
Cognitive Issues in Computer Music Programming

Hiroki NISHINO
Graduate School for Integrative

Sciences and Engineering
National University of Singapore

g0901876@nus.edu.sg

ABSTRACT
Programming Languages are the oldest ‘new interface for
music expression’ in computer music history. Both composers
and researchers in computer music still have considerable
interests in computer music programming environments.
However, while many researchers focus on such issues as
efficiency, new paradigm, or new features in computer music
programming, cognitive aspects of computer music
programming has been rarely discussed. Such ‘cognitive issues’
are of importance when design or usability in computer music
programming must be considered. By contextualizing computer
music programming in the psychology of programming, it is
made possible to borrow the technical terms and theoretical
framework from the previous research in the field, which would
be helpful to clarify the problems related to cognitive
ergonomics and also beneficial to design a new programming
environment with better usability in computer music.

Keywords
Computer music, programming language, the psychology of
programming, usability

1. INTRODUCTION
Computer Music languages have been playing significant roles
in musical creation since the birth of computer music in its
history. Computer music programming is also very interesting
in that computer music is at least one of the first fields, where a
programming language was designed for artists as end-users,
even when people hardly had access to computers. Even the
design of Music V, one of the earliest computer music
languages developed at Bell Telephone Laboratories, was
enough comprehensible for musicians of that time without
professional skills in computing, as seen in [14]. Since then,
programming languages for musicians has been one of the main
interests both from researchers and artists to explore the
possibility of new territories in computer music.
 Yet, the cognitive aspects of computer music programming
have rarely been discussed in computer music community. The
usability issues are seldom justified by the previous research in
the psychology of programming and mostly supported only by
the programming concepts or rather practical experience.
 Such a lack in contextualization of the cognitive aspects of
computer music programming can be significant obstacles for
further research in usability issues.
 By borrowing the technical terms and the theories from the

previous research in the psychology of programming, the
problems in computer music programming can be clarified so
that the future research can be more beneficial to improve the
designs of programming languages and environments for better
usability in computer music programming activity.

2. RELATED WORK
In this section, we briefly describe the previous research in the
psychology of programming so to contextualize computer
music programming by the related work in the later section.

2.1 What is a Computer Program?
2.1.1 The surface structure and the deep structure
From a psychological point of view, the surface structure and
the deep structure of a computer program must be
distinguished. While the surface structure is about textual
structure or how surface units are arranged in a program, the
deep structure is based on the relations and the abstraction in a
program, such as control flow, data flow and hierarchical
organization of goal and sub-goals. A computer program is
multi-dimensional in that it contains different types of deep
structures.

2.1.2 Mental model
Mental model is a traditional approach in HCI to explain the
understanding and reasoning by users about the system. Halsz
and Moran’s paper on mental models of a simple calculator is
one of the traditional examples [12]. Mental model approach is
also extended to programming languages. Détienne describes
“learning a programming language consists, therefore, in
acquiring not only the syntax of language but the rules of
operation of the virtual machine underlying it” [9, p.17].

2.2 Program Design
2.2.1 Problem domain and computing domain
Program design has been studied mostly as problem-solving
activity and considered to be composed of three phases; a
programmer has to understanding a problem first. Then,
research and development of the solution is conducted. Finally,
he codes the solution. However, in the real world situation of
programming design, programmers go back and forth between
these phases as well as other design activities do.

2.2.2 Ill-defined problem
Program design activity is generally considered ‘ill-defined’,
the characteristic of which is “one that addresses complex
issues and thus cannot easily be described in a concise,
complete manner” [18]. The goal of an ill-defined problem is
often vague and some constraints and criteria may not be
recognized at the beginning. For instance, a programmer may
be able to notice that some specification is missing only after he
started the design and in the course of implementing the
solution for the specification, new constraints may be added to
other parts of the problem.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’11, 30 May–1 June 2011, Oslo, Norway.
Copyright remains with the author(s).

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

499

Furthermore, there can be several different solutions for one ill-
defined problem and there is hardly an objective true-or-false
evaluation. Instead, the solutions can be evaluated by good/bad
or appropriate/inappropriate assessments.

