar c5(I2−5) to the ad-

Figure 6: Linked list and reference array after computing I2−4

dresses of the nodes of Ar c2(I2−5) and Ar c3(I2−5), respectively.
The linked list and reference array after computing I2−5 are shown
in Figure 4.

LEMMA 6. For 1 ≤ i ≤ k ≤ j < n, if Ar ck (Ii− j ) is empty, Ar ck (Ii−t )
for any t ∈ ( j ,n) will also be empty.

PROOF. If no arc on the circumference of Dk forms a part of
the boundary of non-empty Ii− j , Dk should contain Ii− j . Since
Ii−t = Ii− j ∩ I j−t , Ii− j contains Ii−t . It can be derived that Dk
contains Ii−t . No arc on the circumference of Dk will become a
part of the boundary of Ii−t . That is, Ar ck (Ii−t ) will be empty.

Complexity Analysis. As is analyzed before, the time cost of get-
ting all potentially useful arcs is O(n2). Regarding the computa-
tion of feasible velocity areas, if the operations of deleting nodes
from the linked list and setting corresponding elements in the
reference array to null are not counted, getting Ii− j from known
Ii−( j−1) will take constant time. During the computation of the

i th row of feasible velocity area table, according to Lemma 6, if
the node of arc on the circumference of a disk Dk is deleted from
the linked list, it will not be inserted back. This indicates that
the node of arc from each disk will be removed from the linked
list at most once, and each element in the reference array will
be set to null at most once. Thus, when computing the i th row
of the feasible area table, the total time cost as well as the time
cost of deleting nodes from the linked list and setting elements
in the reference array to null are O(n − i ). The time complexity
of getting all feasible velocity areas required is O(n2). In terms of
space complexity, O(n) space is required to store the information
of all related arcs which are from a specific column of Table 3. We
do not need to “remember” all computed feasible velocity areas,
O(n) space is required to store the current feasible velocity area.
The space cost is therefore O(n) during the computation of arc
table and feasible velocity areas.

4.2.3 Point in Convex Region Check
Since a feasible velocity area is either a disk or the intersec-

tion of disks, it is convex. To decide whether a point falls in-
side a convex region bounded by n circular arcs, the naive ap-
proach is to test the point against each arc, which takes O(n)
time. Shamos[11] proposed a method to decide whether a point
is interior or exterior to a convex polygon with n sides in O(logn)
time after O(n) time preprocessing. The preprocessing chooses
any point R which is interior to the polygon, and divides the plane
into n sectors by drawing n rays through the vertices of the poly-
gon originating at R. After the preprocessing, given a point P ,
the sector P belongs to can be decided in O(logn) time by bi-
nary search. Suppose P belongs to sector S, whether P is interior
to the polygon can be determined by testing P against the side
of the polygon which is contained in S, and this takes constant
time. Therefore, after spending O(n) time to perform the pre-
processing on a convex polygon with n sides, checking whether
a point is interior to that polygon takes O(logn). We prove that
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this method can also solve the inclusion problem of convex re-
gion. Two issues need to be addressed when adapting it to con-
struct the directed acyclic graph desired in VVPTS problem since
instead of having a fixed convex region, we have a distinct feasi-
ble velocity area Ii−( j−1) for each point Vi− j (1 ≤ i < j < n): first,
the preprocessing has to be reusable; second, the data structure
has to allow efficient search and update.

Section 4.2.2 introduces how the i th (1 ≤ i < n) row of feasible
velocity areas in Table 2 can be computed in O(n − i ) time, after
the O(n) time computation of arcs in Table 3. The aim of comput-
ing Ii− j is to decide whether Vi−( j+1) falls inside Ii− j . We would
like to make the preprocessing on Ii− j for j ∈ (i ,n) reusable for

the i th row of the feasible velocity area table. To achieve this
goal, for the i th row of the feasible velocity area table, the ref-
erence point Ri is fixed. That is, the same Ri is used in the test of
Vi−( j+1) against Ii− j for all j ∈ (i ,n). Ri should be interior to ev-

ery non-empty feasible velocity area in the i th row. To get Ri , we
perform the left-to-right computation of the i th row of Table 2,
stop at the smallest non-empty feasible velocity area and define
Ri to be any point which is inside this convex region. Ri can be
decided in constant time when the smallest non-empty feasible
velocity area Ii− j is known. If Ii− j is a point, Ri will be that point.
If Ii− j is not a point, we may define Ri to be the middle point of a
straight line whose end points are the end points of an arc which
is part of the boundary of Ii− j . When the arc table is available,
the time cost of getting Ri is dominated by the time cost of com-
puting the smallest feasible velocity area in the i th row of Table 2,
which is O(n − i ). Consider the second raw of the feasible veloc-
ity area table of the example trajectory, to get R2, firstly, I2−3, I2−4
and I2−5 are computed by the left-to-right method. The smallest
non-empty feasible velocity area is I2−5 and R2 can be defined
as the middle point of the line whose end points are A and C .
The coordinate of R2 is (3.31,0.23). As is shown in Figure 3, 3 rays
which originate at R2 and pass through A, C or B divide the plane
into 3 sectors.

