ON A FORMULA FOR THE PRODUCT-MOMENT COEFFICIENT

OF ANY ORDER OF A NORMAL FREQUENCY DISTRIBUTION
IN ANY NUMBER OF VARIABLES.

By L. ISSERLIS, D.Sc.

1. In Biometrika, Vol. X1, Part III, I have shown that for 2 normal frequency
distribution in four variables, if

Pt = ‘5*3‘?‘? {foyse 2y2t} [N

denotes the product-moment coefficient of the distribution about the means of the
four variables and ¢,,,, is the reduced moment, i.e.

Gevst = Pensi/069350504,
then Goyxt = TayTas + TysTor  TeaTyt coveeiinimneniniinennennnns (1).
In this result any two or more variables may be made identical leading to a
variety of results for moment coefficients of distributions containing fewer than
four variables but of total order four, for example identifying ¢t with z we obtain

Gotys = Tys + 2oy oo (2),
and putting y =2 =1 =z we find g = 3; of course ¢y = ry 8nd ¢, i8 merely B,.
I suggested that (1) was probably capable of generalisation, and I now propose
to prove a general theorem which gives immediately the value of the mixed moment
coefficient of any order in each variable for a normal frequency distribution in any
number of variables.

2. Consider a normal distribution, totsl population N. Let N,, , denote the
frequency of the group in which the characters differ by z,, z, ... Z, from the mean
values for the whole population and let

Pigh =S (N " Teh o 2N s (3),
denote the moment coefficient of the most general kind about the mean values of
the characters. The corresponding reduced moment will be

Qligs =Pl uz_/oll' gt o (4).

Then for normal distributions,
ifnbeodd, ¢ug. . a=0 coeiriiiiiiiiiiiiiiiiien, (5),
andif nbeeven, 0. n =S8 (FarTea - TAL) coevrvmeerearenen (6),

where the summation on the right-hand side extends to every possible selection of
n/2 pairs ab, cd, ... kk, that can be formed out of the n suffixes 1, 2, 3, ... n; equa-
tion (1) is thus a particular case of (6).

Equation (6) is the theorem it is proposed to prove. The value of gjtigh . i
is at once found for given numerical values of the indices 1, 1,, ... L, by writing
down (b) for I, + I, + ... + 1, variables and identifying the values of I, of them with
that of the first and so on.
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For example if we require the value of g1y We commence with,
Qrssuss = S (TapToates)
= T3 (TaaTss + TasTas + ToTas) + T13 (24756 + o700 + TwTws)

+ 710 (Pas%os + TasTos + TasTas) + Y15 (TasTus + TaaTas + T26720)

F 710 (PasTes + Toalas Tt Ta57T80) cvevveererrmraninenrennorneoreonsnnrenees (7).
Identifying 4 with 1, 6 with 2 and 6 with 3 we find at once
QIW = 1 + 2’13, + 27‘”’ + 2’,1’ + 8"1.’-”,’31 .................. (8)-

3. We note first that ¢, which in the more usual notation for distributions in
one variable is p,/u,"3 is known to have the value 1.3.5... (n — 1) when n is even.
As regards S (rgu7.4 ... rax), if all the n variables are made identical, each term
becomes unity and the number of terms is the same as the number of ways of break-
ing up an even number (n) of objects into (n/2) pairs. This last number is clearly

nl n— 2! 41
BTm—2121n— 41 3731/ ™/
which also reduces to 1.3.5... (n — 1); thus equation (6) is correct for this par-
ticular case.

Secondly let us consider the value of ¢ya-1,. The mean value of z; for a given

value of z, i8 7),0,2,/0,, let

Zy= "1::_: 7, + X,.
Then the distribution of X, for a given value of z, is itself normal and its kth
moment is zero for an odd % and
1.3.5 ... (k — 1) (you)%
for an even k where ,0, i8 the standard deviation of 2 within the z, array so that
197 = (1 = 157) oy

—_— ~1
gty = =y Mean value (z,"z,)

1 n-1 ( %3
o7 1o Mean {zl Mean {r,, p z, + X,)

=102 =1.3.0... (R —1)fiqeirriiiiiiniii, (9).

The method employed in the original proof of equation (1) is not convenient
for generalisation and we will now prove the equation

T1934 = T1a734 T T13Ts0 + T14Tn
by the method that leads to the general case.