2.2.3 Software design activity
We briefly describe three different theoretical approaches to
explain software design activity, i.e. knowledge-centered
approach, strategy-centered approach and organization-centered
approach. Detailed explanations can be found in [9, 13].
 Knowledge-centered approaches focus on hierarchically
organized knowledge stored in memory and programming
activity is considered as activation of schemas; programmers
utilize available schemas and combining them to solve the
programming problems.
 Strategy-centered approach focuses on the strategies that
programmers take to solve the problem. For instance, in a
problem that consists of hierarchically ordered sub-problems
and sub-sub-problems, a programmer may work on top-down
or bottom-up. The programmer may work on the end part of
program first, then goes back to the beginning (forward vs
backward development), or work bread-first or depth-first in
hierarchical organization of sub-problems.
 Organization-centered approach corresponds to the
organization of the design activity and there are two models for
this approach. One is the hierarchical model, influenced by
structured programming, which models programming activity
as problem solving of top-down, breadth-first searching process
for a solution. On the other hand, the opportunistic model is
based on the empirical studies on how a programmer deviates
from hierarchical model; a programmer may write the part of
the solution that they think is most crucial, not in top-down,
breadth-first order. Green and his colleagues describe and
explain such a behavior in [10].

2.3 Program Comprehension
2.3.1 Program Text Comprehension
As in programming design activity, several different
approaches exist to explain program text comprehension. The
theoretical framework of program text comprehension is largely
based on natural text comprehension and there are several
different approaches as in the case of programming activity.
 In structural approach, superstructures (or a generic structure
of a program) can play a significant role in comprehension
process. Rist explains that the basic structure is made of input,
calculate and output [19] and structural schema on such a basic
structure guides the comprehension.
 Détienne tried experimental validation of a functional
approach, according to which program comprehension is
processed top-down by activating knowledge schemas [8]. She
also described the importance of mental model approach, in
which “to understand a program means to construct a detailed
model of the situation” as “a theoretical approach that
potentially has the predictive and explanatory power to account
for how the comprehension activity is determined by the task”
and unlike the other models, mental model “reflects the entities
of the problem domain and their relationships, that is to say,
the problem goals and the flow of data.”[9, pp93- 103].

2.3.2 Rules of discourse
Rules of discourse also play a significant role in program
comprehension. Some rules of discourse can activate program
schemas as in functional model in the previous chapter. Mullen
tries to explain the importance of the rules of discourse by
several other factors, such as chunks, split-attention effect,

analogical reasoning etc. [15]. We pick up and briefly describe
some of the examples by Mullen here below.
 ‘Chunk’ is “a collection of memory elements having strong
associations with one another, but weak association with
elements within other chunks” [15]. One of the rules of
discourse that programmers share is separating each meaning
full groups of code each other. Grouping the parts of the
program together according to how mind chunks the related
elements can help understanding of the code; e.g. the code can
be easily understood if blank lines separate a group of four
lines, which initialize one object, from the other part of the
code.
 Another rule of discourse is to keep the size of functions
reasonable and not to distribute them sparsely in the different
files as possible. Mullen explains this by the split attention
effect, which makes the information difficult to comprehend by
occurrence of indirection. For an example, if text that supports
a picture is presented separately from the picture it is more
difficult to comprehend/learn than if the text were displayed
meaningfully upon the picture itself [15]. In a program text, if a
part of code contains a lot of function calls to very small
functions that are distributed among many different locations in
the code, such a part of the code can cause lots of indirection
and penalty for short-term memory, resulting in the split
attention effect to decrease comprehensibility of the program.
 Thus, the rules of discourse that programmers share can be
also endorsed by the theoretical framework and play significant
role in program comprehension.

