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Abstract

An ever-increasing number of applications in critical domains, such as maritime

and aviation, generate, collect, manage and process spatio-temporal data related

to the mobility of entities. This wealth of data can be exploited for various

purposes, towards improving the safety of operations, reducing economical costs,

and increasing dependability: The major issue to achieve these objectives is

increasing predictability of moving objects’ trajectories and events. To achieve

this purpose in a data-driven way we need to exploit in integrated manners data

from a variety of disparate and heterogeneous data sources, both streaming and

archival, regarding – among other – surveillance, weather, and contextual data.

Motivated by this fact, in this paper, we propose a framework for semantic

integration of big mobility data with other data sources that are necessary to

data analytics tasks, providing a unified representation of such data. Notable

features of our framework include the real-time generation of data synopses of

moving entities’ trajectories, the efficient and flexible transformation of data

from heterogeneous and big data sources in RDF, and the spatio-temporal link

discovery between spatio-temporal entities in diverse data sources. The design

and implementation of our framework uses big data technologies (Apache Flink

and Kafka), and our experimental evaluation demonstrates the efficiency and
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scalability of the proposed framework using large, real-life datasets.

Keywords: RDF generation, semantic stream generation, semantic

integration, trajectory summarization, spatio-temporal link discovery, big

spatio-temporal data

1. Introduction

The ever-increasing size of spatio-temporal data and the unprecedented rate

of data generation from a wide variety of sources regarding the situation aware-

ness and monitoring in critical domains raise the need for scalable, real-time

management and analysis of mobility data. Several data analysis tasks rely

on moving entities’ trajectories, while trajectory detection and prediction are

typically used to optimize everyday, real-life operations. However, using only

the kinematic information provided by surveillance sources is far from suffi-

cient, when at the same time a wealth of other sources, including for instance,

weather and contextual1 information is available too. Consequently, one of the

major challenges is to enrich surveillance data, providing meaningful informa-

tion about moving entities’ trajectories, also annotating trajectories with related

events, thereby creating enriched trajectories [1, 2]. Addressing this challenge

calls for real-time processing and semantic integration of surveillance data with

other, streaming and archival, data sources [3].

Our work is motivated by the need to advance the management and in-

tegrated exploitation of voluminous and heterogeneous data-at-rest (archival

data) and data-in-motion (streaming data) sources, so as to significantly pro-

mote safety and effectiveness of critical operations for large numbers of moving

entities in large geographical areas. Challenges throughout the Big Data ecosys-

tem, with special focus on surveillance systems, concern effective detection and

1By contextual data, we refer to data other than surveillance and weather data, including

regulated areas, moving object registries, archival spatial data (coastal maps, ports, fishing

areas), routes, sector configurations.
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prediction of moving entities’ trajectories and forecasting of complex events as-

sociated to these trajectories. These challenges emerge as the number of moving

entities and data sources increase at unprecedented scale. This results in gen-

erating vast data volumes, of heterogeneous nature, at extremely high rates,

whose exploitation calls for novel big data integration techniques that will fa-

cilitate advanced data analytics.

In this paper, we propose SPARTAN2, a big data framework that ingests

streaming spatio-temporal data in real-time, extracts useful information, per-

forms data cleaning and summarization, transforms data to RDF in compliance

with a generic ontology for trajectories (also connected to domain aspects and

domain-related data sources), and performs integration of surveillance data with

other streaming and archival data sources. As a result, enriched surveillance

data is produced, associating mobility data with other data, thereby offering

opportunities for higher level analysis tasks, such as trajectory prediction and

complex event recognition and forecasting to achieve higher levels of accuracy. In

technical terms, we provide an efficient and scalable implementation of the pro-

posed framework on top of parallel data processing platforms, based on Apache

Flink and Kafka.

In more concrete terms, SPARTAN introduces the following innovative fea-

tures in the integration process for mobility data, considering trajectories to

be “first-class entities”: (a) an online trajectory compression technique that

produces accurate and compact trajectory synopses in real-time, in contrast to

existing works that do not create synopses within milliseconds (or a few seconds

at most) since the arrival of raw messages [4, 5], (b) an efficient data trans-

formation method from heterogeneous sources to RDF, offering flexibility and

consuming data from a wide variety of input sources, and (c) a spatio-temporal

link discovery mechanism that integrates trajectory data with other contextual

and weather data using spatio-temporal relations; an issue largely overlooked

in the state-of-the-art frameworks for link discovery [6, 7] (see also [8] for a

2Semantic integration of big sPatio-temporal dAta fRom sTreAmiNg and archival sources.
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recent survey). Moreover, all the above innovations are provided as an inte-

grated prototype that consumes streaming (and archival) data and operates in

real-time.

In summary, this paper makes the following contributions:

• We propose a big data framework for the provision of streaming mobility

data, transformed in RDF and enriched with other data sources, with

low latency requirements. Our framework entails the following specific

innovations:

– We show how to compress surveillance data in an online fashion,

by constructing trajectory synopses that are both space-efficient and

highly accurate, with low latency.

– We present an efficient and flexible data transformation tool that ac-

cesses heterogeneous streaming and archival data from a variety of

diverse data sources and generates RDF graph fragments in compli-

ance with the datAcron ontology [9, 10].

– We propose a generic spatio-temporal link discovery module that op-

erates on streaming data, and efficiently discovers spatio-temporal

relations, while supporting blocking techniques and different evalua-

tion functions.

• We evaluate our approach experimentally using a prototype implementa-

tion on top of big data technologies and real-life data, thereby providing

evidence about the efficiency of the framework and its potential to provide

enriched RDF streams of surveillance data.

The rest of this paper is structured as follows: Section 2 reviews the re-

lated work and clarifies how our work advances the state-of-the-art. Section 3

presents the targeted problem setting and motivates our work. Section 4 crisply

describes the datAcron ontology for the representation of semantic trajectories.

Section 5 describes the overall semantic integration framework, and delves into
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the details of its components. Section 6 provides technical details on our pro-

totype implementation using big data technologies. Section 7 demonstrates the

efficiency of our framework by means of experimental evaluation using real-life

datasets. Section 8 provides a discussion on how SPARTAN can be exploited

for improving data analysis tasks. Finally, Section 9 concludes the paper and

sketches future research directions.

2. Related Work

There are efforts on semantic integration of streaming with archival data de-

signed to operate on RDF, such as [11], [12], or efforts towards a framework for

the integration of distributed heterogeneous streaming and stored data sources

through ontological models, e.g. in [13]. Recently, in [14, 15], an approach for

integration of streaming with static relational data has been proposed. The

Graph of Things [16] targets an IoT setting where many sources provide data

for integration and querying, and supports spatial and temporal data, but it is

not optimised for mobility data. To the best of our knowledge, none of the exist-

ing approaches targets streaming mobility data explicitly: We aim at providing

enriched RDF streams of mobility data, revolving around the notion of trajec-

tory, operating on streams of surveillance data, with low latency. In doing so,

we do not use any stream query approach, e.g. [11, 17, 18], nor ontology-based

access methods e.g. [13, 14], which may also make possible the integration of

streaming with archival data sources, to the expense of introducing additional

latency. Our aim is to provide enriched RDF streams of mobility data in online

fashion and low latency, which can be consumed/exploited by analytics compo-

nents following any of these, or other stream access approaches. Thus, our work

goes one step further by introducing a unified framework for providing enriched

streams of mobility data, incorporating online compression, data transforma-

tion, and link discovery functionality. The applicability of this framework is not

limited to any combination of streaming or archival input sources.
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2.1. Representation of Semantic Trajectories

Existing approaches for the representation of semantic trajectories either

(a) use plain textual annotations instead of semantic links to other entities

[19, 20, 21], hindering the provision of semantic information associated with

moving objects’ behaviour; (b) constrain the types of events that can be used

for structuring a trajectory [19, 20]; or (c) make assumptions on the constituents

of trajectories [21, 22, 23] (e.g. semantic trajectories in [21] are sequences of sub-

trajectories, while in [23] are sequences of episodes).

