
Protocol interoperability of OPC UA in Service
Oriented Architectures

Hasan Derhamy, Jesper Rönnholm∗, Jerker Delsing, , Jens Eliasson, and Jan van Deventer
Dept. of Computer Science, Electrical and Space Engineering

Luleå University of Technology, Luleå, Sweden.

Email: name.name@ltu.se

∗Email: jesrnn@gmail.com

Abstract—Industrial Internet of Things covers all aspects of
networked intelligent manufacturing systems. This means cover-
ing a wide array of application domains and user requirements.
In such scenarios it is not feasible to define a single protocol for
all situations. Hence, a multi-protocol approach is required. OPC
UA has strong backing from Industry 4.0 as the protocol for the
Industrial Internet of Things. Interoperability of OPC UA has
been investigated in the context of migration from legacy and
with protocols such as DPWS. Additionally HTTP and CoAP
have been investigated as possible transport mediums.

However, OPC UA interoperability has not been investigated
within a multi-protocol settings and no generic protocol transla-
tion exists. This paper proposes an OPC UA translator following
the service translator model proposed in the Arrowhead project.
Utilizing a mapping to intermediate format, it can be used along
side CoAP, HTTP and MQTT protocols.

Index Terms—OPC UA, Industrial Internet of Things, Industry
4.0, Protocol Translation, RESTful, Arrowhead Framework

I. INTRODUCTION

Internet of Things (IoT) communication protocols cover

highly varied application domains. Trying to select a sin-

gle communications protocol reduces flexibility and removes

possibility for leveraging domain specific benefits of a cer-

tain protocol. Therefore, to be able to operate in a multi-

protocol ecosystem a form of translation is required. Rather

than a dedicated middleware or network proxy, Derhamy et

al. propose an ”on-demand” translation service. Following

Service Oriented Architecture (SOA), this translation service

is injected between a service exchange when a mismatch is

detected by an Orchestrating entity.

Object linking and embedding for Process Control - Uni-

fied Architecture (OPC UA) is an industrial communication

framework that is highly promoted for integrating distributed

systems. While it has many promising features which we

describe in section II, there are still situations where other

communication protocols have benefits. Primarily in con-

strained environments protocols such as Constrained Appli-

cation Protocol (CoAP) is well suited for battery powered

and processor constrained applications. But also, as commu-

nications protocols change and improve, solutions must adapt

to the new technology. Hence, a successful interoperability

solution must work with existing and future protocols.

There is existing work towards migrating applications from

existing protocols and frameworks to OPC UA and on inte-

grating OPC UA with other protocols. Some of these works

are presented in the next section.

A. Related work

There exist a number of solutions (proposed or imple-

mented) with the aim of increasing factory floor interoperabil-

ity. A common theme is vertical integration, where solutions

for achieving interoperability have involved implementing

OPC UA and Device Profile for Web Services (DPWS) to

enable high-level access of field-level data [1], [2]. Candido

et al. in [1] analyze the two protocols, OPC UA and DPWS,

for effectiveness in access device level (field level) data. They

concluded that neither protocol could completely satisfy all

requirements for Industrial IoT. However the combination

offered complementary benefits.

In [2], Sauter et al. describe a protocol gateway used to

connect high level IP based networks to field-bus device level

data. While maintaining ability to operate with any field bus,

they restrict the IP interfaces to a smaller subset available. The

gateway is responsible for more than protocol translation as it

does logging and historical storage also. They do not however

describe what is required to setup such a gateway. Manual

configuration and design time consideration of the gateway is

described as a necessity for the use of a gateway architecture.

Another solution proposed for enabling interoperability with

OPC UA is described in [3]. It again uses a gateway approach

with a complex event processor bridging DPWS and OPC

UA networks. The gateway uses a middleware to subscribe to

events originating from an OPC UA server and from DPWS

enabled devices. The events are then translated so that a com-

plex event processor can handle events from both protocols.

Here, the middleware must be pre-configured to subscribe

to the desired events and the events must be translated for

processing.