2.3.3 Cognitive Fit
Cognitive fit theory developed by Vessey is the theory on the
correspondence between the task performance and the
representation format. For instance, graphical representations
emphasize spatial information while tables emphasize symbolic
information [21] and then a symbolic task can be performed
better with tabular representation than with graphical
representation and vice verse. Thus, fit and gap between a task
and the representation of information is a significant factor in
comprehension.
 Some study reports the effect alike also in a textual
programming language. Green showed nested conditionals
favored sequence information (“Given this input, what
happens?) and Gilmore and Green found that a more
declarative programming language gave improved access to
circumstantial information (“Given this result, what do we
know about the input?”) [11].

2.3.4 Dual-task interference
Simultaneously working on two tasks can cause the
interference between the given two tasks and the performance
can be relatively worse than when each task is processed one
after the other, not simultaneously [17]. Such dual-task
interference has been observed between many different
activities.
 Shaft and Vessey considered the modification task of a
program as dual-task interference situation and cognitive fit
between comprehension and modification [20].

2.4 End User Programming
End-user software engineering or end-user programming is
even considered as ‘the most common form of programming in
use today’ [2] and becoming an important research topic both
in HCI and software engineering community. End-users who
program for everyday work may not be expert in programming
but they certainly are expert in their professions. Such an end-
user is called a ‘domain-expert end-user’ or simply ‘expert end-
user’.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

500

 As Blackwell describes, “an important characteristic of end-
user programming research is that end-user programmers
should not be regarded as “deficient” computer programmers,
but recognized as experts in their own right and in their own
domain of work. They might only write programs occasionally
or casually, but it is possible that they have done so for many
years’, and thus the research on first year computer science
students or the research on ‘natural’ programming languages by
studying kids before learning any other language ’may not be
directly relevant to needs of expert end-user programmers’ [1].

3. COGNITIVE ISSUES IN COMPUTER
MUSIC PROGRAMMING ACTIVITY
In this section, we contextualize several aspects of computer
music programming in the framework of the related work
described in the previous chapters and also propose several
interesting characteristics of computer music programming.

3.1 Program Design
3.1.1 Ill-defined problem, exploratory design, and
the aesthetics of failure in computer music
Computer music programming also shares lots of
characteristics with general programming activity and many
problems in computer music are also ill-defined as in other
programming activity. Yet the fact that the goal of a program
design tasks is often composing a new computer music piece
also bring some more interesting issues to be considered.
 The constraints in ill-defined problems may be vague or even
unrecognized at all when the program design activity is begun.
Moreover, a goal of computer music programming is mostly a
new computer music piece and this program design activity is
highly exploratory a lot more than general programming tasks.
A Composer may completely change the goal of the
programming tasks; He might begin programming tasks with a
short piece for tape in mind, but during his exploration, he may
completely change the original plan and start writing for piano
and interactive system. Even a bug or an error that a composer
encounters can change the whole goal of the programming task.
Cascone describes such a creative ‘failure’ in [4].
 Such a highly exploratory design activity in computer music
programming should be considered as a significant
characteristic in designing a new programming environment.

3.1.2 Two languages in one environment
As mentioned in the previous section, a programmer is assumed
to have the mental models of a device. One of the special
characteristics in computer music programming, especially of
textual computer music programming languages, is that they
often mix two different programming paradigms into one
language, each of which is based on a different mental model;
while the synthesis models are normally declaratively defined,
the other part of computer music programming language are
usually based on different paradigm, such as instrument-score
style, imperative programming or object-oriented
programming.
 While this feature may facilitate problem-solving on most of
problems in computer music programming, it also may cause
difficulty if the problems lies across the boundary of both
domains of two languages.

3.2 Program Comprehension
3.2.1 Program Text Comprehension
Computer program is multi-dimensional and this is also true to
computer music. Interestingly, computer music programming
adds one more deep structure that is not in general purpose

programming – musical structure, such as phrases, structures,
forms, timbre, and the like. How to deal with this musical
dimension should be highlighted as a significant factor in
usability of computer music programming.
 For instance, chunking the group of notes in one phrase in a
c-sound score file may help the comprehension of the phrases
so to recover the mental representation of the score, but such
chunking also significantly damage to represent the relationship
between the notes in different phrases; e.g. chunking one phrase
in two voices of counterpoint makes it harder to grasp vertical
relationship between the notes in two melodies while the
melody in one voice can be clear described.
 Recovering such deep structure of music contents in a
program may be a difficult task, yet improvement in
programming language syntax may be potentially beneficial to
help recovering the musical representation from a program text.
 However, if the musical contents are generated by certain
algorithms and not explicit in the program text, it can even be
almost impossible to imagine the musical output of the
program, since mental or situational models related to musical
events can be hardly recovered only by program texts.