To a greater extent than previous proposals, the datAcron ontology used

here supports the representation of enriched trajectories at multiple, interlinked

levels of analysis: For instance, although [23] provides a rich set of constructs for

the representation of semantic trajectories, these are restricted to be sequences

of episodes, each associated with raw trajectory data, and optionally, with a

spatio-temporal model of movement. However, there is no fine association be-

tween abstract models of movements and raw data. On the other hand, [21]

provides a two-levels analysis where semantic trajectories are lists of semantic

sub-trajectories, and each sub-trajectory in its own turn is a list of semantic

points. Regarding events and episodes, these are connected to specific resources

at specific levels of analysis: In [21] events -mostly related to the environment

rather than to the trajectory itself- are connected to points only (something that

may lead to ambiguities in some cases), while in [23] episodes concern things

happening in the trajectory itself, and may be associated to specific models of

movement: It is not clear how multiple models of a single trajectory -each at a

different level of analysis- connected to a single episode, are associated. Finally,

contextual information in [23] is related to movement models, episodes or se-

mantic trajectories, which is quite generic, while in [21] environment attributes

are associated to points only, and are assigned specific values.

The datAcron ontology3 has been presented in [9, 10], where we have shown

that it supports data transformations that are required by analytics tasks, pro-

3http://ai-group.ds.unipi.gr/datacron_ontology
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viding information of the appropriate form at various levels of analysis.

2.2. Trajectory Summarization

Since trajectory synopses detect changes in mobility features from positional

streams, they essentially perform a kind of path simplification in online fashion.

Hence, algorithms like the well-known Douglas-Peucker algorithm [24] up to

more recent techniques like [25, 26] that operate in batch fashion cannot be

considered, since they require knowledge of all points (i.e., entire trajectories)

before applying any simplification.

In contrast, due to the high arrival rate of incoming streaming locations,

trajectory summarization must be performed online. Ideally, samples should

keep each compressed trajectory as much closer to its original course, chiefly by

minimizing approximation error as in trajectory fitting methods [27, 28]. For

instance, the sliding window approach in [28] keeps simplifying points along

a line until the error exceeds a given threshold. In addition, they employ the

speed difference between sub-trajectories as an error metric for retaining sample

points. From another perspective, the STTrace algorithm [29] uses the concept

of safe areas to generate a simplified trajectory using predefined speed and direc-

tion error bounds, arguing that a sample should be included in the approximate

path as long as it reveals significant change in movement.

TrajStore [30] offers capabilities for indexing, clustering, and storing trajec-

tory data. Based on an adaptive grid partitioning scheme, it is mostly geared

towards queries retrieving data about many trajectories passing through a par-

ticular location. From another perspective and mainly focusing on savings in

communication cost, dead-reckoning policies like [31] and mobility tracking pro-

tocols in [32] may be employed on board of the moving objects to relay posi-

tional updates only upon significant deviation from the course already known

to a centralized server.

Recently, a bounded quadrant system was introduced in [33] in order to

establish a rectangular bounding box as well as two bounding lines for each of

its quadrants. Various compression error bounds can be estimated via convex
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hulls formed by the box and the bounding lines around all points. Further, the

one-pass, error-bounded algorithm suggested in [34] is based on a novel local

distance checking method and involves several optimizations in order to achieve

higher compression. It also introduced a more aggressive variant, which allows

“patches” by interpolating new points when objects have sudden changes in

their paths or relay updates intermittently.

To the best of our knowledge, none of the aforementioned techniques has ever

been applied specifically on trajectories of vessels or aircrafts. In [5, 4] we have

introduced a novel trajectory summarization framework specifically for online

maritime surveillance. This framework consumes a geospatial stream of AIS

tracking messages from vessels, it continuously detects important features that

characterize their movement and subsequently recognizes complex events such

as suspicious vessel activity. Making use of a sliding window over the incoming

positions, this technique is able to detect either instantaneous trajectory events

by simply checking potentially important sudden changes with respect to the

previously reported location (e.g., a sharp change in heading) or long-lasting

trajectory events are deduced after examining a sequence of instantaneous events

over a longer (yet bounded) time period (e.g., a smooth turn). Examination of

these long-lasting events is the one that yields the critical points in the resulting

synopses. Once the window slides forward, expiring critical points are issued

as results. So, results get reported periodically (upon window slides) with all

recent “delta” changes, i.e., critical points evicted from the window. Extensively

tested in maritime surveillance scenarios, this summarization methodolody was

capable of handling scalable volumes of streaming vessel positions with up to

10,000 locations/sec. Not only has this algorithm shown that it could yield

a compression ratio better than 95% and sometimes even 98% over the raw

data, but most importantly, it also annotated the identified critical locations

with movement characteristics. Further improving this approach, in this paper,

we have performed a complete reengineering of the entire approach so as to

enable scalable execution in cluster platforms. But in fact, we have significantly

modified and enhanced the detection criteria for most mobility features, and
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also introduced new ones specifically for aircraft trajectories. Most importantly,

we have now prescribed that critical points should be emitted at operational

latency, i.e., within milliseconds (or a few seconds at most) since the arrival

of raw messages. This invalidates all previous processing that employed time-

based sliding windows with ranges up to several hours. Further, we can support

multiple annotations per location in order to capture as much as possible all

mobility-related information in a given critical point.

2.3. RDF Generation

There are many RDF generators that have been developed4, most of them

tailored to specific data formats (e.g. CSV, JSON, XML, XLS, etc), or even

the vocabulary to be used [35]. Furthermore, solutions are usually tailored to

a specific data format without considering the requirement for multiple source

formats. Our approach [36] for generating RDF data aims to reduce the need

to multiple RDF generators, providing a coherent and easy-to-be-tuned frame-

work, further enabling its incorporation to widely used workflows, resulting to

alleviating efficiency, maintenance and verification of results limitations of other

approaches.

RDF Mapping Language (RML) [37] provides a mapping language for con-

verting JSON, CSV, XML and HTML files to RDF, implemented on top of the

open-source framework Sesame. RML has been proposed as an extension to

R2RML [38], for the conversion of RDB to RDF. Although this solution can be

extensible, e.g. custom functions can be defined for data conversion, functions

that enable communication between RDF generators, are difficult to be defined.

Also, verification of results and maintenance can be done only by RML experts.

Contrary to that, we use standard and elementary RDF constructs (graph tem-

plates) which are considerably easier to learn, maintained and incorporated into

RDF and SPARQL workflows.

Datalift [39], closer to our work, does not support incorporating custom

4ConverterToRdf: https://www.w3.org/wiki/ConverterToRdf, accessed 19/07/2017.
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functions. Datalift can parse CSV, RDF, XML, RSS, GML and ESRI shapefiles

(archival sources). The assumption that the vocabulary that best describes

the data is a decision of data providers is a strong assumption, making also

maintenance and verification of results a difficult task.

Finally, SPARQL-Generate [40], is the closest work to our proposed solution.

SPARQL-Generate aims to introduce an extension to SPARQL 1.1 following the

idea of SPARQL CONSTRUCT constructor, and generates triples according to

a graph template. It provides constructors such as ITERATOR, useful for

processing XML sources. The reliance on a SPARQL engine can introduce con-

siderable latency issues, while only archival sources are considered. Although

custom functions may be used, communication among SPARQL-Generate in-

stances is not supported, resulting to potentially complicated workflows in cases

where more than one sources are necessary to be processed concurrently.

2.4. Spatio-temporal Link Discovery

Even though the topic of link discovery has attracted much interest and

attention lately (see [8] for a recent survey), there is not much work on the

challenging topic of spatio-temporal link discovery.

2.4.1. Link Discovery Frameworks

LIMES [6] is a generic link discovery (LD) framework for metric spaces that

uses the triangular inequality in order to avoid processing all possible pairs of

objects. For this purpose, it employs the concept of exemplars, which are used

to represent areas in the multidimensional space, and tries to prune entire areas

(and the respective enclosed entities) from consideration during link discovery.

