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ABSTRACT

Descriptor spaces have become an ubiquitous interaction
paradigm for music based on collections of audio samples.
However, most systems rely on a small predefined set of
descriptors, which the user is often required to understand
and choose from. There is no guarantee that the chosen
descriptors are relevant for a given collection. In addition,
this method does not scale to longer samples that require
higher-dimensional descriptions, which biases systems to-
wards the use of short samples. In this paper we propose
novel framework for automatic creation of interactive sound
spaces from sound collections using feature learning and di-
mensionality reduction. The framework is implemented as a
software library using the SuperCollider language. We com-
pare several algorithms and describe some example interfaces
for interacting with the resulting spaces. Our experiments
signal the potential of unsupervised algorithms for creating
data-driven musical interfaces.
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1. INTRODUCTION

Interacting with collections of digital audio samples is nowa-
days part of many music creation workflows. Samples can
come from a diversity of sources: from loops crafted for
dance music, to field recordings, personal improvisation,
commercial music releases, or instrument samples. Often,
a collection of samples will constitute the creative material
for one or several compositions or performances, imprinting
their specific sound. One such collection can be defined as
a corpus. Within this paper we refer to a sound corpus
as a collection of samples that could be united by as little
as a practitioner putting them together with some musical
intent. In practice, sound corpora are often made of samples
that are similar in some way, or share a common origin.
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While there has been significant research on signal process-
ing and machine learning for dealing with audio, particularly
in fields such as music information retrieval, the repertoire
of tools currently available to music makers for dealing with
sound corpora is still limited, requiring manual annotation,
bookkeeping and editing.

A significant amount of research has followed the adap-
tation of corpus-based concatenative synthesis and musical
mosaicing to open-ended music creation systems [16, 1]. The
interface is typically based in an interactive visualization of
the corpus. These systems suffer from several limitations,
partly inherited from the roots in realistic synthesis.

First, they often rely on specific descriptors (e.g. pitch,
spectral centroid), typically requiring the user to choose two
or three of them from a pre-defined set. This requires an
understanding of concepts related with signal processing and
psychoacoustics. Moreover, there is no assurance that a given
sound corpus will have an interesting variation along a given
set of descriptors. For example, a pitch descriptor may be
irrelevant for a corpus obtained from environmental sounds.
In general, a corpus may have its own sonic dimensions
beyond a particular offer of descriptors.

Second, such descriptors are typically obtained from a
frame-level representation, which means they may vary sig-
nificantly over time. A single value (typically the average
over a sequence of frames) may be relevant for very short
sound, but it will not be as useful for longer samples. De-
scribing a longer sound (e.g. in the order of a few seconds)
typically involves computing several statistics or other ways
of describing a trajectory, which increases the number of
parameters needed to represent each sound.

As an attempt towards solving both these issues, in this
paper we propose to automate the analysis so that the gener-
ation of the interaction space is driven by the corpus rather
than by pre-existing assumptions about pitch or timbre. The
proposed framework allows learning both the base short-term
features, and the mapping of high-dimensional summaries
of sounds to a low-dimensional space that can be used in
interactive applications. The framework is implemented as
a library in the SuperCollider language.

The rest of the paper is organized as follows. In the
next section we briefly review existing work related with
the use of feature spaces for interactive applications. We
then review dimensionality reduction algorithms that have
been previously applied to sounds. In Section 3, we describe
the proposed method for automatically generating feature
spaces from sound corpora. In Section 4, we compare sev-
eral dimensionality reduction techniques and two different
base features in a visualization experiment and a subjective
reflective practice experiment. In Section 5, we describe
several interfaces for interacting with the generated spaces,
and in Section 6 we draw some conclusions.



2. BACKGROUND
2.1 Musical interaction with sound spaces

The application of sound spaces (which can be defined as spa-
tial representations of sound corpora through content-based
descriptors) to playable musical interfaces was presented in
[15], using two-dimensional plots and indirect 2D control
surfaces. Our work follows a similar direction, but we ex-
plore a bottom-up approach where the space is automatically
generated. We also demonstrate several interfaces based on
currently popular devices with multi-touch screens. Our use
case should be distinguished from more functional sound
browsing interfaces (e.g. [8]), in that we aim to create in-
terfaces that can be directly used in musical composition
and performance. Also, our framework includes tools for
adaptive segmentation of the corpus, supporting the whole
path from a bunch of recordings to an interactive sound
space.