Arguments for direct modification of OPC UA to better

adapt it to the industrial IoT have also been raised by Grüner

et al. in [4] and [5]. Specifically, this has involved a series

of adaptations to the OPC UA binary protocol, enabling

stateless service requests and reducing communication over-

head - thereby making it more RESTful, and more friendly

to resource-constrained devices. Similarly CoAP has been

proposed as a transport option for the OPC UA stack [6]. Here,

CoAP is the transport messaging supporting the OPC UA

services [7]. Therefore, CoAP applications using that solution

must implement OPC UA services.

Releases of the initial OPC UA specification included an

SOAP/XML/HTTP API. Since release 1.03 this has been

deprecated. This was due to a lack of industrial adoption of

WS Secure Conversation.

There are already a few proprietary solutions that strive

for interoperability involving OPC UA. An example of this is

Kepwares KEPServerEX [8], which expose its data as legacy

OPC DA data (tags) accessible through OPC UA services.

Interoperability is provided by a gateway [9], which also

allows third-party access through REST- and MQTT-client

APIs.

HyperUA [10] is another proprietary solution for accessing

OPC-UA servers from web clients. An HTTP server provides a

gateway for web clients to address HyperUA nodes, references,

monitored items, servers and subscriptions. The gateway han-

dles sessions to the OPC UA servers and translates Hyper

nodes to OPC-UA nodes. In order to interact with an OPC

UA server, clients must implement the HyperUA API.

The primary problem with interoperability solutions such

as gateways and protocol adapters is that they require cus-

tom configuration per site, and do not scale well with each

additional protocol added to the mix. As the complexity of a

centralized gateway grows, the solution becomes more brittle

and resists change.

B. Contribution

OPC UA applications have not been used alongside standard

web applications without knowledge of OPC UA. As stated

in the related works previous efforts with HTTP and CoAP

have been to use them as a transport for regular OPC UA

communications.

This paper proposes an OPC UA translator that works with

standard IoT protocols such as HTTP, CoAP and MQTT.

Enabling access to OPC UA nodes from non-OPC UA based

IoT applications. The paper presents:

1) Mapping between a subset of the OPC UA services and

an intermediate format which can then be translated to

any other IoT protocol.

2) Mapping between OPC UA address space and generic

IoT protocols.

3) Implementation demonstrated upon an Industrial use

case for condition monitoring.

4) Challenges for complete OPC UA service translation.

The paper, in Section II introduces the OPC UA protocol

and high level aspects relevant for translation. Following this,

Sections III and IV present the proposed solution and the use

case. Finally, a discussion and conclusion are in Sections V

and VI.

II. OPC UNIFIED ARCHITECTURE

OPC UA is a protocol for communication in industrial au-

tomation, developed by the OPC Foundation and standardized

in IEC-62541 [11]. It defines services through which OPC

UA clients interact with information models maintained by

the server. The base component of the information model is

an object-oriented entity called node. A node is identified

through a nodeid which consists of a namespace index and

a node name. Edges between nodes are references which

create semantic relationships. References enable modeling of

both hierarchical tree and horizontal mesh graphs. Every node

conforms to a nodeclass which specifies the attribute set of

the given node. There are two groups of nodeclasses: type

classes and access classes. By navigating type information and

node relationships, an OPC UA client can access node and

reference data to gather its own understanding of any OPC

UA information model.

Interactions between an OPC UA client and server is

standardized through a set of services provided by the server.

The services allow access to and management of nodes: 1)

management of node and information model; 2) read and

write data to nodes, both query and subscription based; and 3)

establishment of communication channels to perform further

requests. A server can choose to support only a subset of the

full service set, this is determined by using a server profile.

OPC UA can be used as a data oriented historian. Clients

store data within a defined information model. Upper layer

functions can then access the data stored in an asynchronous

manner.

In the next section the interoperability solution is proposed

and the fundamental architecture described.

III. PROPOSED TRANSLATION SOLUTION

The proposed interoperability solution consists of a multi-

protocol translator, which is injected into a service exchange

in an on-demand basis. The primary aspects of the translator

have been described in previous work [12] and so only briefly

mentioned in this paper. The main contribution of this paper is

proposing a method of mapping OPC UA to an intermediate

format, which can then be mapped to other standard IoT

protocols such as CoAP, HTTP and MQTT.

Firstly, interactions are defined by OPC UA services. Stan-

dard Create, Read, Update, and Delete (CRUD) operations

can be used for translating a subset of these services. Next,

the address space in OPC UA is defined by nodes. A URI can

be used to uniquely address a node. The mapping has been

designed to try to minimize leakage of the OPC UA protocol

into the translated protocol.