After Ri is fixed, when checking whether Vi−( j+1) falls inside
Ii− j , the plane is divided into sectors by rays which originate
at Ri and pass through the end points of the arcs forming the
boundary of Ii− j . The sectors can be stored in a binary search
tree to facilitate efficient search and update. A sector which con-
tains non-empty Ar ck (Ii− j ) (k ∈ [i , j ]) is stored in one or two
nodes of the tree. Let p1 = Ar ck (Ii− j ).P1 and p2 = Ar ck (Ii− j ).P2.

Ar ck (Ii− j ).α1 denotes the direction of
−−−→
Ri p1 and Ar ck (Ii− j ).α2

denotes the direction of
−−−→
Ri p2. Let αk1

= Ar ck (Ii− j ) .α1 and let
αk2

= Ar ck (Ii− j ).α2. If αk1
≤ αk2

, the sector of Ar ck (Ii− j ) will
be stored in one node whose key is the interval of angle [αk1

,αk2
].

If αk1
> αk2

, i.e., the x-axis crosses the sector of Ar ck (Ii− j ), the
sector will be stored in two nodes whose keys are [αk1

,2π] and
[0,αk2

]. The keys of nodes in the tree cover [0,2π] and have no
overlap with each other except on the boundaries. The node also
stores the index of the disk to which the arc of the sector be-
longs. For quick access to the nodes in the binary tree, an array
whose elements are references to the tree nodes will be main-
tained. When testing Vi−( j+1) against Ii− j , the size of the array

will be 2(n−i ) and the 2k−1th and 2k th elements (k ∈ [1, j−i+1])
are reference to the nodes of Ar ci+k−1(Ii− j ) in the tree. Consider
the example trajectory, Figure 3 shows the partition of the plane
when deciding whether V2−6 is interior to I2−5. Figure 7 shows
the corresponding binary search tree and reference array.

Now we are ready to discuss the initiation and update of the
binary search tree and its reference array in the left-to-right com-

putation of feasible velocity area and test of point against the
area. For each row of the feasible velocity area table, we keep
updating the same binary search tree and reference array as we
test Vi−( j+1) against Ii− j from j = i +1 to j = n−1. Note that the
binary search tree and tree reference aim to facilitate point in re-
gion checks while the circular doubly linked list and list reference
array illustrated in Section 4.2.2 aim to compute feasible velocity
areas. Since the data structures do not maintain computed feasi-
ble velocity areas, the computation of feasible velocity area and
point in region check need to be done simultaneously after the
reference point of the corresponding row is available. In this sec-
tion, we present the operations on the binary search tree and tree
reference array. Assume that the information of potentially use-
ful arcs (see Table 3) is available. For i ∈ [1,n −1), after obtaining
Ri , at the beginning of the i th row of the feasible velocity area
table, the process of initiating the binary search tree and its ref-
erence array is as follows.
(1) If Ar ci+1(Ii−(i+1)) is empty, Ii−(i+1) will be empty and no bi-
nary search tree and reference array will be constructed.
(2) If Ar ci+1(Ii−(i+1)) is not empty, compute Ar ci (Ii−(i+1)) and
construct a reference array with 2(n − i ) elements.
(a) If Ar ci+1(Ii−(i+1)) = [0,2π], Ii−(i+1) = Di will be a disk. Con-
struct a binary search tree with two nodes. The keys are [α,2π]
and [0,α] where α = Ar ci+1(Ii−(i+1)).α1 = Ar ci+1(Ii−(i+1)) .α2.
The disk index of the nodes is i . The first and second elements of
the reference array are references to the two nodes.
(b) If Ar ci+1(Ii−(i+1)).θ1 = Ar ci+1(Ii−(i+1)).θ2, Ii−(i+1) will be a
point. Construct a binary search tree with one node. The key of
the node is [α,α],α= Ar ci+1(Ii−(i+1)) .α1 = Ar ci+1(Ii−(i+1)).α2.
The disk index of the node is i . The first element of the reference
array is a reference to the only node in the current tree.
(c) If Ar ci+1(Ii−(i+1)).θ1 6= Ar ci+1(Ii−(i+1)).θ2 and Ar ci+1(Ii−(i+1))
6= [0,2π]. Build a binary search tree with two or three nodes cor-
responding to the whole or part of the two sectors which con-
tain Ar ci (Ii−(i+1)) and Ar ci+1(Ii−(i+1)) respectively. The keys of
the nodes are intervals of angles whose boundary can be 0, 2π
Ar ci+1(Ii−(i+1)).α1 or Ar ci+1(Ii−(i+1)).α2. The disk indexes of
the nodes are i and i +1. The first two elements of the reference
array are references to nodes with disk index i , and the third and
fourth elements are references to the nodes with disk index i +1.