In the next section we overview the most common di-
mensionality reduction algorithms that have been used for
sounds. Some of these were compared using algorithmic
measures in [2]. Our work is more concerned with assessing
the musical affordances of these different ways for visualizing
corpora.

2.2 Dimensionality reduction

A crucial element of our system that has seen less research
in the context of creative interactive systems is a dimension-
ality reduction algorithm that projects a high-dimensional
vector, resulting from summarizing a sequence of frame-level
descriptors, to a lower-dimensional space that can be used
to interact with the corpus. Let X be the matrix obtained
by stacking the set of points x;...x, representing the sounds
in the corpus. The points typically do not fully span the
space. We seek to obtain a low-dimensional set of vectors
y;...yn that preserves the original distances between points.
Many algorithms have been used, mainly from machine
learning and data visualization communities, for visualizing
collections of sounds.

2.2.1 Principal component analysis (PCA)

PCA [9] is perhaps the most widely used data reduction
technique. It maps data to a set of uncorrelated features
that are ranked in terms how much of the variance in the
input data each one accounts for. These features can be
obtained by finding the eigenvectors corresponding to the
largest eigenvalues of the covariance matrix of XX T (where
T is the matrix transpose).

2.2.2  Multidimensional scaling (MDS)

MDS [19] works by mapping a similarity matrix of pairwise
distances in the original space Dz to a matrix of distances in
the low-dimension space Dy. The mapping can be expressed
as an optimization problem that minimizes a stress function
representing the difference between Dz and Dy,

St'I‘ESS = Z(Dyw — D.’Ei,]')z
i#]

(1)

MDS techniques are widely used in statistics, and have been
used notably in perceptual studies of timbre [10].

2.2.3 Isomap

Isomap [18] can be regarded as an extension of MDS, but
instead of trying to directly reproduce distances from the
input similarity matrix, it derives new distances by creating
a k-nearest neighbors graph (k-NNG) of the input points.
New distances are then found from the shortest paths in the
graph, and finally MDS is used to try and reproduce these
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distances in the lower-dimensional space. Isomap was used
in [3] to derive mappings between synthesis parameters and
audio features.

2.2.4  Force-directed graph layouts

Algorithms used generally to visualize graphs can be used
to represent k-NNGs of audio samples. A common strategy
is to use a simulation of attraction and repulsion forces
based on the edges connected to each node. One of the
most popular is the Fruchterman-Reingold (FR) algorithm
[6]. Graph layout algorithms were used for exploring sounds
in the Freesound database [13], as well as for navigation
inspired by corpus-based synthesis [17].

225 tSNE

t-SNE [21] is a more recent, popular algorithm which is
specialized for visualizing high-dimensional data. It uses a
probabilistic model of similarity, which expresses the likeli-
hood of a point, x;, neighboring a second point, z;, as:

_ _exp(=lai — ]*/207)
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where o; is the standard deviation of the Gaussian centered
at x;. A ‘perplexity‘’ parameter allows the user to control
the values of o;. Similarity between points y;...y» in the
lower-dimensional space is expressed as a probability using
a Student t-distribution as:

g = (L llys — sl .
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t-SNE then tries to minimize the difference between the
joint probability distribution of the input points, P, and the
joint probability distribution of the mapped points, @ by
minimizing the Kullback-Leibler divergence:

Dicr(PlIQ) = >3 pijlog 22
% J

dij
using gradient descent. This algorithm was used also for
Freesound sounds in [4], and for visualizing textural sounds
in [7].

2.2.6 Self-organizing Maps (SOM)

A SOM [22] uses an artificial neural network to learn a map-
ping between X and a lower, usually 2-dimensional arrange-
ment of points. The network is trained with a ‘winner-takes-
all’ approach so that training examples become associated
with one point in the output map. Winning neurons during
training are selected on the basis of the Euclidean distance
between the input training vector, x, and a neuron’s weight
vector, w. The weights of each neuron are then updated as
a function of the distance of that neuron from the training
input:

(2)

Pij

(3)

(4)

wn = wn +n(t)h(i)(x — wn) ()

where 7)(t) is the learning rate, and h(%) is a function that
returns high values for neurons close to the winning neuron
in the new space, and lower values for more distant ones.
Since the SOM collapses input points to one of the points
in the output grid, a common strategy is to add some jitter
so that outputs cluster around the grid point corresponding
to their winning neuron. SOMs were used to visualize drum
sample libraries in [11] and sound effect collections in [8].

