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Abstract—Location information for events, assets, and indi-
viduals, mostly focusing on two dimensions so far, has triggered
a multitude of applications across different verticals, such as
consumer, networking, industrial, health care, public safety, and
emergency response use cases. To fully exploit the potential
of location awareness and enable new advanced location-based
services, localization algorithms need to be combined with com-
plementary technologies including accurate height estimation, i.e.,
three dimensional location, reliable user mobility classification,
and efficient indoor mapping solutions. This survey provides a
comprehensive review of such enabling technologies. In partic-
ular, we present cellular localization systems including recent
results on 5G localization, and solutions based on Wireless Local
Area Networks (WLAN), highlighting those that are capable
of computing 3D location in multi-floor indoor environments.
We overview range-free localization schemes, which have been
traditionally explored in Wireless Sensor Networks (WSN) and
are nowadays gaining attention for several envisioned Internet
of Things (IoT) applications. We also present user mobility
estimation techniques, particularly those applicable in cellular
networks, that can improve localization and tracking accuracy.
Regarding the mapping of physical space inside buildings for
aiding tracking and navigation applications, we study recent
advances and focus on smartphone-based indoor Simultaneous
Localization and Mapping (SLAM) approaches.

The survey concludes with service availability and system scal-
ability considerations, as well as security and privacy concerns
in location architectures, discusses the technology roadmap, and
identifies future research directions.

Index Terms—Network localization, tracking, navigation, loca-
tion architecture, cellular, 5G, cooperative, WLAN, WSN, range-
free, data fusion, 3D location, floor identification, mobility state
estimation, indoor mapping, SLAM.

I. INTRODUCTION

LOCALIZATION, tracking, and navigation systems are
attracting growing attention from researchers, engineers,

and practitioners due to the consumer penetration of high-
end, sensor-rich mobile devices and the ubiquity of wireless
communication networks. These systems span different appli-
cation domains from customer-centric location-based services,
such as mobile advertising and behavioral retail analytics, to
resource allocation in wireless networks, to emergency call
positioning, like E911 in U.S.A. and E112 in EU.
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In particular, cellular network operators have a strong in-
terest in localization technology mainly due to their needs for
network planning and optimization. For instance, identifying
traffic hotspots (i.e., crowded areas where network capacity
is insufficient during peak hours and/or public events) and
poor coverage areas, as well as performing root cause anal-
ysis of call drops, failed Hand-Overs/Offs (HO), and low
key performance or quality indicators is critical for ensuring
uninterrupted service, fast recovery from undesirable network
conditions, and –at the end of the day– improved end-user
experience. Moreover, location information is important for
optimizing small and macro cell deployment to address the
increasing needs of cell phone users. Combined with user
mobility classification (i.e., static, walking, motorway, railway)
operators can improve network efficiency through load balanc-
ing, transmission scheduling, etc.

While Global Navigation Satellite Systems (GNSS), such
as the Global Positioning System (GPS) are the default so-
lution for outdoor localization with clear sky view, there is
no prevailing technology for GNSS-deprived areas, including
densely built city centers, urban canyons, and importantly deep
inside buildings, where satellite signals are severely attenuated
or totally blocked, and affected by multipath propagation. As
statistics indicate that people spend most of their time inside
buildings [1] and the majority of cellular calls and data con-
nections originate from indoors, there is an increasing demand
for highly accurate indoor localization systems. Especially for
emergency response services, the U.S.A. Federal Communica-
tions Commission (FCC) launched stringent requirements in
February 2015 on network operators asking for a 50-meter
horizontal accuracy to be provided incrementally for 40%–
80% of emergency calls within 2–6 years, as well as a proposal
for a vertical accuracy metric to be approved and comply with
within 6 years [2].