This initiation takes constant time. When Ii−( j−1) is known,
after performing binary search to test Vi− j against Ii−( j−1), the
process of updating the binary search tree and its reference array
from Ii−( j−1) to Ii− j (i +1 < j < n) is as follows.
(1), (2)The condition and the operation is consistent with 4.2.2.
(3) If the current linked list is non-empty and not a point, check
Ar c j (Ii− j ) from the arc table.
If non-empty Ar c j (Ii− j ) 6= [0,2π] and Ar c j (Ii− j ).θ1 6= Ar c j (Ii− j )
.θ2, let p1 = Ar c j (Ii− j ).P1, p2 = Ar c j (Ii− j ).P2, k1 = Ar c j (Ii− j ).K1,

k2 = Ar c j (Ii− j ).K2. Get from the k1−i+1th and the k2−i+1th el-
ements of the list reference array the node of Ar ck1

(Ii− j ) and the
node of Ar ck2

(Ii− j ) in the current linked list. Starting from the
node of Ar ck1

(Ii− j ), traverse the linked list through the next links
of the nodes until Ar ck2

(Ii− j ) is reached. For any list node of
Ar ck (Ii− j ) encountered between the nodes of Ar ck1

(Ii− j ) and
Ar ck2

(Ii− j ) (exclusive, i.e., k 6= k1 and k 6= k2), delete the tree
nodes with disk index k and update corresponding elements in
the tree reference array to null. Update the keys of the tree nodes
with index k1 from [Ar ck1

(Ii−( j−1)).α1, Ar ck1
(Ii−( j−1)).α2] or

[Ar ck1
(Ii−( j−1)).α1,2π] and [0, Ar ck1

(Ii−( j−1)).α2] to [Ar ck1
(Ii− j )

.α1, Ar ck1
(Ii− j ).α2] or [Ar ck1

(Ii− j ).α1,2π] and [0, Ar ck1
(Ii− j ).α2]

where Ar ck1
(Ii− j ).α1 = Ar ck1

(Ii−( j−1)).α1 and Ar ck1
(Ii− j ).α2
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Figure 7: Binary search tree and reference array when solving the
inclusion problem of I2−5 (unit: degree)

is the direction of
−−−→
Ri p1. Update the keys of the tree nodes with in-

dex k2 symmetrically where Ar ck2
(Ii− j ).α2 = Ar ck2

(Ii−( j−1)).α2

and Ar ck2
(Ii− j ).α1 is the direction of

−−−→
Ri p2. The update may in-

volve delete of nodes. Note that Ar c j (Ii− j ).α1 and Ar c j (Ii− j ).α2

are the directions of
−−−→
Ri p1 and

−−−→
Ri p2, respectively. If Ar c j (Ii− j ).α1 ≤

Ar c j (Ii− j ).α2, build a node with key [Ar c j (Ii− j ).α1, Ar c j (Ii− j ).α2];
else, construct two tree nodes with keys [Ar c j (Ii− j ).α1,2π] and
[0, Ar c j (Ii− j ).α2]. The disk index of the nodes is j . The 2( j − i )+
1th and the 2( j − i +1)th elements of the tree reference array are
references to the newly constructed tree nodes. Insert the newly
constructed tree nodes into the tree.

Complexity Analysis. For i ∈ [1,n − 1), during the left-to-right
computation of feasible velocity areas Ii− j for j ∈ (i ,n), there are
at most j − i + 2 nodes in the binary search tree. The time cost
of deleting a node from the tree and inserting a node into the
tree are O(log( j − i )). The time cost of updating an element in
the reference array and constructing a new node are O(1). When
computing Ii− j from Ii−( j−1), after relevant nodes have been re-
moved, the update of keys of tree nodes will not cause the vio-
lation of the binary search tree property since the spread of the
angular interval (i.e., the key) of the nodes involved will be re-
duced. Thus the time cost of changing a key is O(1). Accord-
ing to Lemma 6, the nodes with index k (k ∈ [i ,n)) will be con-
structed, inserted into the tree and deleted from the tree at most
once, and the corresponding elements of the tree reference ar-
ray will be updated at most twice. Therefore, when computing
the i th row of Table 2, regarding the binary search tree and its
reference array, the time cost of delete and insert operations are
O((n− i ) log(n− i )), the time cost of updating the reference array,
constructing new nodes and updating keys of nodes are O(n − i )
and the total time cost is O((n−i ) log(n−i )). The time complexity
of getting all feasible velocity areas and corresponding trees and
tree reference arrays is therefore O(n2 logn). The space cost of
the binary search tree and tree reference array is O(n).

After the binary search tree of Ii− j is constructed, checking
whether Vi−( j+1) falls inside Ii− j involves the following steps:

(1) Compute the direction of
−−−−−−−−→
Ri Vi−( j+1). (2) Search on the tree

of Ii− j for the node whose interval of angle contains the com-
puted direction in Step (1). (3) Get the disk index k (k ∈ [i , j ])
of the node found in Step (2) and test Vi−( j+1) against the Dk . If
Vi−( j+1) belongs to Dk , Vi−( j+1) will fall inside Ii− j ; else, Vi−( j+1)
will be outside Ii− j . For example, Figure 3 shows the partition of
the plane when deciding whether V2−6 is interior to I2−5 and Fig-
ure 7 shows the corresponding binary search tree and reference
array. Suppose R2 is set to be (3.31,0.23) according to previous

computation. From the data provided in Section 2, the coordi-
nate of V2−6 is computed to be (3.32,−1.23). The direction of−−−−−→
R2V2−6 is computed to be 270.32. The node on the tree whose
interval of angle contains 270.32 degree has an index 5. We then
check V2−6 against D5. Since di st (V5−6,V2−6) = 3.73 > εt = 3, it
can be concluded that V2−6 falls outside I2−5. Instead of check-
ing V2−6 against each of D2, D3, D4 and D5, we perform a binary
search and check V2−6 only against D5. The time complexity is
reduced. The time complexity of checking whether Vi−( j+1) falls
inside known Ii− j is O(log( j − i )). The time complexity of per-

forming all points in known convex region tests is O(n2 logn).