SILK [7] is a link discovery framework that proposes a novel blocking method

called MultiBlock, which uses a multidimensional index in which similar objects

are located near each other. In each dimension the entities are indexed by a dif-

ferent property or different similarity measure. Then, the indexes are combined

together to form a multidimensional index, which is able to prune more entities
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by taking into account the combination of dimensions. It is the only generic LD

framework to support the discovery of topological relations.

HR3 [41] and HYPPO [42] address link discovery tasks when the property

values that are to be compared are expressed in an affine space with a Minkowski

distance. Both approaches are designed to be efficient and lossless. In addition,

HR3 [41] comes with theoretical guarantees on reduction ratio, a metric that

corresponds to the percentage of the Cartesian product of two datasets that was

not explored before reporting the link discovery results.

All these frameworks do not explicitly focus on spatio-temporal link discov-

ery, nor do they address directly streaming data sources.

2.4.2. Link Discovery for Topological Relations

Most approaches for link discovery between two sets of regions A and B

apply grid partitioning (a.k.a. space tiling) on the two sources, in order to

perform efficiently the filtering step, avoiding the comparison of all regions in A

to all regions in B. Then, in the refinement step, different optimizations aim at

minimizing the number of computations necessary to produce the correct result

set.

Smeros et al. [43] study link discovery on spatio-temporal RDF data. The

authors study several topological relations that are defined on polygons. The

topological relations do not take into account proximity nor distance between

polygons, and several of those are meaningful only to polygons. The algorithm

provided creates an equi-grid, and filters out cells that contain polygons that

cannot satisfy the relation. The main drawback is that regions can be assigned

to multiple cells, thus the same relations are discovered more than once and only

at the final step duplicates are eliminated. This increases the computational cost

of link discovery.

ORCHID [44] studies the problem of discovering all pairs of polygons be-

tween two sets A and B, such that their Hausdorff distance (practically Max-

Min distance) is below a certain distance threshold. ORCHID employs a grid

partitioning of the 2D space (space tiling). Based on this, ORCHID performs
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filtering and needs to compare only few regions to other regions. At the refine-

ment step, ORCHID employs two techniques to reduce the number of distance

computations necessary. First, it employs bounding circles as approximations of

polygons (instead of Minimum bounding rectangles), and makes the observation

that if the minimum distance between any pair of points in A and B respectively

is larger than a threshold, then these regions cannot be linked. Second, it uses

the triangular inequality and already computed distances to avoid computing

new distances, thus pruning regions without distance computations.

RADON [45] is the most recent approach for discovering topological rela-

tions, and can discover efficiently multiple relations. RADON has the following

main techniques: (a) it defines and computes the Estimated Total Hypervolume

(ETH) of a set of geometries, which essentially quantifies the total size of the

geometries present in a dataset, and chooses to index the dataset with smallest

ETH value, (b) it uses space tiling and assigns geometries to cells, but applies

an optimized sparse space tiling, which practically assigns all geometries of the

first dataset (say A, with smaller ETH value) to cells, but only those geometries

of the second dataset B that correspond to cells already occupied by geome-

tries of A, and (c) it performs the filtering step using the Minimum Bounding

Box (MBB) of the geometries, and avoids processing some of the topological

relations (e.g., first checks if two regions are disjoint, and only evaluates other

relations if they are not disjoint), while also employing a caching mechanism to

avoid re-computing pairs of geometries (a, b) (where a ∈ A an b ∈ B).

In summary, contrary to SPARTAN, most of the above papers target spatial

rather than spatio-temporal data. Moreover, the type of relations supported is

very restricted, mainly focusing on topological relations. Instead, in SPARTAN,

proximity relations (e.g., nearby) are very important, and we design efficient

algorithms for this case.
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3. Motivation & Problem Setting

Trajectory-based operations, which involve spatio-temporal data of moving

entities, have become increasingly important in real-life applications, as they

lead to increased safety and minimize cost [46, 47]. Key issue to achieve these

targets is increasing predictability of trajectories and if events related to the

behaviour of moving entities. Thus, several analysis tasks revolve around tra-

jectories, including future location and trajectory prediction as well as complex

event recognition and forecasting. However, the existing operational systems

mainly work at the level of trajectories, largely overlooking other data (weather,

contextual, etc.) that can be combined with movement data, in order to further

advance accuracy of predictions.

In the following, we focus on two domains of interest – maritime and aviation

– and motivate the need for semantic integration of streaming with archival data

sources, aiming at providing enriched data representations that facilitate higher

level data analysis tasks.

3.1. Maritime Domain and Data Sources

Several maritime operations can benefit from real-time exploitation of en-

riched surveillance data, including identifying fishing zones, detecting illegal ac-

tivity (e.g., smuggling, loitering, disobeying speed limitations), timely detection

of dangerous situations leading to immediate response and rescue operations.

All such operations rely on information about moving entities’ trajectories. Tra-

jectories can be detected by exploiting vessel position reports streamed from

multiple sensors, terrestrial and satellite, as for example AIS5 data. Neverthe-

less, the value of such kinematic information is substantially increased when

enriched with other data.

Weather reports and forecasts are available from the National Oceanic and

Atmospheric Administration (NOAA)6, including global meteorological and oceano-

5Automatic Identification System
6http://www.ndbc.noaa.gov/data
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graphic datasets from cooperating networks of ships and buoys. Other sources

that provide information on aspects that affect or that are being affected by the

mobility of entities – called contextual data sources – include: regulated fish-

ing areas, FAO (Food and Agriculture Organization) major fishing areas7 (the

boundaries of which were determined in consultation with international fishery

agencies on various considerations), areas with speed limitations (for example

in a wider harbor area), fishing fleet register, the World Port Index (WPI), ma-

rine protected areas (Natura2000). This data is is available in various formats:

binary GRIB files describe weather forecasts, while ESRI shapefiles are used

to describe geographical areas of interest. Auxiliary CSV files are also used,

relating FAO codes (and their subdivisions) with the corresponding names.

3.2. Aviation Domain and Data Sources

In the aviation domain, detecting and increasing the predictability of moving

entities (aircraft) trajectories are major issues. This task is useful to be per-

formed in an off-line setting, but also in real-time. To assist this task, real-time

surveillance data coming from different networks (ADS-B, IFS, etc.) need to

be combined with weather reports, as well as historical flight plans, trajectories

produced by mathematical models, and aircraft databases. As in the maritime

domain, real-time semantic integration produces enriched trajectories that can

be used to improve the accuracy of various data analysis tasks (e.g., clustering)

leading to more accurate predictions.

An area of interest where increased accuracy of trajectory predictions has a

tremendous effect is Flow Management. The aim here is to ensure an optimum

flow of air traffic to or through areas with respect to their capacity. On each

operation day, the flow management monitoring process analyses periodically

(typically every 20 minutes) the demand for each sector (comprising airspace

volumes), by counting the expected number of flights in the sector during the

next period (typically one hour). If a potential demand versus capacity imbal-

7http://www.fao.org/fishery/area/search/en
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ance is detected (a hotspot), a regulation may be applied to adjust the demand

values to the available capacity. Additional data sources that need to be taken

into account include flight plans, historical trajectories, weather reports, issued

regulations, and airspace information that describes the division of space to sec-

tors. All this data is provided in different formats, including CSV files, AIXM8

(XML-based), DDR flight plans (textual format), and binary GRIB files for

weather forecasts.

3.3. Problem Setting

Given this wide variety of available data sources, a main objective of our

work in the context of the datAcron project is to derive an enriched stream of

mobility data, which can be consumed by other modules in an online fashion.

Such consumer modules include analytics components, such as trajectory pre-

dictors and complex event recognition engines, and we refer to [48] for a detailed

overview of the overall architecture of datAcron. The primary data in the de-

rived stream is surveillance data of moving objects. This data is enriched with

archival data sources, and transformed in a common representation using RDF.

The derived stream of RDF can be consumed by online data analytics compo-

nents, and can also be stored in a distributed RDF store for offline querying.