The next sub-section will describe the base architecture on

which the translator is based.

A. Base architecture

The base architecture of the translator as presented by

Derhamy et al. in [12], consists of a translation hub that is

composed of two protocol spokes. The protocol spokes are

based on freely available libraries and handle protocol specific

behaviors. The protocol spokes communicate by an intermedi-

ate format, which is protocol agnostic. The intermediate format

is intended to preserve the properties of the incoming protocol

and reduce information loss when translated to the target,

outward, protocol. Figure 1 shows this in a block diagram.

In the proposed solution, the OPC UA protocol spoke must

handle all OPC UA translation and preserve the properties as

much as possible.

Fig. 1. Block diagram of the base translator architecture

The details of the protocol spoke implementation can be

found in Sub-section III-E.

B. Service translation

As introduced in Section II, a subset of the OPC UA services

are only used to establish the communications channel, the

session and secure channel. These services are completely

handled by the OPC UA protocol spoke. This means that they

are not exposed to the intermediate format.

The translator’s intermediate format uses the RESTful meth-

ods to communicate CRUD, namely, GET, POST, PUT, and

DELETE. These methods are mapped to the OPC UA services

as shown in Table I. This is a mapping from intermediate

format to OPC UA services.

TABLE I
OPC UA SERVICE MAPPING TO INTERMEDIATE FORMAT

Operation RESTful OPC UA Service
Create PUT AddNodes
Read GET Read, Browse
Update POST Write, AddReferences, DeleteReferences
Delete DELETE DeleteNodes

When a Create request is passed to the OPC UA spoke, the

node id is stored in the URI and the information for creation

is stored in the payload. Only the AddNodes service is mapped

to the Create operation. This is where the OPC UA specific

information leaks into the non-OPC UA protocol.

When a Read request arrives at the OPC UA spoke, it could

be either a read service request or a browse service request.

These services are differentiated based on the presence of an

attribute index in the URI path. If no attribute index is present,

the translator spoke performs a Browse on the node.

An Update corresponds to 3 services that modify an existing

node: Write, AddReferences and DeleteReferences. References

are not addressable and belong to a source node. Hence, the

translator takes the node id in the URI as the source node,

and requires further information in the payload. Both deleting

and adding references are treated in the same manner, except

that the payload information can differentiate the operation.

In order to perform a write operation on a node, an attribute

index must be supplied in the URI. The translator addresses the

attribute of the node directly. The payload of a write operation

is treated as a serialized string, hence it can be JSON, XML,

CBOR, EXI, or etc. This is the most common approach for

IoT protocols such as CoAP, HTTP, MQTT and XMPP.

A Delete operation is translated as a DeleteNodes service

request. Removing the node corresponding to the node id

stored in the URI. The request will also delete all references

of the target node.

C. Address space translation

OPC UA address space uses servers, name space indexes,

node names and attribute indexes to provide a fine level of

granularity to read and write data. These can be broken down

into URI format for IoT protocols to construct. In Figure 2

the URL structure is shown with the OPC UA server endpoint

defined by the IP address, port and base path. The name space

index (ns-idx) and node name (name) make up the complete

node-id which uniquely identifies a node on an OPC UA

server.

<IP>:<port>/<path>/<ns-idx>/<name>/<attr-idx>/<arr-idx>

Fig. 2. The general URL structure to address an OPC UA node. Attribute-
index can be added for attribute-granularity, and array-index can be added for
accessing single elements in arrays stored under attributes.

To reduce the non-OPC UA path parametrization when

translating to OPC UA, the URI format uses string for the node

name format. The standard node-set, in the OPC Foundation

name space, use numeric node names, so for this name space

the node names are interpreted as numeric. Hence, nodes with

name space index 0 will have their name interpreted as a

numeric type.

A reference is identified in a triple: the source node, target

node and reference type. The proposed translator addresses

references according to a source node described in the URI.

The target node and reference type is provided in the payload.