4.2.4 Construction of Points Linkage and Complexity

Algorithm 1 Graph construction with complexity improvement

Input: Trajectory T = (p1, p2, ..., pn ) and error tolerance εt
Output: Graph G

// Step 1
pn .step = 0, pn−1.step = 1, pn−1.next = pn
for i ← n −2 to 1 do

// Step 2
compute Ar ci (Ii−i+1) and Ar ci+1(Ii−i+1)
for j ← i +2 to n −1 do

compute Ar c j (Ii− j )
pi .step = pi+1.step +1, pi .next = pi+1
// Step 3
j ← i +1
compute Ii− j , initiate the cdll and lra
while j < n −1 and Ii− j 6=∅ do

j ← j +1
compute Ii− j , update cdll and lra

find reference point Ri
release cdll
// Step 4
j ← i +1
compute Ii− j , initiate the cdll, bst, lra and tra
while j < n and Ii− j 6=∅ do

check if Vi−( j+1) is interior to Ii− j by binary search
if Vi−( j+1) is interior to Ii− j and p j+1.step +1 < pi .step
then

pi .step = p j+1.step +1
pi .next = p j+1

j ← j +1
if j < n then

compute Ii− j , update cdll, bst, lra and tra

The computation of potentially useful arcs and feasible veloc-
ity areas are introduced in Section 4.2.2. The solution to the in-
clusion problem of feasible velocity area are described in Section
4.2.3. Complexity improvement is an integration of these major
components. The steps of graph construction with complexity
improvement to solve the min-# VVPTS problem of an input tra-
jectory with n points are summarized as follows.
• Step 1 Initiate the graph. Each point has a step number which

signifies the minimum steps it takes to traverse to the last
point of the trajectory. Each point also has a pointer point-
ing to its next point, which is used for linkage construction.

• Step 2 Compute the potentially useful arcs in Table 3. (see
Section 4.2.2)

• Step 3 For each i ∈ [1,n−1), compute Ii− j for j ∈ (i ,n) by up-
dating the circular doubly linked list (cdll) and list reference
array (lra) (see Section 4.2.2) to obtain the reference point Ri
(see Section 4.2.3).
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• Step 4 For each i ∈ [1,n −1), for j ∈ (i ,n), compute Ii− j while
maintaining the circular doubly linked list (cdll), binary search
tree (bst), list reference array (lra) and tree reference array
(tra), check whether Vi−( j+1) is interior to Ii− j by binary search
(see Section 4.2.3) and construct a corresponding link if Vi−( j+1)
is interior to Ii− j and p j+1.step+1 < pi .step, then set pi .step
to p j+1.step +1 and set pi .next to p j+1.

Complexity Analysis. The pseudo-code is given in Algorithm 1.
Step 1 takes O(1) time, Step 2 and 3 take O(n2) time and Step 4
takes O(n2 logn) time. Thus the graph construct takes O(n2 logn)
time in total. Solving the min-# VVPTS problem by the graph-
based approach with complexity improvement takes O(n2 logn)
time. The space complexity is O(n) to maintain a column of the
arc table and a row of the feasible velocity areas.

5. FINDING APPROXIMATE SOLUTION
The costs of the trajectory simplification algorithm can be re-

duced if the output is not required to be optimal. In this section, a
heuristic algorithm which has linear time and space complexities
and produces an output whose size has an upper bound will be
proposed. Our heuristic algorithm is based on the following ob-
servation of the relationship between the velocities of segments
on the original trajectory and the velocities of segments on a sim-
plification of the original trajectory. The proof of Lemma 7 could
be found in Section C in the appendix.

LEMMA 7. For the sub-trajectory T [i , j ] (1 ≤ i < j ≤ n) of T =
(p1, p2, . . . , pn ), let ∆Vx (T [i , j ]) and ∆Vy (T [i , j ]) be the range of
the x and y component of velocities of each segment from pi to p j .
i.e.,∆Vx (T [i , j ]) = maxi≤k< j Vx (pk pk+1)−mini≤k< j Vx (pk pk+1)
and∆Vy (T [i , j ]) = maxi≤k< j Vy (pk pk+1)−min1≤k< j Vy (pk pk+1).

If ∆V 2
x (T [i , j ])+∆V 2

y (T [i , j ]) ≤ ε2
t , then εv (pi p j ) ≤ εt .

Our heuristic algorithm is designed as follows. For input tra-
jectory T = (p1, p2, . . . , pn ) and error tolerance εt , define Ts to
be the variable storing the approximate solution of min-# VVPTS
and initialize Ts to be (p1). Initialize the starting point and tem-
porary ending point of the first segment in Ts to be p1 and p2.
For current starting point pi and temporary ending point p j (1 ≤
i < j ≤ n)
(1) If j = n, finalize the ending point of the current segment to
p j , append p j to Ts and return Ts .