3. GENERATING ADAPTIVE SPACES

In this section we describe the proposed framework for gen-
erating musical interfaces from an audio corpus. The central
piece of the implementation is a SuperCollider library that



Feature Model

long recording

F
=

STFT Feature Learning

A\ 4
| Feature Extraction

\ 4

IDimensionalnyreduclion l<—«| Summarization '4—{ Segmentation I

Xy

-

sound id

Visualization
interface

Figure 1: Adaptive sound space mapping workflow

supports creative workflows for analysis, segmentation and
mapping of sound coropra to low-dimensional spaces. The
resulting databases can be used for music creation and/or
performance by visual interaction either from SuperCollider
or from a tablet computer by rapid development of web in-
terfaces. The library allows the use of several plug-in objects
implemented in the Fluid Decomposition Toolbox [20], as
well as interfacing with Python for using further analysis
and dimensionality reduction algorithms. We now describe
the main elements of the full workflow.

3.1 Overview

The process is summarized in Figure 1. The input of the
system can be either a long recording or a collection of
samples, or any combination. All the audio in the corpus is
analyzed through a short-time Fourier transform (STFT),
and the resulting frames used for learning a frame-level
feature. The resulting model then produces a feature vector
for each spectral frame in each input file. A segmentation
algorithm may then be used to extract units from longer
recordings. For each segment, frame-level features are then
aggregated to a higher-dimension segment-level descriptor.
A dimensionality reduction algorithm is then applied to
project the data to a manageable number of dimensions.
The resulting vectors are indexed using a KD-tree for rapid
searching from client applications.

3.2 Feature extraction

The main challenge for the feature extraction step is the
potential variety of input signals. In order to facilitate dif-
ferent representations, our system allows the use of several
features. By default, a neural autoencoder is used to com-
press the STFT frames into lower dimension vectors. The
model is trained for each corpus, so that the user can choose
the number of input and output dimensions by setting the
STFT parameters, and the number of hidden units. In our
experiments (Section 4) we used two hidden layers resulting
in a hidden representation of 13 dimensions, in order to
compare with the conventional size of Mel-Frequency Cep-
strum Coefficients (MFCCs). The architecture is based on
contractive autoencoders [12].

3.3 Segmentation

Common strategies for splitting longer recordings into playable
corpora are fixed-length segmentation and onset detection.
In order to obtain a more versatile segmentation, we used
Foote’s classic novelty algorithm [5] which can be used with
any frame-level feature. This allows us to adapt to the
feature used in the previous step. For a given sequence of
feature vectors, the algorithm computes a cosine similarity
matrix and slides a 2D checkerboard kernel through the
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diagonal, which produces a novelty curve. In order to obtain
the segments, the algorithm requires choosing the size of the
kernel and a threshold. We found these parameters to be
musically useful for determining a general length of the re-
sulting segments, while still adapting to the input material.
For analyzing material with traditional music structures,
onset detection can also be used.

3.4 Summarization

In order to compare different segments in the corpus, the
time series of frame-level features need to be summarized
into a common space. Our system currently uses basic statis-
tics (mean, standard deviation, minimum and maximum),
which are applied to both the raw features and their first
derivative. For thirteen dimensions in the frame-level feature,
this renders a vector of 104 dimensions.

3.5 Dimensionality reduction

The final vector for each unit in the corpus is obtained by
projecting it using one of the algorithms outlined in Section
2.2.

4. COMPARING ALGORITHMS

Many dimensionality reduction algorithms have been used in
the literature related to sounds, but there is in general little
guidance as to which of them would work in a particular
situation related to corpus-based music creation. While
some empirical quality metrics have been proposed (see e.g.
[2]), there is no evidence that they are particularly suited
for creative tasks. Moreover, they are often related in some
way to the measures the algorithms try to optimize (i.e. how
close the low-dimensional space reproduces similarities in
the original space), which may be misleading with respect
to the qualities of different algorithms.