D. Request and Response formats

The translator aims at having least interference in the

payload structure or meaning. This is not always possible

due to the node structure and service interfaces of OPC

UA. The request and response formats are required to follow

certain parameters. A non-OPC UA interface must be prepared

to provide structured information for management of nodes

and references. However, there is no requirement on a write

operation, aside from being limited to a serialized string. While

the examples are in JSON encoding, XML is just as applicable.

JSON has certain advantages over XML, in this case the

reduced overhead in the encoding and readability.

When writing to a single node, update operation, the request

payload format is shown in Figure 3. The node can be accessed

down to the variable attribute, which is addressed in the

URI. The value is the only parameter in the payload and can

be passed straight through to the OPC UA domain without

modification.

POST /<namespaceindex>/<nodename>/<attributeindex>/
Payload: JSON Object or XML Document

Fig. 3. Write request format for a single node attribute value

When performing a read, the same URI format is used.

During a read operation, the payload is not modified, it is

serialized as a JSON object or XML document and given to

the intermediate format. In the case of browse operation the

attribute index is omitted from the URI. Payload was not mod-

ified because, ideally, the protocol translator should not get

involved in semantic translation. A semantic translator would

be responsible and could work in tandem with the protocol

translator. However full semantic translation is outside the

scope of this work.

On the other hand node and reference creation requires

additional information in the payload. The structure of a

payload is shown in Figure 4.

PUT /<namespaceindex>/<nodename>
{"node": {

"parent": "<parentnode-path>",
"reference": "<referencetypenode-path>",
"browsename": "<browsename-string>",
"nodeclass": "<nodeclass-index>",
"type": "<typenode-path>",

}}

Fig. 4. JSON object format for adding a node.

In order to enable node and reference instantiation a for-

mulation for node- and reference representation was provided

for parametrization. Figure 5 shows the add reference payload

format, the source node is defined in the URI structure and

the reference belongs to this node. The ”forward” parameter

specify in what direction non-symmetrical reference will point

their semantics. This was one of the areas where OPC UA API

must have representation within the payload structure.

POST /<namespaceindex>/<nodename>
{"addReference": {

"type": "<referencetype-node-path>",
"target": "<targetnode-path>",
"nodeclass": "<target-nodeclass-index>",
"forward": "<boolean>"

}}

Fig. 5. JSON object format for adding a reference.

Figure 6 has the format for deleting a reference. It follows

the same format as the add reference. The difference is in

object name, ”deleteReference”, and the lack of the nodeclass

parameter, which is only needed when adding references.

The deleteReference object is how the translator differentiates

between the service calls.

POST /<namespaceindex>/<nodename>
{"deleteReference": {

"type": "<referencetypenode-path>",
"target": "<targetnode-path>",
"forward": "<boolean>"

}}

Fig. 6. JSON object format for deleting a reference.

In the next section the proof of concept implementation is

presented.

E. Proof of concept implementation

The proposed translator has been implemented using Java

and applied to the use case presented in Section IV. The

protocol spoke uses the OPC Foundation Java client library

to perform client specific functions, including creating the

session/secure channel and executing the service request to

the target OPC UA server. The OPC UA protocol spoke is

instantiated by the translation hub and internally routed to

a corresponding protocol spoke for the other protocol. The

session and secure channel is setup on spoke instantiation.

The current prototype uses anonymous certificates to connect

to the OPC UA server.

Requests from non-OPC UA protocol spokes are processed

into the intermediate format and passed to the OPC UA

protocol spoke. The protocol spoke parses the URI path and

payload body to extract OPC UA node address and any service

parameters. These parameters are used to select the OPC UA

service to be used to communicate with the server and to

construct the OPC UA object payload. The OPC UA client

then performs a synchronous service invocation to the OPC-

UA server. The response from the OPC-UA server is presented

to the protocol spoke as OPC-UA parameter objects. These

objects are re-serialized to a JSON string and passed as a

response in the intermediate format.

The proof of concept has been tested between a CoAP client

and an OPC UA server. This use case is presented in next

section.

IV. APPLICATION SCENARIO

The proposed solution can be used as a middleware solution

with permanent presence in the communication path. Another

approach is to provide the translator as a service which dy-

namically can be invoked based on need. In the here described

application scenario, the translator is a service. The SOA-based

Arrowhead Framework [13] enables dynamic provisioning

and composition at run time. Leveraging these features the

proposed translator can be invoked dynamically based on

the current orchestration of service consumption. In this way

the Arrowhead Framework supports multi-protocol System of

Systems. This may become a key enabler to Industrial Internet

of Things.