(2) If j < n, if ∆V 2
x (T [i , j +1])+∆V 2

y (T [i , j +1]) ≤ ε2
t , set the tem-

porary ending point to p j+1; if∆V 2
x (T [i , j+1])+∆V 2

y (T [i , j+1]) >
ε2

t , finalize the ending point of the current segment to p j , append
p j to Ts and set the starting point and temporary ending point to
be p j and p j+1, respectively. Repeat this iterative process.
The pseudo-code is shown in Algorithm 2. By Lemma 7, εv (Ts ) ≤
εt and thus Ts is a εt -simplification of the input trajectory.
Complexity Analysis. The initialization steps of the algorithm
(i.e., the first 4 lines) take constant time. In the while-loop, both
condition (1) (line 6 to 9) and condition (2) (line 10 to 21) take
constant time. Condition (1) will be executed once and condition
(2) will be executed n −2 times. Therefore, the time complexity
of Algorithm 2 is O(n). The space complexity is also O(n).

The output of this heuristic algorithm has an upper bound on
its size which can be expressed by the size of the optimal solu-
tion to min-# VVPTS problem with a smaller error tolerance. The
proof of Lemma 8 could be found in Section D in the appendix.

LEMMA 8. Let Ts be the output of the new heuristic algorithm
when the error tolerance is εt and let Tr be the output of the opti-

mal algorithm for min-# VVPTS when the error tolerance is
p

2
4 εt .

|Ts | ≤ |Tr |.

Algorithm 2 Heuristic algorithm for min-# VVPTS

Input: Trajectory T = (p1, p2, . . . , pn ) and error tolerance εt
Output: The εt -simplification of T
1: // initialization
2: Ts ← (p1); i ← 1; j ← 2
3: maxVx (T [i , j ]),minVx (T [i , j ]) ←Vx (pi p j )
4: maxVy (T [i , j ]),minVy (T [i , j ]) ←Vy (pi p j )
5: while true do
6: // condition (1)
7: if j=n then
8: append p j to Ts
9: return Ts

10: // condition (2)
11: maxVx (T [i , j +1]) ← max(maxVx (T [i , j ]),Vx (p j p j+1))
12: minVx (T [i , j +1]) ← min(minVx (T [i , j ]),Vx (p j p j+1))
13: maxVy (T [i , j +1]) ← max(maxVy (T [i , j ]),Vy (p j p j+1))
14: minVy (T [i , j +1]) ← min(minVy (T [i , j ]),Vy (p j p j+1))

15: if ∆V 2
x (T [i , j +1])+∆V 2

y (T [i , j +1]) ≤ ε2
t then

16: j ← j +1
17: else
18: append p j to Ts
19: i ← j ; j ← j +1
20: maxVx (T [i , j ]),minVx (T [i , j ]) ←Vx (pi p j )
21: maxVy (T [i , j ]),minVy (T [i , j ]) ←Vy (pi p j )

6. EMPIRICAL STUDIES
We use two datasets, namely GeoLife [18, 16, 17] and T-Drive [14,

15]. GeoLife dataset stores the outdoor movements collected by
182 people by GPS loggers and GPS phones in over 5 years. T-
Drive dataset stores the movements of 10357 taxis in one week.
The statistics of the two datasets are summarized in Table 4. In
the whole Section 6, the unit of Ev is 10−4 × deg r ee/second ,
where deg r ee is the degree of latitude and longitude.

We study two optimal algorithms, namely direct implementa-
tion of graph-based approach and graph-based approach with
complexity improvement (VVPTS). We also study three approxi-
mate algorithms, including popular greedy, split algorithms and
the newly proposed heuristic algorithm. All algorithms are im-
plemented in C++ and the experiments are run on a Linux plat-
form with a 2.66GHz machine and 48GB RAM.

# of trajectories total # of points
average # of posi-

tions per trajectory
GeoLife 17,621 24,876,978 1,412
T-Drive 10,359 17,740,902 1,713

Table 4: Real datasets

Due to page limit, the experimental results on T-Drive can be
found in the full version of this paper [12]. The experimental re-
sults on T-Drive are similar as GeoLife. Sample running code can
be found at http://github.com/zhmeishi/VVPTS/ .

6.1 Error Measurements Comparison
In this part, for a simplified trajectory whose error under Ev is

bounded, we study its error under other common error metrics.
Closest Euclidean Distance Error Measurement. The theoreti-
cal bound (Lemma 1), which is max1≤k<m [di st (psk , psk+1 )/2+
εt∆T (psk psk+1 )] for Ts whose size is m, and the actual error are
computed. We vary the tolerance εt on {0.1,0.2,0.3,0.4,0.5}. The
results are shown in Figure 8(a). We observe that the empirical
closest Euclidean distance error is significantly smaller than the
theoretical bound and becomes stable when εt is large.
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Figure 8: Verification of theoretical error bounds (GeoLife)

SED Error Measurement. The theoretical bound (Lemma 2), which
is max1≤k<m [di st (psk , psk+1 )+ εt∆T (psk psk+1 )/2] for Ts whose
size is m, and the actual error are computed. We vary the tol-
erance εt on {0.1,0.2,0.3,0.4,0.5}. The results are shown in Fig-
ure 8(b). Similar with the closest Euclidean distance error, the
empirical SED error is also significantly smaller than the theoret-
ical bound.