Putting as above Ty o= 11y %: T, + X,,
o

Ty =Ty ;’ Z, + X,
1

Ty
Ty="Tu poy T, +X,,
1
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we have

Passe = Mean of (z,2,7,2,)
= Mean of {z, (Mean of z,z,z, for a given value of z,)}

= Mean of lia:1 {Mea.n of (r“ s z, + X,) (rn¢La z,+ Xa) (rul‘zl + X,)}].
4} 4! 4!
Now for normal distributions (and if the original distribution is normal, so is that
within the z, array), Mean X, = 0, Mean X,X,X, = 0, while
Mean X,X; = (,04) (103) 12
= '\/1_:-1'—1,’ Ty \/'1 - fn’\/

O3 (Te5 — T13T13)
1— 73V — 1t

= (fn -_ fufls) 03038 tieereerotnnrsnrsscscotsvasssnnrasesnse (10).

Hence

z,° 2]
P123¢ = Mean of [3’1 {"u"m"u 03039 =5 + 1130, p (T34 — T13710) 0304
1 1

z,
+ 71303 oy (Ta4 — T12714) 0204
1

+ 11404 ? (T35 — T12713) UanH >
or dividing by o,050504, '
Qi = Traf1a%1efae + Qar {F12 (Ta0 — F13720) + F1a (Foe — T1M10)} + 110 (Fas — F12710)
= T1aTs + Tes?u + TuuTss,
since ¢ =1 and ¢« =3. Thus our formula is established for the case of four
variables. .

4. We will establish the case for n variables by induction, and it will be con-
venient to denote by ,gss,.. . the value of the reduced product-moment coefficient
for the variables 2, 3, 4, ... n within the z, array so that
Mean value of (X, X,... X,)

(10%) (103) --- (100) '
where X, X;, ... X, denote as before the deviations of the variables from their
- means within the z, array. Of course when n is even,

1740 =

e3¢ ... 18 zero since n — 1 is now odd.
Let n be even and assume that our formula has been proved true for all even
values of n up to n — 2 inclusive, then

Pass..n = Mean (2,2,2, ... 7,)
z
= Mean {zl (r“a,z——i +X,) (r,,a,,';% +X,) (e 2y X,,)}
= £13713 .- T1n 0305 ... 0, Mean (z,")/o,* 2
+ 8 {(riatic ---) (04040, ...) Mean (X, X;)} Mean (z,"~%)/o,"3
+ S {(r1aT10710 - -} (05050, ...) Mean (X, Xz X, X;)} Mean (z,4)/o,"—2

+ ...
+ 8 {r)00, Mean (X. X5 ... X,)} Mean (z,%)/oy coovvvvnvinireniinnnnnnen. (11),
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the summations in each line extending to all possible permutations of the suffixes
2,3, 4,...n. The last line for example being

Mea

2(‘”11) r1y0s Mean (X, X, ... X,) + 11305 Mean (X, X, X ... Xo) + ...
1
+ £150, Mean (X, X; ... X, )}
Now we have seen that Mean (X, X;) = (rys — 713713) 0305. Similarly,
Mean (X, X, X, X;) = (102) (103) (194) (105) (191245
= (103) (103) (194) (19) [(172s) (s7es) + (1735) (1720) + (2725) (1724)]
= (Tss — T1a71s) (Ts — T1aT1s) + (s — T18716) (T34 — T13710)
+ (Pas — r1a71s) (Tae — T13704),
and our assumption of the truth of equation (6) up to (n — 2) variables will enable
us to write down the mean value of every product of X’s occurring in (11).
Dividing by 0,04 ... 0, We have, remembering that Mean z,"/o,"i81.3.5...(n — 1)
G195..n = (T13%15 --- T1n) 1.3.85 ... (n — 1)
+ S{riatinrie - (res — Matp)}1.3.5 ... (n — 3)
+ 8 {r1aiTic - S [(Tus — N1ut18) (s — 11,7)} 1.3.5 ... (n — B)
+ ..
+ 8 {r1aS' [(rep — 11atig) (rye — Ty T1s) (T — 11e?s) - B 1 o, (12),
where S’ refers to permutations of afy ... only, and S to permutations of all the
suffixes @, b, ¢, ... a, B, ¥ ..., i.e. all the suffixes 2, 3, 4, ... n.

It is clear that when the right-hand member of (12) is completely expanded
no terms can survive which contain as a factor more than one correlation coefficient
with suffix unity. This is easily verified in simple cases, and if in the general case
a term r.rr, 1, ... survived, this term would reduce to r..* when we identified
the characters a, 2, 3, ... 5, which contradicts the value 1.3.5... (n — 1) r,, we
have already found for it (equation (9)).