At the core of the Arrowhead framework are three manda-

tory core services, these are:

1) ServiceRegistry - provides a store for publishing service

provider presence and performing look-up.

2) Service Authorisation - provides authorisation for ser-

vice consumption.

3) Service Orchestration - provides match making and

advanced service look-up.

Arrowhead also defines support core services. These services

are used only when needed. The Multi-protocol translator is

one of these support core services. The proposed solution

extends the existing translator with the OPC UA protocol.
In the context of the proposed solution the Orchestration

is responsible for, firstly, identifying a protocol miss-match

between a potential service provider and consumer. Secondly,

it issues provisioning requests to the translator, to which the

translator instantiates two endpoint spokes which match the

protocols of each service provider and consumer respectively.

The detail is described in Section III-A
The Arrowhead framework documentation architecture de-

fined by Blomstedt et al. in [14] describes three levels:

services, systems and systems-of-systems. Of interest to trans-

lation; the service layer documentation captures 1) abstract

service description, 2) interface design, and 3) protocol and

semantic profiles. These artifacts are used to identify the

protocol miss-match between matching services.
A pilot scenario from the Arrowhead project has been

selected to demonstrate the proposed solution. The scenario

involves monitoring the vibrations and heat produced by ball

bearings on a Volvo wheel loader. Volvo wheel loaders are

expensive machinery which must be maintained in order to

extend lifetime. By monitoring the ball bearing it is possible

to measure wear and schedule preventative maintenance. In

addition, monitoring the rotations of the wheel, it is possible

to ascertain the performance of the ball bearing and find early

end of life.
In order to extract information at such a granular level from

the industrial machinery, IoT technologies offer a promising

choice. IoT based ball bearings is more than simply connecting

the Wheel loader to the Internet. Industrial environments re-

quire a solution which is robust to communication interruption,

long service life and able to scale up to many thousands

of devices within a single solution. This means, that the

solution needs low-power operational modes and intelligent,

automated, re-configuration.
Constrained Application Protocol (CoAP) is a preferred

protocol for low-power environments, offering support for

RESTful interface design [15]. In this use case a CoAP based

ball bearing sensor is running a client as a service consumer.

It seeks-out a service provider where it is able to push sensory

data. Arrowhead orchestration is used to find such a service

provider which matches the needs of the ball bearing sensor.

The Orchestration has been loaded with a description of the

requirement for the sensor. The requirement is such:

1) If available, use the head-office historian,

2) else, use a local historian to temporarily store data.

The Systems of Systems (SoS) Description has a head of-

fice historian and a local historian. If Internet connection is

available, then the head office historian is used, otherwise the

local historian is used. When the Orchestration service is used,

it will return either the local or the remote historian. This

decision is based on availability, the remote service provider

is dependent on an Internet connection. However, the head

office historian must integrate with many more systems than

the simply the ball bearing sensor. It has been implemented

with OPC UA, perhaps according to company policy. Figure

7 shows the SoS with an Internet connection and Figure 8

without an Internet connection.

Fig. 7. System of System diagram when Internet connectivity with VPN is
possible

In this case we have an interoperability issue between the

ball bearing and the remote historian. It would be possible to

implement a local gateway which caches the data and forwards

to the remote historian. However, this gateway would require

implementation, testing and configuration effort. Furthermore,

the local historian in this use case supports CoAP. So, in

the local connection there is no interoperability issues. The

proposed solution is used here as an ”on-demand” protocol

bridge when communicating with the head office, while saving

resources when direct communication is possible between

sensor and local historian.

Fig. 8. System of System diagram when no Internet connectivity is possible

The application scenario is setup as shown in Figure 9. The

sensor is implemented on an embedded processor, the Mulle

[16]. It connects to an Arrowhead local cloud running on a

BeagleBone Black (BBB). The OPC UA server is running an

a general purpose PC with an OpenVPN connection to the

BBB.

Fig. 9. Demo technology usage and setup

The interactions between sensor, Arrowhead systems is

following pre-defined Arrowhead patterns [13]. The OPC

UA historian information model is shown in Figure 10. The

interface is to a single OPC UA node for each ball bearing.