Adaptive VVPTS. The theoretical bound of the direction-based
error and the distance-based error are related to the smallest speed
of segments of the trajectory. However, it is quite often that the
smallest speed becomes zero (two adjacent points coincide with
each other) and the upper-bounds do not exist. Thus, we adapt
the optimal VVPTS algorithm to preserve those adjacent points
which are too close to each other. The adaptation is operated as
follows.
(1) For a burst of consecutive static segments (speed is zero), only
keep the start point and the end point of this sub-trajectory.
(2) For all segments with a smaller speed than the given velocity-
vector-based error but larger than zero, keep those segments.
(3) Split the trajectory by the end points of the kept segments
mentioned before and simplify each sub-trajectory by VVPTS.
(4) Merge the simplified sub-trajectories and kept segments to be
the final simplified trajectory.
Direction-based Error Measurement. We first compute the small-
est speed of segments on T . Then, εt is set to be smaller than the
smallest speed. The theoretical bound (see Lemma 3), which is
arcsin(εt /min1≤i<n‖~V (pi pi+1)‖), and the actual error are com-
puted. εt is varied from small to large up to the value of the small-
est speed of segments on T . After that, εt is set to be greater than
the smallest speed. With increasing εt , the theoretical bound be-
comes π (unbounded) and the corresponding direction error of
Ts is computed. The results are shown in Figure 8(c). We can see
when the theoretical bound becomes π, the direction error is still
small when εt is not too large.
Distance-based Error Measurement. After the greatest speed of
segments on T is computed, εt is first set to be smaller than the
greatest speed. The theoretical bound (see Lemma 4), which is
1/(1 − εt /min1≤k<m maxsk≤i<sk+1

‖~V (pi pi+1)‖), and the actual
error are computed. εt is varied from small to large up to the
value of the greatest speed of segments on T . Then, εt is set to be

greater than the greatest speed. With increasing εt , the theoret-
ical bound becomes +∞ and the corresponding distance error
of Ts is computed. The results are shown in Figure 8(d). Simi-
larly, we can see even if the theoretical bound becomes +∞ (un-
bounded), the distance-based error is still in a small scale until
εt is larger than 1.2.

6.2 VVPTS vs. DPTS
In this section, we compare the adapted VVPTS introduced in

Section 6.1 with DPTS. In Section 6.1, we show that the direction
error of VVPTS is bounded when εt is smaller than the small-
est speed. Following the comparison method used by [8], we do
the comparison in terms of the direction error and the velocity
vector error, and enforce that the simplified trajectories from the
adapted VVPTS and DPTS have the same size.

We vary εt for VVPTS and the results are shown in Figure 9.
From Figure 9(a), we can see that the ratio of direction errors is
between 8.6 and 23.0. However, the ratio of velocity vector er-
rors is between 34.2 and 121.1 as shown in Figure 9(b), which is
significantly larger than that of VVPTS.
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Figure 9: Comparison with existing DPTS (GeoLife)

6.3 Performance of Algorithms
In this part, time cost, space cost and size ratio of algorithms

with different input trajectory size and error tolerance are exam-
ined. For the newly proposed heuristic algorithm, the theoretical
bound of its output (see Lemma 8) is verified.
Effect of |T |. Sizes of input trajectories are set to 2,000, 4,000,
6,000, 8,000 and 10,000 for optimal algorithms and are set to
20,000, 40,000, 60,000, 80,000 and 100,000 for approximate al-
gorithms. εt is fixed to 0.5. First, two optimal min-# VVPTS al-
gorithms, namely the graph-based approach and the approach
with complexity improvement (VVPTS) are run. The results are
shown in Figure 10. The VVPTS spends less time and less mem-
ory than the graph-based approach. Second, we test three ap-
proximate algorithms, namely greedy, split, and the newly pro-
posed heuristic algorithm. The results are shown in Figure 11.
From the experiment results, the new heuristic algorithm is the
fastest. Split algorithm is faster than the greedy algorithm. The
greedy algorithm takes much more time than the other two ap-
proximate algorithms. The three approximate algorithms have
the same linear space cost.
Effect of εt . We vary the tolerance εt on {0.1,0.2,0.4,0.8,1.6} and
fix the size of input trajectory to be 50,000. The results are shown
in Figure 12(a) and Figure 12(b). εt affects the graph-based ap-
proach and the greedy approach greatly since a larger εt would
make it more likely that a long sequence of consecutive segments
could be approximated with one segment, which makes the cost
of checking the error of that long sequence larger. For the split,
the time cost decreases as εt increases, because the recursion
depth is less when εt becomes larger.
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Figure 10: Effect of data size |T | on optimal algs (GeoLife)
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Figure 11: Effect of data size |T | on approx. algs (GeoLife)
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Figure 12: Effect of error tolerance εt on algs (GeoLife)

Compression Rate. The size ratio, which is defined to be |Ts |/|T |
where Ts is the simplification of T by different algorithms are
compared. The results are shown in Figure 13(a). The size ra-
tio decreases with increasing error tolerance. The size ratios of
approximate algorithms are larger than the optimal algorithms.
The theoretical bound (see Lemma 8) and actual value of the size
of simplified trajectory by the new heuristic algorithm are also
verified in Figure 13(a).
Approximation Error. We define T ′ to be the simplified trajec-
tory returned by the approximate algorithm on a given raw tra-
jectory and T∗ to be the simplified trajectory returned by an op-
timal algorithm on the same raw trajectory. The approximation
error of an approximate algorithm is defined to be |T ′/T∗|. The
results are shown in Figure 13(b). The heuristic algorithm has a
smaller approximation error than the split algorithm. The greedy
algorithm has the smallest approximation error. This is because
for a trajectory without frequent abrupt velocity variations, local
optimal solutions would be close to the global optimal solution.
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Figure 13: Compression rate and approximation errors (GeoLife)