In fact, vertical accuracy is critical for realizing the vision
for 3D location, especially inside multi-floor buildings and
skyscrapers in modern city centers. For instance, it is more
helpful for emergency responders to know the correct floor
where an emergency call was initiated (even if the estimated
user location is several meters away from the true location),
rather than being directed to the wrong floor (even if the
estimated user location is exactly below the true location on
the lower floor). In 2013, the FCC Communications Security,
Reliability and Interoperability Council (CSRIC) documented
several emerging indoor location technologies [3] and reported
extensive accuracy results of a number of commercial systems
during localization of more than 13,400 test E911 calls across
19 buildings [4]. The great interest in performance evaluation
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of indoor localization systems under real-life conditions is
also evident from newly released standards [5] and related
competitions, including the Microsoft Indoor Localization
Competition [6], [7], the EvAAL contest for evaluating Am-
bient and Assisted Living (AAL) systems through competitive
benchmarking [8], [9], and most recently PerfLoc competition
for smartphone indoor localization applications announced by
the U.S.A. National Institute of Standards and Technology
(NIST) [10].

In order to meet the requirements for next generation 2D/3D
location several enabling technologies need to be advanced
and tested in the field, including accurate height prediction
(also known as floor determination) in modern multi-floor
residential and enterprise buildings, reliable user mobility
estimation, and time-efficient mapping of the physical space in
indoor environments. Moreover, with the pervasive penetration
of Internet of Things (IoT) applications into daily life, the im-
portance of solutions that have been studied in Wireless Sensor
Networks (WSN), such as multi-hop range-free localization, is
increasing. Also, upcoming technologies and industry trends
in the context of 5G communication networks necessitate the
use of enhanced localization techniques to attain not only high
2D/3D location accuracy, but also address new challenges,
such as availability, scalability, security, and privacy [11].
These solutions require advanced signal processing methods,
hybridization of existing techniques, and intelligent infor-
mation fusion algorithms to fully exploit location-dependent
signals from cellular 2G/3G/4G, and Wireless Local Area
Networks (WLANs).

In fact, WLAN can be used as a promising localization
technology, not only due to the ubiquitous infrastructure and
ease of collecting WLAN Received Signal Strength (RSS)
measurements on Wi-Fi enabled mobile devices, but im-
portantly because it is provisioned by the 3rd Generation
Partnership Project (3GPP), which is a mobile communications
industry collaboration leading and driving the development of
mobile communications standards [12], [13]. This opens the
way for bringing Wi-Fi localization technology out of the lab
or small and medium scale deployments out in the field into
large scale application scenarios for complementing and under
circumstances improving the accuracy of 3GPP standardized
cellular localization methods.

There is a number of relevant surveys, including [11], [14]–
[24], that focus on a subset of the above areas and/or partially
cover the related methods and algorithms. A general survey
of techniques employing time, angle, and signal strength
measurements is presented in [11], [14]–[17]. Brief reviews
on enabling wireless technologies for localization are available
in [15], [18], and an overview of localization methods is
presented in [11], [14], [16], [19]. Theoretical analysis on
principles of time-based localization and Non-Line-of-Sight
(NLoS) mitigation algorithms for different wireless systems
including but not limited to cellular networks was conducted
in [16].

In [18], commercial indoor positioning systems based on
different technologies, e.g., infrared, ultrasound, Radio Fre-
quency IDentification (RFID), WLAN, Bluetooth, Ultra-Wide
Band (UWB), magnetic, vision-based, and audible sound,

were discussed along with their corresponding architectures
and localization methods. This work also provided evaluation
criteria for indoor positioning systems, and the comparisons
among the commercial systems were conducted in terms of
security, cost, accuracy and precision, robustness, user pref-
erence, commercial availability, and limitations. Dardari et al.
conducted a comprehensive review on indoor tracking methods
including Bayesian filtering, distributed and cooperative track-
ing, fingerprinting, Simultaneous Localization and Mapping
(SLAM), and data fusion [15]. In [11], challenges and pitfalls
of each localization system based on radio frequency and
inertial sensors were analyzed, and the authors explored recent
applications of learning algorithms to localization.