3.2.2 Cognitive fit and cognitive styles
Carter and his colleagues described a cognitive style of
composers in [3], relating it to the information processing
strategy that the composers take. For instance, as for one of the
characteristics called global/analytic, which corresponds to the
composers’ composition approaches; Those composers
characterized as global tend to compose plan for the pieces they
are working on, whereas other type of composers characterized
as intuitive, in a more improvisatory approach. Such tendencies
of global/analytic cognitive styles seem to correspond to the
strategy-centered approach in design activity, such as top-
down/bottom-up, breadth-first /depth-first strategy.
 Dannenberg refers to cognitive styles in [7], to describe his
work on the Nyquist composition environment, however, some
aspects of the work seem to be more suitable in the framework
of cognitive fit theory, rather than cognitive style. For instance,
generally speaking, the shape of an ADSR envelope is much
easier to grasp when it is visualized by a graphical
representation than when it is described by a textual
representation such as the list of floating-point values, whereas
the exact duration of the the sustain in the same envelope is
more comprehensive when the actual floating-point value is
explicitly shown in the list, rather than estimating the duration
by looking at the graphical representation of the envelope. Such
cognitive ergonomics in graphical/textual representation can be
easily explained by cognitive fit theory rather than by cognitive
style.
 Also as Green and his colleagues described in [10],
programing activities by programmers in the real-world
situations can be highly opportunistic. Such opportunistic
behavior can be more significant especially when computer
music programming is highly exploratory as described in the
previous section. Even when a composer with global cognitive
style work on the certain programming tasks, his programming
activity can hardly be truly top-down.
 Such issues as cognitive fit and strategic approach in
programming activity should be considered important for
further discussions on usability analysis of computer music
programming environments.

3.2.3 Dual-task interference in live-coding
Live-coding would be an extreme type of computer music
programming activity. Live-coding musicians perform their
music, programming on-the-fly on the stage, sometimes even
writing the code from the scratch. Nilson describes “live-coding

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

501

can demand producing functioning code to a strict time limit, to
find ways to introduce or modify code with low latency” [16]
and other paper by Collins and his colleague describe “You
forget the current audio or just take too long while you prepare
the next section” [6]. While the former description corresponds
to the restriction on available time for coding given to a live-
coding performer, the later also corresponds to the cognitive
overload.
 Such a nature of live-coding would be an unusual, but
interesting case of dual-task interference. Certainly, listening to
music in the professional level and writing code with the strict
limitation in time are quite different mental activities, both of
which consume considerable cognitive resources. Furthermore,
modification task of existing code is often involved in live-
coding performance and such modification task alone can be
also considered as dual-task [20], as described in the previous
chapter; The interference between multiple tasks can occur in
live-coding and it is an interesting example to be discussed.

3.3 End User Programming
When placed in the thread of end-user programming, computer
music programming is one of the most major, historical
domains of expert end-user programming. Computer musicians
are clearly an example of expert end-users, in that they have
strong expertise in music domain but much less in computing.
As described in [5], even in those days when the non-experts,
who are not computer scientists, hardly had the access to
computers, programming languages for computer music was
being developed and composers with less expertise in
programming had been invited to compose his musical pieces,
using those tools and languages for computer music
compositions. Furthermore, computer music programming is
also an exceptional field even as expert end-user programming
in that it already has a considerably long history and there are
many end-users with the domain-expertise in music, a lot of
who are educated in academic education of their expertise or
with professional experience for many years.
 Computer music programming as expert end-user
programming activity also seems to be an ideal situation when
we consider one of the traditional criticisms made to some of
psychological studies on programming activity that the problem
size is too small and far from the real world situations in which
the programmers work in software industry. The problem in
computer music is usually fairly small but still deals with the
practical problems in their expertise domain of music.