Scalability Test. For the direct implementation of the graph-based
optimal approach, when the size of input is set to be 50,000, the
space cost is already 56GB, which is larger than 48GB RAM, and
thus it’s not scalable. To study the scalability of VVPTS, sizes of in-
put trajectories are increased to around 200,000, 400,000, 600,000,
800,000 and 1,000,000. The time complexities (O(n2 logn)) and
space complexities (O(n)) of VVPTS are verified and the results
are shown in Figure 14. To study the scalability of the approx-
imate algorithms, sizes of the input trajectories are increased to
around 2,000,000, 4,000,000, 6,000,000, 8,000,000 and 10,000,000.
The time complexities (O(n2) for greedy, O(n2) for split, and O(n)
for the new heuristic algorithm) are verified and the results are
shown in Figure 15. The new heuristic algorithm is the fastest
among three approximate algorithms.
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Figure 14: Scalability test on VVPTS (GeoLife)
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Figure 15: Scalability test on approx. algs (GeoLife)

7. CONCLUSION
This paper proposes the idea of simplifying a trajectory while

preserving its velocity information. A velocity-vector-based tra-
jectory simplification error measurement Ev is defined and its
relationships with some of the existing error measurements are
studied. We show that the optimal solution to the min-# VVPTS
problem can be obtained using O(n3) time and O(n2) space by
a direct adaption of graph-based approach. We develop an algo-
rithm to reduce the time cost to O(n2 logn) and the space cost
to O(n) and thoroughly describe its data structure (i.e., a doubly
linked list with its reference array and a binary search tree with
its reference array) and corresponding operations. We present
an algorithm with linear time and space costs which produces an
approximate solution to the min-# VVPTS problem and analyti-
cally prove that the size of the approximate solution has a certain
guarantee. We conduct experiments on real datasets (i.e., Geo-
life and T-Drive) to empirically prove the measurements relation-
ships and the theoretical bound of the compression rate for the
approximate algorithm. We also compared our adapted VVPTS
algorithm with DPTS in the experiments and test the efficiency
and the scalability of our two proposed methods.
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APPENDIX
A. PROOF OF LEMMA 1

PROOF. Let εcd (psk psk+1 ) = di st (pi , p ′
i ) (i ∈ [sk , sk+1]) where

p ′
i is the position on psk psk+1 which has the smallest Euclidean

distance from pi . pi p ′
i is perpendicular to psk psk+1 .

di st 2(pi , p ′
i )+di st 2(psk , p ′

i ) = di st 2(psk , pi )

di st 2(pi , p ′
i )+di st 2(p ′

i , psk+1 ) = di st 2(pi , psk+1 ), thus

2di st 2(pi , p ′
i ) = di st 2(psk , pi )+di st 2(pi , psk+1 )− [di st 2(psk , p ′

i )+
di st 2(p ′

i , psk+1 )]

2di st 2(pi , p ′
i ) ≤ [

∑sk+1−1
h=sk

di st (ph , ph+1)]2 −di st 2(psk , psk+1 )/2

di st 2(pi , p ′
i ) ≤ [

∑sk+1−1
h=sk

(‖~V (ph ph+1)‖∆T (ph ph+1))]2/2−di st 2(psk , psk+1 )/4

Si nce εv (psk psk+1 ) ≤ εt ,‖~V (psk psk+1 )‖ ≥ ‖~V (ph ph+1)‖−εt

di st 2(pi , p ′
i ) ≤ [(‖~V (psk psk+1 )‖+εt )∆T (psk psk+1 )]2/2−di st 2(psk , psk+1 )/4

di st 2(pi , p ′
i ) ≤ di st 2(psk , psk+1 )/4+ε2

t∆T 2(psk psk+1 )/2+
di st (psk , psk+1 )εt∆T (psk psk+1 )

di st 2(pi , p ′
i ) ≤ [di st (psk , psk+1 )/2+εt∆T (psk psk+1 )]2 −ε2

t∆T 2(psk psk+1 )/2

T her e f or e di st (pi , p ′
i ) ≤ di st (psk , psk+1 )/2+εt∆T (psk psk+1 )

We complete the proof.

B. PROOF OF LEMMA 2
PROOF. Let εsed (psk psk+1 ) = di st (pi , p ′

i ) (i ∈ [sk , sk+1]) where

p ′
i is the temporally synchronized position of pi on Ts .

di st (pi , p ′
i ) <∑i−1

h=sk
di st (ph , ph+1)+di st (psk , p ′

i )

di st (pi , p ′
i ) <∑sk+1−1

h=i
di st (ph , ph+1)+di st (p ′

i , psk+1 )

2di st (pi , p ′
i ) <∑sk+1−1

h=sk
di st (ph , ph+1)+di st (psk , psk+1 )

2di st (pi , p ′
i ) < [‖~V (psk psk+1 )‖+εt ]∆T (psk psk+1 )+di st (psk , psk+1 )

T her e f or e di st (pi , p ′
i ) < di st (psk , psk+1 )+εt∆T (psk psk+1 )/2

We complete the proof.