Due to the attractiveness of WLAN-based localization,
emerging fingerprinting methods for indoor localization were
reviewed in the survey papers [11], [20]–[22]. Authors in
[20] provided a comprehensive overview of signal strength
fingerprint-based methods and a detailed survey on advanced
methods for indoor localization with the focus on efficient
system deployment. Solutions that rely on fingerprints for
outdoor localization are covered in [21], considering not only
signal strength measurements from WLAN but also data
gathered from other available sensors, like accelerometer,
microphone, compass, and even daily patterns of usage, to
identify unique signatures that can locate a device. The work
in [22] focused on localization methods with the use of
measurements available on smartphones. Deterministic and
probabilistic signal strength fingerprint matching algorithms
for WLAN-based localization were discussed, and approaches
for mitigation of signal strength changes were reviewed in
[20]. Authors also provided a brief survey on Bluetooth
beacon positioning, magnetic-field fingerprinting, and map-
aided methods, which are complementary to signal strength
fingerprinting. Another focus of [20] is in-depth reviews on
Pedestrian Dead-Reckoning (PDR) algorithms, classified into
walk detection and step counting, step length estimation, and
walking direction estimation.

Reviews on localization methods in WSN carried out in the
works [14], [17], [23], [24]. Mao et al. conducted a general
survey on localization for static WSN, and range-free and
distance-based algorithms operating in a multi-hop fashion
were discussed [17]. Features and localization algorithms
for mobile WSN were reviewed in [14]. Authors in [24]
overviewed range-based and range-free localization algorithms
for mobile WSN and provided a comparative survey with
respect to mobility models and path planning schemes. Theo-
retical foundations on cooperative localization algorithms for
WSN were established in [23].

With respect to the above literature, the objective of this
survey is to provide a timely and comprehensive overview of
enabling technologies for localization, tracking, and naviga-
tion1 in wireless networks. The key contributions include:

1The terms localization and positioning are used interchangeably to denote
the process of determining the location (position) of a device; tracking is the
process of monitoring moving users or objects that is not merely the result
of sequential localization, but more advanced spatio-temporal processing;
navigation is the process of monitoring and guiding a user/device from one
place to another.
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• Overview of industrial and commercial systems devel-
oped by technology vendors and/or network providers,
in addition to academic solutions, so that readers are
educated on both state-of-the-art research and well-
established solutions used in practice.

• Discussion of 5G localization and related challenges as a
promising research direction.

• Discussion of advanced solutions for range-free localiza-
tion in WSN where multi-hop paths for node pairs ex-
perience different local properties, referred to as network
anisotropy.

• Description of solutions for vertical positioning in cellular
and WLAN networks, with or without the aid of sensors,
to achieve the vision for accurate and reliable 3D location.

• Presentation of mobility state estimation methods in cel-
lular networks for improving the performance and user
experience in tracking and navigation applications.

• Discussion of solutions for mapping the indoor physical
space to cover in addition ongoing work in standard-
ization bodies as well as map-related challenges, such
as indoor space modeling, privacy, security, and map
representation issues beyond simultaneous localization
and mapping systems presented in existing surveys.

In particular, we discuss solutions and algorithms in the
following areas:

• Cellular network localization: Recent academic systems
that rely mostly on Global System for Mobile commu-
nication (GSM) networks [25]–[28], commercial location
platforms and industry geolocation solutions intended for
2G/3G/4G networks [29]–[38], as well as new research
directions and recent results in 5G localization [39]–[56].

• WLAN-based localization: Web and mobile geolocation
services that are based either on private [57]–[59] or
publicly available Wi-Fi databases [60]–[62], state-of-
the-art academic solutions that rely on Wi-Fi technology
either standalone or in combination with inertial sensors
and/or statistical filtering while addressing the challenges
of the fingerprint-based approach [63]–[88], solutions that
follow the lateration approach [89]–[93], and systems
leveraging on crowdsourcing to construct radio signal
databases for localization [94]–[113].

• Range-free localization in WSN: Solutions exploiting
connectivity information between radio nodes (devices),
rather than energy prohibitive distance (range) measure-
ments, which are a viable option for localization in IoT
use cases [114]–[130].

• Data Fusion: Techniques for combining diverse types of
location-dependent measurements that are applicable in
wireless networks [131]–[137].

• Vertical Positioning: Cellular-based solutions in academic
and industrial research [138]–[143] as well as commer-
cial 3D location systems [144]–[146], WLAN-based ap-
proaches [147]–[153], and sensor-based solutions [154]–
[165].