4. CONCLUSION
Cognitive aspects of computer music programming have been
rarely discussed in computer music community. Yet, by
borrowing the theoretical framework and technical terms
mainly from the psychology of programming, it can be made
clear what kind of issues are in common with general
programming activity and what are special characteristics in
computer music programming. Such a contextualization can
help clarifying the problems in computer music, to improve the
design and the research on programming language design.
Furthermore, computer music is likely to be very interesting as
a topic in the psychology of programming, as Blackwell
describes in [1].
 Characteristics of computer music programming seem to be
interesting and also beneficial to study on the usability of
programming language design. For instance, how to utilize the
expertise in music domain for cognitive ergonomics of
programming languages is an interesting issue and the nature of
creative activity with open-ended goals in computer music

programming is also an interesting subject when we consider
how programming environments should support exploratory
design activity.

5. ACKNOWLEDGEMENT
This work was supported by project grant NRF2007IDM-
IDM002-069 from the Interactivity and Digital Media Project
Office, Media Development Authority, Singapore.

6. REFERENCES
[1] Blackwell A. and Collin, N. The programming language as

a musical instrument, Proc of PPIG05 (2005)
[2] Burnett, M. et al, End-user software engineering.

Communications of ACM, Vol. 47(9) (2004)
[3] Carter, J. et al. An Analysis of Interviews with Composers

From A Cognitive Styles Perspective. Proc of ICMC’09,
(2009)

[4] Cascone, K, The Aesthetics of Failure: "Post-Digital"
Tendencies in Contemporary Computer Music, Computer
Music Journal, Vol. 24(4) (2000)

[5] Chowning, J. Fifty Years of Computer Music: Ideas of the
Past Speak to the Future. Proc of ICMC’09 (2009)

[6] Collins, N. et al. Live coding in laptop performance,
Organized Sound, Vol. 8 (3) (2003)

[7] Danneberg D.,The Nyquist Composition Environment:
Supporting Textual Programming With A Task-Oriented
User Interface, Proc of ICMC’08, (2008)

[8] Détienne, F. Programming Understading and Knowledge
Organizaiton, Cognitive Ergonomics: Understanding,
Learning and Designing Human-Computer Interaction,
pp.245-256. (1990)

[9] Détienne, F. Software Design - Cognitive Aspects.
Springer Verlag (2001)

[10] Green, T.R.G et al. Parsing and Gnisrap Proc of
Empirical Studies of Programmers 2nd Workshop (1987)

[11] Green, T.R.G and Petre, M. When Visual Programs are
Harder to Read than Textual Programs, Proc of ECCE6,
(1992)

[12] Halasz F. and Moran T.P. Mental models and problem
solving in using a calculator. Proc of CHI83 (1983)

[13] Hoc J.-M et al. Psychology of Programming, Academic
press (1990)

[14] Matthews M.V. et al. The Technology of Computer
Music. The MIT Press (1969)

[15] Mullen, T. Writing Code for Other People: Cognitive
Psychology and the fundamental of good software design
principle. Proc of OOPSLA’09 (2009)

[16] Nilson, C. Live coding practice. Proc of NIME’07 (2007)
[17] Pashler, H., Dual-Task Interference in Simple Tasks: Data

and Theory. Psychological Bulletin Vol. 116 (1994)
[18] Reed D. The use of ill-defined problems for developing

problem-solving and empirical skills in CS1. Journal of
Computing Sciences in Collges, Vol.18 (1) (2002)

[19] Rist, R. Plans in Programming: Definition, Demonstration,
Development, Empirical Studies of Programmers 1st
Workshop, 1986

[20] Shaft, T. and Vessey, I. The role of cognitive fit in the
relationship between software comprehension and
modification. MIS Quarterly, Vol.30 (1) (2006)

[21] Vessey, I. Cognitive fit: A theory-based analysis of the
graphs versus tables literature. Decision Sciences, Vol.
22(2) (1991)

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

502