However, these issues are outside the scope of this paper. Instead, in this pa-

per, we present the techniques for online compression, data transformation to a

common representation format, and linking with external data sources, thereby

producing an enriched stream of mobility data.

4. The datAcron Ontology

The datAcron ontology9 was developed to be used as a core ontology for

the Maritime Situation Awareness (MSA) and Air Traffic Management (ATM)

domains, towards supporting analysis tasks exploiting trajectories at various

8http://www.aixm.aero
9Documentation is available online at http://ai-group.ds.unipi.gr/datacron_ontology
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levels of analysis. Its development has been driven by ontologies related to our

objectives (e.g. DUL10, SimpleFeature11, NASA Sweet12 and SSN13), as well as

schemas and specifications regarding data sources from the different domains.

4.1. Definitions

Starting from the definitions of raw, structured and semantic trajectories

provided in [1], a raw trajectory is a temporal sequence of raw data specifying

the moving object’s spatio-temporal positions. Raw data can be aggregated,

analyzed and semantically annotated, providing multiple abstractions of a tra-

jectory.

A structured trajectory (simply, trajectory) consists of a sequence of tra-

jectory parts that can be either raw positions reported from sensing devises,

aggregations of raw positions referred as semantic nodes or simply nodes, or

trajectory segments.

A semantic node provides a meaningful abstraction or aggregation of raw

positions, e.g. a set of raw positions may signify a “turn” event, represented

as a single semantic node associated to the resource representing the “turn”

event. A trajectory segment is a trajectory itself, part of a whole trajectory.

Segmentation of trajectories can be done with different objectives depending

on the application and target analysis. Any trajectory part may be associated

with a co-occurring event. For example, a bad weather region may co-occur with

a trajectory crossing-it (thus, related spatially) during a time period (related

temporally).

A semantic trajectory is a meaningful sequence of trajectory parts, signifying

events, activities, goals, etc. of moving entities.

10http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
11http://www.opengis.net/ont/sf
12https://sweet.jpl.nasa.gov/
13https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
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4.2. Core Vocabulary and Overall Structure

According to the datAcron ontology, a trajectory (Trajectory) can be seg-

mented to trajectory parts (TrajectoryParts), each including other segments

and/or more semantic nodes, as illustrated in Figure 1. Each semantic node

may be associated with a specific raw position or a temporally ordered sequence

of raw positions of a moving object.

Figure 1: The main concepts and relations of the proposed ontology.

Trajectories and trajectory parts can be associated with contextual informa-

tion, as well as with events (dul:Event). Although events may occur indepen-

dently from the trajectory but co-occur with the trajectory, we focus on events

on the trajectory itself (e.g. a “turn” or a “gap of communication”) and to mov-

ing object’s information (e.g. vessel in a protected or in a bad-weather area).

Patterns for the specification of events and their associations to trajectory parts

are presented subsequently.

4.3. Patterns of Semantic Trajectories

Figure 2 illustrates the generic pattern of raw and structured trajectories.

The main concept in this pattern is the Trajectory, which is a subclass of Spatio-

Temporal Structured Entity (ST StructuredEntity). This, being a subclass of

dul:Region represents a region in a dimensional space and time, used as a value
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for a quality of an Entity, while it also represents (structured) trajectories and

their parts. A structured trajectory, as well as any of its parts, can be a temporal

sequence of TrajectoryPart entities. As Figures 1 and 2 show, any trajectory

and trajectory part, being an ST StructuredEntity, can be associated to any

other trajectory or trajectory part via a dul:precedes or a dul:hasPart property.

This is further explained in the next paragraphs.

Figure 2: The pattern of structured trajectories. Domain specific concepts in gray

Direct subclasses of Trajectory are the:

• IntendedTrajectory: planned trajectories build by an dul:InformationEntity

such as a FlightPlan,

• ActualTrajectory: trajectories constructed from actual positioning data,

after some processing of the raw positional data,

An ActualTrajectory can be further distinguished to a ClosedTrajectory (i.e.

a trajectory that has reached its destination) and to an OpenTrajectory (i.e. a

trajectory in progress).

The TrajectoryPart can be further distinguished to one of the following

subclasses:

• Segment: associated to a spatial region and a time proper interval.

• Node: associated to a point in space and a time instant or time period.

The latter holds in case the node aggregates several raw positions. A Node
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can be the result of a data processing component computing compressions

or aggregations of the raw positioning data.

• RawPosition: represents the raw (unprocessed) positioning data. Each raw

position instance is associated to a point in space and a time instant.

A specific trajectory, as well as any of its trajectory parts, being instances of

dul:Region can be associated to their parts via the dul:hasPart property or via

the subproperties hasInitial, hasLast which indicate the first and last part of

the ST StructuredEntity, respectively. For instance, a trajectory may comprise a

sequence of trajectory segments that (in turn) comprise other segments, nodes,

or raw positions, and so on. The temporal sequence of structured entities is

specified by means of the property dul:precedes. Trajectories related via the

property dul:precedes represent subsequent trajectories of a specific object, and

thus keep a long history of its movement.

Each structured entity (i.e. trajectory or trajectory part) can be associated

to a specific geometry (sf:Geometry), representing a point or region of occur-

rence, and a temporal entity (dul:TimeInterval) specifying a time interval of

occurrence. The Geometries of structured entities can be serialized into Well-

Known-Text (WKT) and asserted as values to the property hasWKT, which is

sub-property of geosparql:hasSerialization.

Finally, trajectories can be members of TrajectoryCluster entities, via the

dul:hasMember property.

Towards the specification of semantic trajectories, trajectories are associated

with events and contextual information. Specifically, each trajectory and tra-

jectory part, being instances of ST StructuredEntity, can be associated via the

property occurs with events, as illustrated in Figure 3. An event can be asso-

ciated with other events via the properties dul:hasConstituent or dul:hasPart:

This is the case for high-level events associated with other high-level or low-level

events. An event involves at least one participant (associated via the property

dul:hasParticipant) and it holds for a specific TimeInterval specified by the

property dul:hasTimeInterval.
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Figure 3: The pattern of trajectories linked with events. Domain specific concepts in gray

Figure 4: The pattern of trajectories linked with contextual information. Domain specific

concepts in gray

It should be noted that associating events to trajectory parts satisfies the

requirement to associate multiple events to varying levels of trajectory analysis,

according to the information used for the detection of each event: For instance,

a low-level “turn” event may co-occur with a low-level “descend” event and thus,

both events may be associated to the same semantic node. In addition to that,

this semantic node may be associated to a trajectory segment which in its own

turn is associated with events of type “DescendingPhase” and “CrossingSector”.

In addition to events, trajectory parts of semantic trajectories can be linked

to contextual information, i.e. information about entities in the environment
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that affect the moving object, including other trajectories. Such information

may be archival information concerning static aspects of the environment (e.g.

airports, airspaces, etc), dynamic (e.g. changing sector configurations), or

streaming (e.g. weather forecasts). The pattern for linking trajectory parts

with contextual information is illustrated in Figure 4.

Weather conditions are very important to trajectories in the MSA and

ATM domains: Each TrajectoryPart can be associated with entities of type

WeatherCondition, which is defined as a subclass of ssn:FeatureOfInterest, (i.e.

the entity whose properties are being estimated or calculated in the course of

an observation).

Of particular interest to the ATM and MSA domains are regions. Structured

entities can be linked to spatial regions (instances of dul:Region) of particular

interest through the properties within and dul:nearTo.

Also, the departure and destination of a trajectory can be considered as con-

textual information, linked via the properties hasDeparture and hasDestination,

respectively. The properties range to the class dul:PhysicalPlace, which can be

further refined to domain specific classes such as Airport, Heliport, or Port.

5. The SPARTAN Framework for Semantic Integration of Spatio-

temporal Data

SPARTAN is a framework for semantic integration of streaming mobility

data with other data sources. It comprises three main components, as illustrated

in Figure 5: (a) Synopses Generator, (b) Data Transformation, and (c) Link

Discovery. The components correspond to fundamental steps in the big data

analysis pipeline [49], namely (a) data acquisition, cleaning, and filtering, (b)

data extraction and representation, and (c) data integration.