In this paper, we are interested in the musical affordances
offered by both the dimensionality reduction algorithms
and the feature extraction algorithms. In this context, it
is difficult to imagine one particular algorithm being “the
best”. Instead, the choice will generally be rather subjective,
and dependent on the type of sound materials and musical
objectives. Hence, our assessment is based on two qualitative
experiments: a visualization experiment and a subjective
listening experiment using the proposed system. Through
these, we identified three main dimensions of interest. First,
we found the main musical affordance to be the separation of
sounds into clusters of perceptually similar sounds. Second,
a practical interest is the efficiency in utilization of screen
space. Finally, computational efficiency has also a significant
impact in the usability of the system in creative workflows,
although this can be influenced by implementation aspects
outside of the scope of this work.

4.1 Visualization

In addition to similarities in the original space, an important
requirement for dimensionality reduction is that it helps
uncover existing structures in the data. In this sense, di-
mensionality reduction is often used as pre-processing for
classification tasks, and classification of labelled data can
be used to assess the quality of the low-dimensional repre-
sentations. We devised the visualization experiment using
three annotated datasets in order to see how the different
algorithms would allow distinguishing different classes ar-
tificially mixed in a dataset, in addition to the different
shapes generated by each algorithm. The first dataset was
composed of 750 drum samples obtained from commercial
sampler programs. The second dataset was obtained as a
subset of the SOL database of musical instrument articula-
tion sounds that is distributed with the Orchids framework



for computer-aided orchestration'. We selected five vio-
lin articulations that have more than 100 examples, which
resulted in 1239 sounds. Finally, we created a dataset of
environmental sounds from the Urban Sounds dataset [14].
Since these sounds often have background noise and are only
weakly related to the label, we selected 4 classes that seemed
easier to distinguish.

For each dataset, we analyzed all the sounds using both
MFCC and autoencoder (AE) features, and summarized
each file as described in Section 3.4. In both cases, we used
windows of 20 ms and hops of 10 ms for the STFT. The
resulting vectors of 104 dimensions were then reduced to 2
by each of the algorithms. We used the implementations
available in the scikit-learn Python library?, along with the
MiniSom? library for the SOM algorithm, and Networkz?
for the FR algorithm. We manually tweaked the parameters
of each algorithm to the setting with best results.

The results can be seen in Figures 2 and 3 (the plots had
to be reduced due to space constraints, for larger images,
we invite the reader to consult the companion page of this
paper®).

From visual inspection, the separation of classes is gener-
ally worse with PCA and MDS. MFCC features generally
result in better separation of classes but also more irregular
shapes, while AE features result in similar local distributions
with respect to the classes, but more efficient spatial distri-
bution. For both features, t-SNE, SOM and FR (labelled
as Graph) tend to have a better balance between separation
and space utilization.

4.2 Assessing Musical Affordances

In order to develop a more concrete understanding of the
difference between features and algorithms in a practical
situation, we experimented creating several playable sound
spaces, this time with several unlabelled sound collections,
using the SuperCollider implementation. We were interested
in how the parameters of each algorithm would affect the vi-
sualization in an interactive setting. In general, we observed
that, compared with CataRT [16], the resulting visualiza-
tions produce more meaningful clusters, and perceptually
similar sounds were placed together. On the other hand, the
axes did not make as much sense globally as in CataRT but,
unless the corpus had a very interesting variation along a
given descriptor, it was preferable to have areas of similar
sounds. When dealing with collections of pitched instrument
sounds, we noted that sounds with overlapping harmonics
(i.e. same pitch, fifth or octave) tended to cluster together.
This still happened with MFCC features, but it was more
salient with AE features. While t-SNE generally gave good
results, the execution time was significantly slower. Mean-
while, the Isomap and FR algorithms ran faster and had
a common behavior with respect to the number of neigh-
bors. Very small numbers (below 5) were ‘risky’, resulting
in perceptually close clusters but low space utilization, and
variable distance between similar clusters. Between 5 and
10, both algorithms produced paths that would have mean-
ingful perceptual changes along their main direction, but
with still low space occupation. Increasing the number of
neighbors to between 10 and 50 was an overall safer choice
for space efficiency, while higher numbers started to pro-
duce less meaningful visualizations. These values can be
related to the size of the dataset, which in our case oscillated

"ttp://forumnet.ircam.fr/product/orchids-en/
’https://scikit-learn.org/
*https://github.com/JustGlowing/minisom
‘https://networkx.github.io/
"http://flucoma.org/NIME-2019/
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Figure 2: Visualization of each dataset (top: drums,
middle: SOL, bottom: urban) using MFCC features

around a thousand sounds. With respect to the SOM, its
main interest lies in the ability to cluster sounds in a 2D
grid. In this sense, the space utilization could be controlled
by the amount of jitter. However, the main parameter of
interest was the number of output units. The difficulty of
this parameter is that it ‘saturates’, and at some point the
algorithm will stop populating output units. At the same
time, high values ensure all sounds in the same cluster are
related.