The node is of type variable and stores a string representation

of the JSON object sent from the ball bearing.

Fig. 10. OPC UA historian information model

The sensor uses a CoAP POST operation to push data to the

historian service provider. As discussed in Section III this is

translated to an OPC UA node write operation. The translator

maps OPC UA write operations to a fully addressed node-id

and attribute index, therefore no additional OPC-UA semantics

leaks into the payload. This is shown in Figure 11. Here,

rotation, temperature and min/max/rms vibration data is stored

as a SenML JSON string. The name space index is 5, the node

name is wheelsensordata0x and the attribute is 13. The node

name changes for each ball bearing.

This orchestrated historian enables end-to-end communi-

cation, with resilience to Internet disruption, and flexibility

between communication protocols. The proposed implementa-

tion allows service based systems to push their data to an OPC

UA server, regardless of their protocol usage. In the following

section, the proposed solution will be discussed.

POST /5/wheelsensordata0x/13/ CoAP
Host: 192.168.7.1:48010
{

"e":[
{"n":"rotation", "v":1, "u":"count"},
{"n":"temperature", "v":60, "u":"Cel"},
{"n":"vibration_max", "v":4, "u":"m/s2"}
{"n":"vibration_min", "v":0, "u":"m/s2"}
{"n":"vibration_rms", "v":3, "u":"m/s2"}

],
"bn":"urn:dev:mac:0024befffe804ff1"

}

Fig. 11. CoAP payload example and structure, three nodes being updated in
a single CoAP message

V. DISCUSSION

The translator has attempted to reduce leakage of OPC UA

semantics across to native web protocols. As with a translation

between MQTT and HTTP where a path in HTTP represents

a topic in MQTT, a path in HTTP represents a node in OPC

UA. However the path structure must conform to a particular

structure. By utilizing common methods between HTTP and

CoAP with OPC UA, the OPC UA protocol spoke does not

require additional semantic information within the non-OPC

UA interface definition.

In this translation, the core features of the OPC UA infor-

mation model have been preserved. Namely, it is possible to

address individual nodes and to browse nodes. Therefore it is

possible to explore the address space and to read and write to

nodes.

However, OPC UA supports 37 different services while the

proposed solution has only mapped 7 services. The supported

service set provides a bare minimum interoperability for non-

OPC UA systems to interact with OPC UA servers. In this

way payload interface requirements made on the non-OPC UA

systems is kept to a minimum. In fact for read and write, only

the addressing scheme of the service interface is impacted

This impact is also kept to a RESTful style, thereby would

not be unnatural to any REST API developer. It could be

possible to include the full set of OPC UA services within

the URL, as path variables or URL query parameters. This

would however break RESTful design approach by including

operation information in the address space. It would also apply

further interface design considerations on the non-OPC UA

systems.

A service, in SOA concept, provides a functionality. This

is beyond the interaction services defined in OPC-UA. A call

made to a service is expected to result in some value added

result. Perhaps the concept of the method object in OPC

UA could map well to a functional service. So an OPC UA

server would provide services such as ”sound fire alarm”, ”turn

off lights” or ”store wheel loader data”. It is these services

which should be registered in a generic service discovery

methodology such as DNS-SD would allow all systems (OPC

UA or not) to discover services provided by an OPC UA server.

VI. CONCLUSION

Communication in Industry 4.0 requires flexible intercon-

nections between integration layers and information layers.

The OPC UA communication framework shows potential for

such interconnections. Convergence to a single protocol is

possible, but it is likely that a multi-protocol communication

network will exist for some time.

The here proposed translation service enables interoperabil-

ity between OPC-UA and other SOA protocols supporting

integration of legacy automation system with upcoming IoT

devices. Such integration is supported by integration platforms

like the Arrowhead Framework. Frameworks such as Arrow-

head enable dynamic provisioning and composition of the

solution into the service exchange communication path. The

proposed solution allows for OPC UA translation mapping to

be defined once, and then used for CoAP, HTTP and MQTT

protocols.

The translation preserves management, browsing and read-

/write of OPC UA nodes. Because of the complexity of the

OPC UA service interface, the translation does not cover all

functions of OPC UA. The mapping from OPC UA address

space, requires that nodes are addressed in the URL path

or topic name in a specific manner. The name space index

and node name in the path are required to address the node.