In brief, streaming positional data, which is the primary data source of

SPARTAN, is cleaned and compressed by the Synopses Generator. The output

of the Synopses Generator along with other external data sources, streaming or

archival, are transformed in RDF in accordance with the datAcron ontology, by

21



Synopsis 
Generator

   Data 
Transformation

Streaming 
positional 

data

Archival 
data sources

Streaming 
data

SPARTAN: Semantic Integration Framework

RDF data

datAcron 
ontology

   Data 
Transformation

datAcron 
ontology

RDF data

RDF data

raw data
ra

w
 d

at
a

co
m

p
re

ss
ed

 
d

at
a

Link 
Discovery

Figure 5: The SPARTAN framework for semantic integration of big spatio-temporal data.

the Data Transformation component. Then, the Link Discovery component can

take as input any pair of “RDFized’ sources to perform interlinking of entities

and produce linked RDF data. Finally, SPARTAN outputs a stream of linked

RDF data, which contains enriched trajectories of moving objects.

5.1. Trajectory Synopses Generator

Detecting important mobility events along trajectories has to carried out in

a timely fashion against the streaming positional updates received from a large

number of moving entities in our domains of interest. Instead of retaining every

incoming position for each object, we consider trajectory synopses computed

by a Synopses Generator module that drops any predictable positions along

trajectory segments of “normal” motion characteristics. Indeed, except for ad-

verse weather conditions, traffic regulations, local manoeuvres close to ports

and airports, congestion situations, accidents, etc., most vessels and aircrafts

normally follow almost straight, predictable routes at open sea and in the air,

respectively. It turns out that a large amount of raw positional updates could

be suppressed with minimal losses in accuracy, as they hardly contribute ad-

ditional knowledge about their actual motion patterns. Instead of resorting to

a costly trajectory simplification algorithm, we opt to reconstruct their traces

approximately from judiciously chosen critical points along their trajectories. A
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critical point is represented by a Semantic Node in the datAcron ontology.

The Synopses Generator applies single-pass techniques for succinct, lightweight

representation of trajectories without harming the quality of the resulting ap-

proximation. Effectively, we may keep only those positions conveying salient

mobility features identified when the pattern of movement for a given object

changes significantly. In particular, this online process can detect various types

of critical points, as illustrated in Figure 6:

• Stop indicates that the object remains stationary (i.e., not moving) over

a period of time. As this event has a duration but it must be detected at

once, two critical points are emitted in order to specify its duration. Start

of stop is identified for a just received location once its current instanta-

neous speed is lower than an appropriately chosen threshold for immobility

(e.g., 0.5 knots). End of stop is identified once a previously stopped object

starts to move again, i.e., its speed exceeds the threshold.

• Slow motion means that the object consistently moves at low speed (e.g.,

< 5 knots) over a period of time. The first and last of these positions

will be reported as critical points, respectively annotated as Start of slow

motion and End of slow motion.

• When the direction of movement has changed by more than a given angle,

e.g., there is a difference of more than 5o from its previous heading, this

point is emitted as critical (Change in Heading).

• Along a trajectory, there may be a period when a change in the current

instantaneous speed is under way. The respective critical point gets an-

notated as Start of Speed Change. Once the speed stabilizes again, the

respective location is marked as End of Speed Change.

• Communication gaps may occur when a moving object has not emitted a

message over a time period, e.g., the past 10 minutes. Hence, its course is

unknown during this interval. Once communication is restored, the first

location should be immediately emitted as a critical point (Gap End).
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Reporting when this gap started may be important for safety reasons, so

a notification is issued (Gap Start); in this latter case, this last-known

position before the gap can only be annotated with delay.

• Change in Altitude may be detected for aircrafts by checking their rate of

climb or rate of descent.

• Takeoff for aircrafts occurs when they go from the ground to flying in the

air.

• Landing for flying aircrafts is the first reported location when they touch

the ground.

It is important that critical points should be emitted at operational latency,

i.e., within milliseconds (or a few seconds at most) since the arrival of raw

messages, so as not to cause delays in subsequent processing. In effect, once a

location arrives in the incoming stream, it must be instantly characterized (ide-

ally within milliseconds) if it qualifies as critical according to the aforementioned

cases. Hence, this derived stream of trajectory synopses must keep in pace with

the incoming raw streaming data so as to get incrementally annotated with

semantically important mobility features once they get detected.

5.2. Data Transformation

The purpose of Data Transformation is to extract all incoming data from

its original form into RDF, in order to provide a basis for semantic integration.

In essence, it performs the data extraction and data representation steps of the

pipeline mentioned above. The Data Transformation is designed in a generic

way and comprises two major components: a) the Data Connectors, and b) the

Triple Generator.

5.2.1. Data Connectors

This component is responsible for connecting to a data source and providing

access to its data. Its main task is to provide records of data from the data

source to the core RDF generation component, which is the Triple Generator.
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(a) Synopsis of a vessel trajectory (b) Synopsis of an aircraft trajectory

Figure 6: Example synopses of critical points for (a) the maritime and (b) aviation use cases.

Raw positions are shown as blue dots.

Data Connectors follow a record-by-record access model, treating both stream-

ing and archival data sources in a uniform way: Essentially any data source is

considered a “stream” of records that need to be processed with minimal la-

tency. Since operations are performed on individual records, this results in

minimizing the memory footprint of the RDF generation process, also provid-

ing opportunities for scalability and parallelization (even at the level of a single

data source).

The current implementation includes a variety of data connectors that sup-

port data formats: (a) CSV files (surveillance, weather reports, registries of

moving objects), (b) direct access to databases, (c) JSON messages, (d) XML

files, (e) METAR/SPECI weather reports from offline or continuous feeds, (f)

National Oceanic and Atmospheric Administration (NOAA) GRIB2 files for

weather reports, (g) SPARQL endpoints, and (h) ESRI shapefiles.

5.2.2. Triple Generator

The Triple Generator is the core component of the RDF generation method.

It converts each record provided by a data connector into a set of triples, i.e.

a fragment of the RDF graph generated. This process uses two inputs: (a) a
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Graph Template GT, and (b) a vector of variable names V. The generated triples

are in accordance with the datAcron ontology. However, we note that the Triple

Generator is a generic data transformation tool that can be parameterized with

any given ontology, in order to transform raw input data to RDF.

The Graph Template inherits the idea of standard RDF Graph Patterns, i.e.

it contains triples templates, where any of the three elements in an RDF triple

(s,p,o) can be a variable or a custom function. The variables and the arguments

of functions are identified by a leading question mark (?), e.g. ?imo, for the

IMO14 code of a vessel, may appear as a variable in a triple or as an argument

of a function. For instance the triple template:

makeURI(?imo) rdf:type :Vessel .

uses the function makeURI(?imo), which constructs the URI of a resource for a

given ?imo value. On the other hand, the vector V contains the variables that

appear in the Graph Template, specifying mappings to fields in data sources.

Figure 7: Example of data transformation illustrating input, output, and configuration files.

5.2.3. Examples of Data Transformation

A complete example of data transformation from a single data source to

RDF with the corresponding configuration files is illustrated in Figure 7. The

14International Maritime Organization
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data source in this example provides surveillance data from the aviation domain

that describe the spatio-temporal position of moving objects (aircrafts). The

input to the Triple Generator is a record provided by the appropriate data

connector. A set of eight variables is provided in order to bind input values

to variable names. For example, the first variable (?id) will be bind to the

first value (column) of the input record (001), and refers to the aircraft ID.

The graph template constructs trajectory (semantic) nodes for aircraft, given

their ID their 3-D position (?lon, ?lat and ?alt for altitude), time point (?ts),

status (?status), speed (?speed) and heading (?heading). The produced output

follows the structure of the graph template, after having replaced variables with

the respective input values, and functions with the result of the function call.

Notice that the graph template is written in compliance with the datAcron

ontology.

Figure 8 shows another example of data transformation, revealing the use of

functions in triple patterns in processing and integrating multiple data sources.