The value of the right-hand member is therefore easily found by neglecting all
terms containing more than one such factor. i

Hence on the assumption that (5) is true for all values of n up to (n — 2) we find

qlﬁ-..n = S {ruS, (f.pf,.ar.,, ...)},
but this is exactly the formula we wished to establish for it is obvious that
S (rapTeq .. Tax) Where abe ... k is a permutation of 12 ... n is equivalent to
S (r1aS (reatys .- )}
where @, a,B, y ... 18 a permutation of 2, 3, 4, ... n. Thus our formula which has been
proved true for 4 variables is seen by induction to be true in general.

6. Formula (6) can be exhibited as & multiple definite integral: Let A denote
the determinant whose kth row consists of the elements

(Taks Taky coe Te_g b, oo ThtL ks oor Tak)
and let A,; denote the cofactor of the element in the hth row and kth column.
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Let v=3 (A” T’ | 95 Ay ”’*z*)
OO0
and 2= = 1 e,
(2m)20,04 ... 04 4/A
4w oo o
then f f / T2y .. 202,02y ... AT = 8 (T3 T0g o0 Tug) oonen. (13),

where a, b, ¢, d, ... u, v are the suffixes 1, 2, 3, ... n in any possible order.
It is clear that (13) will enable us to write down the value of the multiple in-

tegral LPe‘Qd:cl ... dz, where P is any polynomial in z,, z,, ... z, on Q a positive

quadratic form.
In fact, let Za,,z.* + 2Za .7, (3, = a,p) be a positive. definite, quadratic
form, then

W= E‘:F T, Ty .. TporeXp — § (2a,,2,° + 2Xa,2,2,) dryds, ... dz,

- 1 f f"" Tt Tyt
- » o Oy Og™ a,,“ﬂ

(277)2 010g ...

exp — 2A(2A,,’”’+2m )d:cld:c, dz,

= X [rg7ca -.- ar] Where abe ... Rk is any permutation of the gttt a,
suffixes of which a, are equal to 1, a; are equal to 2 and go on.

Let D denote the determinant of the quadratic form and D, the cofactor of
a,, the two multiple integrals will be identical if

1=o0802... 0,20, ...0AD,,,
= 1 2
Too = 01303 ... 0,0, ... 0,2AD,

Hence r, 2 = [D,,B/D,,D,, and o2 = D, /D while A = D~/Dy,D,, ... D,,,

"1k -}

(2")
D?
where a, b, ... h, k is a permutation as sbove, and m=a;+ a; + ... + @, is even.
W =0 when m is odd.
As an illustration of this result:
] [ [" (Maryp + Novy)
exp — } (a2 + byP + c2* + 2fyz + 292z + 2hzy) dzdydz

- (2&’)?, M (8FGH + 247 + 2BG® + 2CHY) + (i”},g N (2GH + AF),

where 4, B, C, F, G, H are the cofactors of a, b, ¢, f, g, h in
a, h, g
A='h b f|
g, f, ¢

8o that W= ZD,Dyy... Dy oo (13",

-T_
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A cognate result is discussed by Mr Arthur Black in the T'ransactions of the
Cambridge Philosophical Society*. Black’s integral is | Ve-Uda, ... dz, where ¥

‘R
and U are any quadratic functions, the only restriction on U being that it should
be essentially positive. Other particular cases have been dealt with in the paper
previously quoted, and for the case of two variables several results are given by
Mr H. E. Sopert.

For reference we add a table of values of the reduced product-moment coeffi-
cients that occur frequently in formulae for probable errors and similar work.
g =3.
Qug = 371
Quy =1+ 21",
Qs =T + 2r171s
gqe = 1b.
ug = 10ry.
Grp =3+ 12r;%
Gre = 9y + 6y,
Qs = 3 (T3 + 2regryy + 2ry5755").
Gup = 3 (rgs + 12r1y7,5). '
Guog =1 + 2ry® + 2rgyy* + 21y + Bryyreary).
G =105, gy = 1057y, gyege= 15 (6733 + 1).
quas = 15 (4ry5° + 3r49).
Gug = 3 (8ryy* + 2415, + 3).
Qrgs = 1.3 ... A — 1 (rgg + Arygrys). A even.
fps=1.3.5. . A[A=1)rydri+ iy + 2rgre]. A 0dd.

For the case of two variables we add the following formula which is easily proved
by the methods employed in this paper.

Grw=d @+ 0+ ()P @¢ @ +o—2)r2(1-r

(v @puro—gra-my g
the series terminating. Here
Yy(2m)=1.8.5...(2m —1)

v viv—-1)...(v—m+1)
and (m)=~ il .

* Vol. xvi1, 1898, pp. 219—227.

t Biometrika, vol. 1x, p. 101.
t This is virtually the formula (xxxii) employed by H. E. Soper, l.c.a. corrected for some misprints.
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