C. PROOF OF LEMMA 7
PROOF. Assume that ∆V 2

x (T [i , j ])+∆V 2
y (T [i , j ]) ≤ ε2

t . Let
maxVx (T [i , j ]) = maxi≤k< j Vx (pk pk+1), minVx (T [i , j ]) =
mini≤k< j Vx (pk pk+1), maxVy (T [i , j ]) = maxi≤k< j Vy (pk pk+1)
and minVy (T [i , j ]) = mini≤k< j Vy (pk pk+1). Since Vx (pi p j ) =
[
∑

i≤k< j Vx (pk pk+1)∆t (pk pk+1)]/∆t (pi p j ), minVx (T [i , j ]) ≤
Vx (pi p j ) ≤ maxVx (T [i , j ]). Similarly, minVy (T [i , j ]) ≤Vy (pi p j ) ≤
maxVy (T [i , j ]). Therefore, Vi− j and all Vk−(k+1) for k ∈ [i , j ) fall
inside the rectangle defined by vertices (in anticlockwise order)
(minVx (T [i , j ]),minVy (T [i , j ])), (maxVx (T [i , j ]),minVy (T [i , j ])),
(maxVx (T [i , j ]),maxVy (T [i , j ])), (minVx (T [i , j ]),maxVy (T [i , j ])).
The greatest distance between any two points inside the rectan-
gle is the length of the rectangle’s diagonal dmax , where d2

max =
(maxVx (T [i , j ])−minVx (T [i , j ]))2+(maxVy (T [i , j ])−minVy (T [i , j ]))2

≤ ε2
t . Thus εv (pi p j ) = maxi≤k< j di st (Vi− j ,Vk−(k+1)) ≤ dmax ≤

εt .
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D. PROOF OF LEMMA 8
PROOF. Let Ts = (ps1 , ps2 , . . . , psm ) and let Tr = (pr1 , pr2 , . . . , prl ).

Our aim is to prove that m ≤ l . We assume m > l . The proof has
two major steps. First, we prove that for k ∈ [1, l ),∆V 2

x (T [rk ,rk+1])+
∆V 2

y (T [rk ,rk+1]) ≤ ε2
t . According to the definition, εv (prk prk+1 ) ≤p

2
4 εt . Vrk−rk+1 falls inside Irk−(rk+1−1) when the error tolerance

is
p

2
4 εt . Irk−(rk+1−1), which is the common intersection of Di (i ∈

[rk ,rk+1)) whose center is Vi−(i+1) and radius is
p

2
4 εt , should be

non-empty. maxVx (T [rk ,rk+1])−
p

2
4 εt ≤ minVx (T [rk ,rk+1])+p

2
4 εt and maxVy (T [rk ,rk+1])−

p
2

4 εt ≤ minVy (T [rk ,rk+1])+
p

2
4 εt .

It can be derived that ∆V 2
x (T [rk ,rk+1])+∆V 2

y (T [rk ,rk+1]) ≤ ε2
t .

Second, we prove that rk ≤ sk (k ∈ [1, l )) by induction. Accord-
ing to the definition, r1 = s1 = 1. According to Algorithm 2, for si
(1 ≤ i < m), si+1 is the greatest index j such that ∆V 2

x (T [si , j ])+
∆V 2

y (T [si , j ]) ≤ ε2
t . As is proved in the first step, ∆V 2

x (T [r1,r2])+
∆V 2

y (T [r1,r2]) ≤ ε2
t . Therefore, r2 ≤ s2. For k = 3, there are two

possible cases: (1) If r3 ≤ s2, r3 < s3. (2) If r3 > s2, as is proved
in the first step, ∆V 2

x (T [r2,r3])+∆V 2
y (T [r2,r3]) ≤ ε2

t . Since s2 ∈
[r2,r3),∆V 2

x (T [s2,r3])+∆V 2
y (T [s2,r3]) ≤ ε2

t . Therefore r3 ≤ s3. By
induction, for 1 ≤ k ≤ l , rk ≤ sk . Since n = rl ≤ sl and m > l (as-
sumption), sm > n, which contradicts the definition that sm = n.
Thus, the assumption is wrong, indicating that m ≤ l .

E. EXPERIMENTAL RESULTS ON THE T-
DRIVE DATASETS

We provide the remaining experimental results of the perfor-
mance study on the optimal algorithms and approximate algo-
rithms on the T-Drive datasets in this part.
Effect of |T |. Sizes of input trajectories are set to 2,000, 4,000,
6,000, 8,000 and 10,000 for optimal algorithms and are set to
20,000, 40,000, 60,000, 80,000 and 100,000 for approximate al-
gorithms. εt is fixed to 0.5. The results are shown in Figure 16
and Figure 17, which are similar to those on GeoLife.
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Figure 16: Effect of data size |T | on optimal algs (T-Drive)
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Figure 17: Effect of data size |T | on approx. algs (T-Drive)
Effect of εt . We vary the tolerance εt on {0.5,1,2,4,8} and fix the

size of input trajectory to be 50,000. The results are shown in Fig-
ure 18(a) and Figure 18(b), which are similar to those on GeoLife.
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Figure 18: Effect of error tolerance εt on algs (T-Drive)

Scalability Test. The results are shown in Figure 20. Again, the
results are similar to those on GeoLife.
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Figure 19: Scalability test on VVPTS (T-Drive)
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Figure 20: Scalability test on approx. algs (T-Drive)
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