The positioning data connector provides surveillance data of vessels to a Triple

Generator instance, similar to the previous example. The GRIB connector ac-

cesses binary files that contain weather forecasts and can extract the related

weather attributes for a given spatio-temporal position. As soon as a new

position is received, a request is made to the Triple Generator instance that

retrieves the weather information and provides it in RDF representation based

on the respective Graph Template. This allows data transformation of selected

weather information, corresponding to the area defined by the positioning in-

formation. More interestingly, the weather Triple Generator returns the URI

of the weather condition to the positioning Triple Generator, which can then

create the :hasWeatherCondition property and associate the position with the

weather. This is an example of lightweight, “close-to-the-sources” integration,

which is also supported by our data transformation component.
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Figure 8: Example of data transformation and close-to-the-sources integration.

5.3. Stream-based Spatio-temporal Link Discovery

The goal of the link discovery process is to identify the relations (links)

between entities present in a source and target dataset. In our work, the

majority of relations are of spatial or spatio-temporal nature, thus our focus

is on spatio-temporal link discovery15. We develop a framework for spatio-

15Even though we focus on spatio-temporal relations, we can also compute other relations

(e.g. sameAs) using spatial distance (e.g. sameAs relations between ports found in different

datasets).
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temporal link discovery which, by design, operates on streaming data sources,

processing record-by-record (similar to the data connectors in Section 5.2) with

low latency. Obviously, archival data sources are also supported, by enabling

record-by-record access to the archival data. Core innovations of the proposed

framework include the support of stream-based link discovery in combination

with the provision of multiple spatio-temporal relations. Both these issues are

not addressed by state-of-the-art link discovery methods, as explained in the

Related Work section 2.4.

Point-to-point Point-to-region Region-to-region

overlaps undef. undef. X

within undef. X X

nearby X X X

nearest X X X

Table 1: Types of spatio-temporal relations supported by our framework.

Table 1 provides a summary of the types of spatio-temporal relations sup-

ported by our implementation (we have also implemented all OGC relations,

such as cross, touch, equal, intersect, etc). “Point” refers to a spatio-temporal

position, whereas “region” refers to a 2D spatial area described by a polygon

or a 3D geometry. Point-to-point relations are of spatio-temporal nature, i.e.,

both the space and time are taken into account to determine whether two points

are nearby, whereas region relations are of spatial nature. Supported relations

include topological relations (overlaps and within) as well as proximity relations

(nearby and nearest). Notice that state-of-the-art approaches for static spatial

data, such as RADON [45], do not support proximity relations.

To provide meaningful examples of the afore-described relations in real-world

situations, we briefly mention indicative cases in the following. For example,

given the spatio-temporal position of a vessel, represented as a point {x, y, t},

within stands for enclosure of the point within a polygon representing some ge-

ographical area of interest. Other types of links correspond to spatial proximity
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relations, e.g. a vessel is located nearby a region, or spatio-temporal proximity

relations, e.g. a vessel is near (or nearest) to another vessel. Notice that both

spatial and spatio-temporal relations can be supported by our link discovery

framework, which are not covered by existing link discovery frameworks [8].

5.3.1. Requirements for Spatio-temporal Link Discovery Framework

The design of our spatio-temporal link discovery framework is guided by the

following main requirements:

• Support for streaming sources: the framework must inherently support

streaming data sources in conjunction to archival ones, making no as-

sumption on a priori access to the complete datasets;

• Performance: the framework must support efficient link discovery. To

achieve this, different blocking techniques can be plugged in, tailored to

the characteristics of the data source at hand, to achieve optimized per-

formance;

• Extensible set of relations: the framework needs to allow easy addition

of new distance/similarity functions, which enable the discovery of new

spatio-temporal relations;

• Generic nature: the framework should not be tailored to a particular type

of data source, but rather support various types of data sources and allow

easy addition of a new data source.

Supporting even a subset of these requirements raises research challenges that

go well beyond the state-of-the-art.

5.3.2. Architecture

The generic architecture of the implemented spatio-temporal link discov-

ery framework is illustrated in Figure 9. Its inputs are a source and a target

dataset with the corresponding connector components, which provide data as

RDF graph fragments, in case this is not already the case. In addition, a con-

figuration file for each dataset is provided as input, which specifies filtering
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conditions for the RDF triples that should be evaluated. In addition, it speci-

fies the connection setup, the definition of the relation, the function used in the

refinement process and the function used for accessing entities from the RDF

graph fragment. In this way, the depicted SourceConnector and TargetConnec-

tor components filter RDF triples from each data source.

Figure 9: The architecture of spatio-temporal link discovery.

The core parts of the link discovery architecture are the following compo-

nents:

• The Consumption Strategy specifies how input data should be processed.

Currently, we have implemented two main strategies: (a) “target-first

strategy” which proceeds to the source dataset only after the target data

source has been accessed in its entirety, and (b) “joint strategy” which

processes the two data sources and consumes them jointly. The former

strategy is quite standard in link discovery frameworks which first access

and organize the target dataset using some blocking technique, and then

process the source dataset record-by-record. Instead, the latter strategy

is quite different from strategies used by state-of-the-art link discovery

frameworks, and is specifically tailored for streaming data sources. For

example, it can be used to detect links between trajectory parts. Ap-

parently, the target-first strategy enables tuning for better performance,

such as swapping target-source data sources, in order to use blocking on

the smaller dataset and reduce overall processing time (a technique used
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in [45]).

• The Blocking Mechanism in the case of spatio-temporal data is typically

a grid structure that partitions the space in blocks. This allows effective

filtering out large portions of data that cannot be linked to the currently

examined object. Our current implementation provides two different types

of grid: (a) EquiGrid, which given the granularity for each dimension, con-

structs equally sized cells, (b) Hierarchical grid, where multiple EquiGrids

are employed for different granularities, thereby enabling more efficient

pruning in some cases.

• The Link Evaluator comprises the functions that should be invoked to

evaluate if a given relation (e.g., overlaps, within, nearby, etc.) between

source and target entities exists. We have implemented the functions for

all OGC relations between all combinations of static and moving entities,

to detect the relations specified in Table 1. Finally, the linked entities

detected by the link evaluator are directed to output. At this point, the

framework provides the options to either: (a) concatenate the linked enti-

ties (as triples) to the corresponding RDF fragment used in the input, or

(b) export only linked entities (as RDF triples). The first option provides

synchronized and sequential RDF graph fragments to the output which

is necessary in case of streaming source/target data sources, while the

latter reduces the overall link discovery time and enables decoupling the

processing of input datasets from the processing of discovered links.

6. The SPARTAN Big Data Architecture

In this section, we present the design of the SPARTAN big data architec-

ture, focusing on the implementation of individual components as well as the

communication mechanism used for integrating the different components.
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6.1. Communication

SPARTAN follows a loosely-coupled architecture, which was a design decision

that facilitates integration of components developed using different technologies.

Moreover, our design makes the prototype easily extensible with other compo-

nents. For the communication between components we opt for Apache Kafka.

Kafka16 is a distributed, partitioned, replicated commit log service [50]. It

provides the functionality of a messaging system. Kafka maintains feeds of

messages in categories called Topics. Each Topic is partitioned for scalability

and Partitions are distributed in the cluster. Processes that publish messages

to a Kafka Topic are called Producers. Processes that subscribe to Topics and

process the feed of published messages are called Consumers. Kafka runs in a

Cluster comprised of one or more servers each of which is called a Broker.

In SPARTAN, all components take as input and provide as output a Kafka

Topic. In this way, we achieve stream-based communication, while also enjoying

scalability and fault-tolerance at the same time. To improve performance and

provide scalability, Topics can be partitioned and then distributed to different

machines in the cluster.

6.2. Implementation of Trajectory Synopses Generator

The Synopses Generator has been implemented on top of Apache Flink [51].