S. MUSICAL INTERFACES

In the previous sections we have described a framework
for adaptive mapping of sound corpora to low-dimensional
spaces. Our goal is to facilitate the creation of musical
interfaces driven by the selection of sounds, with minimal
assumptions. Given the current ubiquity of touchscreen com-
puters, which are increasingly being used as interfaces for
music creation applications, we were interested in the pos-
sibility of devising touchscreen-based musical instruments
driven by sound corpora. We extended our framework us-
ing the supercollider.js® client library. This allowed us to
explore rapid development of web-based interfaces that can
be quickly deployed to current tablet computers. Analysis,
segmentation and mapping can be done interactively within
SuperCollider. The resulting dataset is then exported to
the web application. The web applications run on a tablet
computer and communicate with a SuperCollider server that
holds all the sounds in memory. This provides a scalable and

Shttps://github.com/crucialfelix/supercolliderjs
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Figure 3: Visualization of each dataset (top: drums,
middle: SOL, bottom: urban) using autoencoder
features

convenient setup for devising musical instruments with large
corpora. The code for this system can be obtained from
https://github.com/flucoma/FluidCorpusMap. We now
describe three example instruments that show its potential
for creating data-driven musical interfaces.

5.1 Multi-touch scatterplot

The first example is based on the tradition of using a scat-
terplot to represent the corpus [16][1]. Here, we used t-SNE
to map the autoencoder features to three dimensions. The
third dimension was mapped to color. The size of the circles
represents the length of the file. An example can be seen in
Figure 4, using a corpus of 700 sounds of bowed cardboard
box. Using a multi-touch screen allows up to 10 simultane-
ous voices, turning any collection of samples into a versatile
sampler instrument.

5.2 Data-driven Multi-slider

In order to explore the possibilities of using more than two
or three dimensions, we developed a multi-slider interface,
where each slider represents an axis of a multi-dimensional
space. The histogram of the points in each dimension is
visualized in each slider (Figure 5). The mapping was again
obtained with t-SNE. The result is that the relations be-
tween axes are disconnected, as the space is allocated inde-
pendently for each slider. We experimented with a dataset
of 500 sounds corresponding to a single note from many
different instruments in the SOL collection, using a granular
synthesizer reading from the buffer selected by the multi-
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Figure 4: Multi-touch scatterplot

Figure 5: Data-driven multislider

slider at any time. While it was not very easy to make sense
of each dimension, the sliders worked as a search interface.
In this sense, it was easy to learn the locations of particular
sonorities. Also, the histogram visualization made it easy
to control the amount of change produced by a given ges-
ture. This interface was also less visually driven than the
scatterplot, allowing the user to pay more attention to the
resulting sounds.

5.3 Self-organized drum machine

Finally, given the current popularity of grid-based interfaces,
we were interested to try the mapping of two-dimensional
grids generated by SOMs. In order to visualize the sounds of
each cluster, we used a second dimensionality-reduction step
using the FR algorithm. The interface works like a regular
drum machine (Figure 6), pads can be locked for program-
ming a pattern, or unlocked to become 2D sliders for varying
their sound. The result is consistent with common rhythm
programming experiences, except that the two-dimensional
map provides a more intuitive interface than just scrolling
through a list, allowing the user to easily navigate a large
collection of sounds while playing a pattern in real time.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel framework for adap-
tive mapping of sound collections that facilitates the devel-
opment of data-driven musical interfaces. The framework is
implemented as a software library, including all the neces-
sary elements for obtaining playable interfaces from a set of
audio files. We have described three example interfaces that
demonstrate the potential of our approach. Given the num-
ber of options for the dimensionality reduction step, which



Figure 6: Self-organized drum machine

has not been thoroughly investigated for the case of creative
interactive systems, we have mainly focused on qualitative
evaluation of different dimensionality reduction algorithms.
As future work, we hope to review the constraints of this
approach with respect to the number and duration of sounds
in the collection. Given the simplicity of the feature learning
step, we are also considering more advanced pipelines.
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