Combining this with standard CRUD methods, a subset of

OPC UA services can be invoke from a generic non-OPC UA

service interface.

VII. FUTURE WORK

Future work involves working translation back from OPC

UA to HTTP/CoAP/MQTT. This would enable OPC UA

clients access to non-OPC UA services.

Incorporating OPC UA server discovery into a generic

service discovery is also required for full look-up and runtime

binding routines to be performed.

Investigating the possibility of expanding the supported

OPC UA service set while maintaining a minimum require-

ment on service interfaces implemented with non-OPC UA

protocols.

An interesting new protocol for IoT is gRPC. Developed by

Google and used within their microservices infrastructure, it

would be interesting to investigate its suitability for interoper-

able use with OPC UA. It would enable cloud based service

interaction with automation services on the factory floor.

ACKNOWLEDGMENT

This work is supported by the EU ARTEMIS JU funding,

within project ARTEMIS/0001/2012, JU grant nr. 332987

(Arrowhead).

REFERENCES

[1] G. Cândido, F. Jammes, J. B. de Oliveira, and A. W. Colombo, “Soa at
device level in the industrial domain: Assessment of opc ua and dpws
specifications,” in 2010 8th IEEE International Conference on Industrial
Informatics, July 2010, pp. 598–603.

[2] T. Sauter and M. Lobashov, “How to access factory floor information
using internet technologies and gateways,” IEEE Transactions on Indus-
trial Informatics, vol. 7, no. 4, pp. 699–712, Nov 2011.

[3] M. J. A. G. Izaguirre, A. Lobov, and J. L. M. Lastra, “Opc-ua and
dpws interoperability for factory floor monitoring using complex event
processing,” in 2011 9th IEEE International Conference on Industrial
Informatics, July 2011, pp. 205–211.

[4] S. Grüner, J. Pfrommer, and F. Palm, “A restful extension of opc ua,”
in 2015 IEEE World Conference on Factory Communication Systems
(WFCS), May 2015, pp. 1–4.

[5] ——, “Restful industrial communication with opc ua,” IEEE Transac-
tions on Industrial Informatics, vol. 12, no. 5, pp. 1832–1841, Oct 2016.

[6] P. Wang, C. Pu, and H. Wang. (2017) Opc ua message
transmission method over coap 01. [Online]. Available:
https://tools.ietf.org/html/draft-wang-core-opcua-transmission-01

[7] ——. (2016) Requirement analysis for opc ua over coap. [Online].
Available: https://tools.ietf.org/html/draft-wang-core-opcua-transmition-
requirements-00

[8] Kepware. (2017, May) Kepserverex. [On-
line]. Available: https://www.kepware.com/en-
us/products/kepserverex/documents/kepserverex-manual.pdf

[9] ——. (2017, May) Kepware iot gateway. [Online]. Avail-
able: https://www.kepware.com/en-us/products/kepserverex/advanced-
plug-ins/iot-gateway/documents/iot-gateway-manual.pdf

[10] Projexsys. (2017) Hyperua. [Online]. Available:
http://projexsys.com/hyperua/

[11] IEC-62541, OPC UA Specification. OPC UA Specification Release
1.03, 2015.

[12] H. Derhamy, J. Eliasson, and J. Delsing, “Iot interoperability - on-
demand and low latency transparent multi-protocol translator,” IEEE
Internet of Things Journal, 2016, accepted.

[13] J. Delsing, IoT Automation Arrowhead Framework. CRC Press, 2017.
[14] F. Blomstedt, L. L. Ferreira, M. Klisics, C. Chrysoulas, I. M. de Soria,

B. Morin, A. Zabasta, J. Eliasson, M. Johansson, and P. Varga, “The
arrowhead approach for soa application development and documenta-
tion,” in IECON 2014 - 40th Annual Conference of the IEEE Industrial
Electronics Society, Oct 2014, pp. 2631–2637.

[15] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (coap),” Internet Requests for Comments, RFC Editor, RFC
7252, June 2014, http://www.rfc-editor.org/rfc/rfc7252.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc7252.txt

[16] “Eistec AB,” April 2017. [Online]. Available: http://www.eistec.se/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