Currently, Apache Flink completely lacks support for spatial and spatiotempo-

ral entities (e.g., points, lines, polygons, let alone moving objects with speed,

heading, acceleration, etc.) and related operations (distance, speed, topological

comparisons, etc.). Thus, we introduced custom data structures for maintaining

critical points with support for all mobility operations and functions required in

our processing flow. In addition, we have successfully defined in Avro [52] ex-

tensible attribute schemata for critical point types for the maritime and aviation

use cases. These schemata are being used to hold all spatio-temporal proper-

ties from raw data, as well as those dynamically calculated during processing.

16http://kafka.apache.org/
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Further, we have defined in Kafka [53] specific topics for all messages consumed

and produced by the module, i.e., raw positional data as well as for derived

critical points. All business logic in our methodology as detailed in Sections 5.1

has been implemented in Scala, with some auxiliary Java classes used for ex-

posing the attribute schemata from Avro. Module implementation is separate

for the maritime and aviation use cases for better maintenance and allowing

independent execution of simulations with different configurations.

6.3. Implementation of Data Transformation

The Data Transformation component has been implemented in Java 8, in-

cluding both Data Connectors and the Triple Generator. Its design to consume

data in a record-by-record fashion, allows easy parallelization in different ways.

In case of a high-rate streaming source, it is possible to have a single data con-

nector that sends records to multiple instances of triple generator, thus matching

the rate of the streaming source. In case of a vast-sized archival data source,

is is possible to use multiple Data Connectors, each accessing a different range

of underlying records, thus achieving parallelization at the level of data access.

It should be noted that this is applicable for those data sources that are not

constrained by sequential access to records. However, it is applicable for many

data sources, including CSV and XML files, relational databases, etc.

Another noteworthy implementation aspect of the Data Transformation com-

ponent is the one exemplified in Figure 8, offering “close-to-the-sources” inte-

gration. This example shows that it is possible to perform data transformation

at two different sources and at the same time create associations between the

generated RDF data. In technical terms, this is achieved by enabling commu-

nication between instances of Triple Generator.

6.4. Implementation of Link Discovery

As already mentioned, the implementation of the Link Discovery component

adheres to a generic design, thus supporting alternative blocking mechanisms
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(spatial grids, R-tree, etc.) and allowing easy addition of new algorithms cor-

responding to new spatio-temporal relations. All currently implemented algo-

rithms adhere to the filter-and-refine paradigm, where at the filtering step many

combinations between source and target entities are pruned, and the remaining

candidates are evaluated at the refinement step.

The spatio-temporal link discovery framework is applicable in a setting where

one source is streaming and the other archival, as well as when both sources are

streams. At the current stage, the implementation is centralized, however paral-

lelization can be achieved by spatio-temporal partitioning techniques (tailored

to the relation at hand), to ensure that each partition contains all necessary

data to identify the correct links.

7. Experimental Evaluation

In this section, we first describe the main datasets used in the evaluation

(Section 7.1). Then, we provide experimental results for the individual compo-

nents in Section 7.2 in order to study their performance individually, and then

present the empirical evaluation of the integrated prototype in Section 7.3.

7.1. Datasets

We use two maritime datasets in our evaluation study, denoted NARI (In-

stitut de Recherche de l’École Navale) and IMISG (IMIS Global, a private com-

pany), based on the data provider. NARI contains AIS kinematic messages

from vessels sailing in the Atlantic Ocean around the port of Brest, Brittany,

France and span a period from 1 October 2015 to 31 March 2016. After dedupli-

cation of the original 19,035,630 AIS messages, this dataset yielded 18,495,677

point locations (kinematic AIS messages only), which was used as input at their

original arrival rate for creating trajectory synopses. Attribute MMSI in the

original records is used as the identifier for each of the 5055 vessels in this

dataset. IMISG comes from AIS messages relayed from a very large fleet of

118,003 vessels in the Mediterranean Sea and part of the Atlantic Ocean during
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January 2016. After decoding and deduplication of AIS messages, this dataset

yielded 61,187,265 raw point locations (kinematic AIS messages only) that are

being used in the simulations at their original arrival rate. Again, attribute

MMSI in the original data is used as the identifier of each vessel.

7.2. Evaluation of Individual Components

7.2.1. Trajectory Synopsis Generation

As every data reduction process, effectiveness of trajectory summarization is

a trade-off between compression efficiency and approximation accuracy. Hence,

regarding maintenance of trajectory synopses, we measured compression ratio.

This is the percentage (%) of positions dropped from the approximate trajectory

synopses over the raw ones originally obtained, or equivalently:

1− #critical points

#raw positions
.

The higher this ratio, the more compressed and lightweight the resulting

synopses. A compression ratio closer to 1 signifies stronger data reduction,

as the vast majority of original locations are dropped and few critical points

suffice to represent the trajectories. The red line in the following plots depicts

measurements of this ratio with varying parameters in order to quantify their

effect on compression.

Experimental Results. For the two original maritime datasets, we examine com-

pression ratio with respect to angle threshold ∆θ and the minimum period ∆T

for communication gaps. With a lower ∆θ, even slight deviations in vessel di-

rection can be spotted, and thus extra critical points get issued. Bar charts in

Figures 10(a) and 10(c) illustrate the amount of critical points in each class (gap,

slow motion, speed change, stop, change in heading) retained from the entire

dataset. Clearly, every further increase in threshold ∆θ suppresses more and

more turning points and does not affect the share of any other class of critical

points, but incurs extra reduction in the total amount of emitted critical points.

Compression ratio always remains above 70%, and with a more relaxed ∆θ it
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(a) varying angle on NARI
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(b) varying gap period on NARI
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(c) varying angle on IMISG
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(d) varying gap period on IMISG

Figure 10: Effect of parametrization on compression ratio for original maritime datasets

reaches as much as 80% for the NARI dataset. In this latter case, only 20% of

the original locations survive as critical, mostly by eliminating local manoeuvres

of little impact on vessel’s course. Eliminating noise also plays an important role

in data reduction, as erroneous deviations are dropped and no points need be

retained. Data reduction over the IMISG dataset is less intense, since contents

of this decimated stream have been already downsampled, apparently leaving

very small margin for further compression. Note that even allowing an angle

tolerance of 10o for detecting turning points incurs very little extra reduction

compared to the same test on the NARI dataset.

A similar pattern regarding reduction efficiency can be observed in Fig-

ures 10(b) and 10(d) with respect to varying periods ∆T for detecting gaps in

communication. Not surprisingly, it is the amount of critical points marking

those gap periods that gets reduced with an increasing threshold ∆T . For the
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NARI dataset, reduction ratio is never below 76%, and only a tiny percentage

of critical points concern communication gaps greater than 10 minutes, as most

the fishing boats in this fleet report frequently enough their position. This is

in contrast with the IMISG dataset (Figure 10(d)), where almost half of the

detected critical points for ∆T = 10 minutes mark such gaps and compression

ratio drops to 23%, practically retaining three out of four raw points in the

synopsis. Indeed, keeping track that contact was lost even for 10 minutes for

a given vessel incurs a surge in the amount of such critical points in the syn-

opses. This is another side effect of the poor reporting frequency observed in

this dataset and its severe impact on effective trajectory detection. Of course,

relaxing the gap threshold can substantially increase compression ratio up to

74%. It is no wonder that reduction practically stabilizes above ∆T= 30 min-

utes, as the average reporting frequency in the IMISG dataset is about every 20

minutes.

Figure 11: Number of input records (blue line) and generated triples (red line) per data source,

ordered by number of input records in the data source.

7.2.2. Data Transformation to RDF

Figures 11 and 12 provide evaluation results from the RDF generation pro-

cess for various real-world data sources (including IMISG and NARI), both from
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Figure 12: Number of generated triples per second for each data source, ordered by number

of input records in the data source.

the maritime and aviation domains. In both figures, the X-axis indicates the

data source, ordered by the volume of input data. More than 40 data sources

have been included in the study, having heterogeneous formats, varying size,

and complexity.

Figure 11 depicts the number of raw records and the corresponding number

of generated triples per data source. Notice the log scale on the y-axis. The

number of generated triples is larger than the raw records, since typically each

attribute of a single record is mapped to a triple. It must be pointed out that

for a surveillance data source (denoted AIS Brest and corresponding to the

summarized NARI dataset mentioned above) we generate 131M triples.

In Figure 12, we evaluate the performance of the data transformation process

for these data sources. The chart depicts the number of processed input records

per second for the different data sources including the “close-to-the-sources”

integration of surveillance with weather data, again using log scale on the y-axis.

Focusing again on maritime surveillance data, we managed to transform 10,467

input records to RDF per second. For some sources this number is smaller due

to complicated geometries that are computationally intensive or complex XML-

39



based formats (e.g., AIXM) that require navigation of multiple paths to retrieve

the necessary information. Overall, the average time per triple generated is

approximately 0.04 seconds, given that the frequency of position reporting per

aircraft/vessel is at least 2 seconds. This experiment clearly demonstrates the

efficiency of the proposed RDF generation method.

7.2.3. Spatio-temporal Link Discovery

In this section we provide experimental results for two of the relations men-

tioned in Table 1: within and nearby. In both cases, the source stream of the

critical points produced by the Synopses Generator takes as input the IMISG

dataset. The number of critical points is 14,314,312. For the target dataset,

we employ: (a) for relation within, the “Natura2000” dataset which consists of

3,552 polygons representing protected areas, and (b) for relation nearby, the

“Natural Earth Data Beacons” dataset, which consist of 7,942 entities.

In both cases, we use an EquiGrid as a blocking mechanism to organize the

target dataset in memory, and then process each position of the IMISG dataset

in a streaming fashion, in order to discover whether one of the above relations

exists and perform the linking. The granularity of the grid was set to 1.5x2.5

degrees. Obviously, in some cases, a polygon is assigned to multiple grid cells,

depending on its position.

It should be noted that the link discovery method is 100% accurate, i.e., is

always discovers the correct links/relations. Therefore, we turn our attention to

evaluating the performance. Our main metric is the number of IMISG positions

processed per second (i.e., throughput), which reflects the efficiency of link

discovery. In addition, we measure the ComparisonsRatio, which is the fraction

of comparisons made over the theoretical number of comparisons necessary:

ComparisonsRatio = FalsePositive+TruePositive
TotalEntitiesInSource×TotalEntitiesInTarget

where FalsePositive is the number of comparisons that did not produce a link

and TruePositive is the number of comparisons that actually produced a link.

Table 2 reports the results of the experimental evaluation. The throughput

is 773.69 positions/sec for relation nearby and 647.94 positions/sec for within.
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Relation Source/Target Throughput ComparisonsRatio

Nearby IMISG/Beacons 773.69 1.4%

Within IMISG/Natura2000 647.94 0.39%

Table 2: Performance of link discovery for relations within and nearby.

Thus, we are able to discover links for several hundreds of positions per second.

Notice that these results are based on a single-threaded implementation, and the

task can be naturally parallelized. The ComparisonsRatio is also quite small, in

the order of 1%, showing that the use of the grid drastically reduces the number

of required comparisons for discovering the links.

7.3. Evaluation of Architecture

In this section, we provide experimental results of the SPARTAN architec-

ture based on a deployment in a medium-sized 10-node cluster at the Univer-

sity of Piraeus. Each node is equipped with: Intel Xeon E5 (6 cores, 1.6GHz),

128GB DDR4 RAM, 6TB HDD + 200GB SSD, and 1Gbit connection between

each node. The software stack of our cluster is: Ubuntu: 16.04.2 (kernel 4.4.0)

x64, Java: 1.8.0 121, Hadoop, HDFS, YARN: 2.7.2, Scala: 2.11.7, Flink: 0.10.2,

and Confluent: 3.1.1. Our Kafka cluster consists of three brokers, each allotted

with 16GB of memory.

The evaluation is performed using two of the three SPARTAN components,

namely the Data Transformation and the Link Discovery, since Synopses Gen-

erator is real-time and does not incur any further delay to streams. We varied

the following parameters:

• Replication factor: in our experimental study we used replication factor 2

and 3. A higher replication factor increases durability and achieves higher

availability.

• Use of callbacks for sends: The use of callbacks allows sends to be asyn-

chronous, meaning that we do not have to wait for an acknowledgment

from the broker, before sending the next message.
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We opted to measure throughput in number of TTL17 records per second. In

our experiment, a TTL record typically corresponds to 10 RDF triples.

The throughput of the integrated prototype was 2,256 TTL records per sec-

ond for replication factor 3, and only slightly lower (2,252) for replication factor

2, with callbacks enabled. This experiment demonstrates that SPARTAN is

able to provide enriched streams of generated RDF data with high rate and low

latency. It should be mentioned that in our applications (maritime and avia-

tion) the surveillance streams are of much lower rate. We also measured the

throughput of each component separately, and the data transformation compo-

nent achieved 3,408 and 3,708 TTL records per second. This shows that the link

discovery is the slowest component between the two, and it is responsible for

the overall throughput achieved. When callbacks were not used, the throughput

of the data transformation component increased to 6,000 TTL records per sec-

ond. All in all, our evaluation shows that the integrated prototype achieves high

throughput. However, we believe that improvements can be achieved by care-

ful tuning of other Kafka-related parameters, and this is mostly an engineering

issue that deserves further study.

8. Discussion

Following SPARTAN’s way, raw trajectory data is transformed into mul-

tidimensional sequences (semantic trajectory data) that form a more realistic

representation model of the complex every-day life [1]; mobility of vessels be-

longs to this broad class. Operating on such compressed but semantified time-

series may facilitate several analysis tasks. For instance, clustering analysis

may benefit from additional variables by incorporating the principle of divide-

and-conquer via a semantic-aware clustering of the routes, essentially grouping

together routes that exhibit similarity not just in their spatio-temporal path

17Terse RDF Triple Language: a textual syntax for RDF that allows RDF graphs to be

completely written in a compact and natural text form
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but also in their semantic vectors. The complexity of having additional seman-

tic dimensions over the spatio-temporal domain can be addressed efficiently by

employing a proper similarity function, which is typically some linear vector

norm. This enables the incorporation of any number of semantic parameters

to be used, e.g. weather conditions, moving object properties, etc, with limited

impact on the overall complexity. Moreover, the clustering may be performed

using a properly designed semantic-aware similarity function that takes into ac-

count the entire input space instead of just the spatio-temporal proximity of

the trajectories. In other words, we may follow an approach that addresses the

fact of routes that may seem identical in the spatio-temporal domain but may

be further grouped due to different weather conditions. This is extremely im-

portant for creating clusters that are compact, not only in the spatio-temporal

domain (geodesic proximity) but in the full semantic-enriched domain.

Furthermore, predictive analytics may directly benefit from such fine-grained

distinction of patterns, but they may further take advantage of the additional

enriched variables (features) by training additional predictive models on the de-

viation of these features to predetermined values, i.e., the intended itinerary of a

vessel along, as well as other “enrichment” parameters such as localized weather

and vessel properties. Preliminary results, such as those reported in [54], indi-

cate that trajectory clustering and prediction can be improved when the under-

lying positioning data are augmented with weather conditions.

In the case of complex events recognition, a typical use-case concerns detect-

ing specific patterns (sequences of low-level events). For example, a sequence

of two low-level events is when a moving object enters and stays within a pro-

hibited area for some temporal period, in which case an alert must be issued.

By associating the position of a moving object with the geometrical representa-

tions of protected areas in real-time, SPARTAN enriches trajectories with such

low-level spatio-temporal events that facilitate complex event recognition.
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9. Conclusions and Outlook

In this paper, we presented SPARTAN, a framework for real-time semantic

integration of big mobility data with other data sources, aiming at providing

enriched trajectories that are exploited by higher level analysis tasks. Our

framework contains methods for data cleaning and filtering, data transforma-

tion, and link discovery, thereby offering an end-to-end solution to the problem

of providing enriched streams of mobility data. In our future work, we intend

to study in depth how the enriched data can improve the quality of different

data analysis tasks, such as trajectory prediction and trajectory clustering.
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