• Mobility state estimation: User mobility classification
(i.e., static, walking, motorway, railway, etc.) using GPS
location [166], signal power measurements [167]–[171]

and HO information [172]–[176] in cellular networks.
• Indoor mapping: Processing raster images, architectural

floor plans, or photographs of evacuation plans [177]–
[180], and more sophisticated SLAM approaches devel-
oped on light-weight mobile devices, e.g., smartphones
and tablets, which can output both the physical indoor
map and the signal map (celluar, Wi-Fi, etc.) of the
building [181]–[188] or only the physical map [189]–
[197]. In addition, map-related challenges are discussed
including indoor space modeling [198]–[203], as well
as privacy, security and map representation issues [110],
[177], [204]–[206].

This survey is structured as follows. Fundamental network
localization techniques are briefly discussed in Section II.
Section III overviews the most typical localization archi-
tectures and presents the 4G Long Term Evolution (LTE)
positioning architecture as a case study. Localization in cellular
networks is surveyed in Section IV focusing on commercial
2D solutions that are extensively used by network operators
and recent research results on 5G localization. WLAN-based
localization systems are presented in Section V, followed
by range-free localization schemes for WSN in Section VI.
Data fusion techniques for combining multi-source (i.e., radio
and sensors) measurements are described in Section VII. The
provision of reliable vertical positioning to achieve the vision
for 3D location, particularly in cellular and WLAN systems, is
discussed in Section VIII. Moving to solutions for supporting
tracking and navigation applications, Section IX discusses
mobility state estimation in cellular networks, while recent
advances in mapping the physical space in indoor environ-
ments are described in Section X. Section XI summarizes
some architecture considerations related to service availability,
system scalability, as well as security and privacy, followed
by our outlook on the technology roadmap. Finally, future
research directions are provided in Section XII.

II. NETWORK LOCALIZATION FUNDAMENTALS

Looking at the wide availability and adoption of car and
pedestrian hand-held navigation systems equipped with multi-
constellation satellite receivers, it is evident that GNSS is
the dominant technology for outdoor localization, tracking,
and navigation applications. Modern GNSS are capable of
delivering localization accuracy within a few meters under
ideal environmental conditions; however, they have a number
of limitations. For instance, even high-end GNSS receivers
have high energy requirements, which is undesirable for
battery-powered devices, such as sensor nodes. Moreover,
GNSS receivers suffer from high time-to-first-fix, i.e., it may
take several seconds or even minutes to detect and lock
enough satellite signals to determine user location when the
GNSS receiver is turned on, which may be prohibitive for
delay-sensitive application scenarios. In addition, on top of
their well known accuracy degradation in urban and indoor
environments, still not all devices feature GNSS chipsets while
several applications, including environmental monitoring and
weather forecasting among others, do not require the high
accuracy delivered by GNSS.
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Due to this fact there room for the development of alterna-
tive localization systems that rely on wireless communication
networks, including cellular, WLAN, and WSN. Such systems
may be preferable in specific application scenarios because
they either leverage on the existing network infrastructure, e.g.,
cellular Base Stations (BS), WLAN Access Points (AP), or the
network can be cheaply and easily deployed in the target area
like in the of WSNs. Moreover, network localization systems
do not require the installation of dedicated and expensive
hardware, e.g., custom transceivers, antennas, and cabling, or
privacy-infringing equipment such as surveillance cameras.

In this section, we outline the main techniques for user lo-
calization using information about the network topology (e.g.,
known location of network transmitters, antenna orientation,
etc.) and/or measurements from radio signals in wireless net-
works, followed by a brief discussion of classical algorithms
for estimating location. Fundamental localization techniques
are illustrated in Fig. 1 and can be categorized as follows
based on the underlying location-dependent measurements.

1) Proximity: The user location is estimated as the known
location of the transmitter that is associated with the user-
carried equipment, i.e., Mobile Station (MS). A representative
method in this category is the Cell-ID method standardized in
GSM cellular systems that returns the location of the serving
BS as the user location. Similar approach is followed in RFID
and bluetooth-based systems where the location of the closest
transmitter is assumed. A known shortcoming of this approach
is that the location accuracy depends on the density of network
transmitters, e.g., a few tens of meters in urban small-cell
networks to several hundreds of meters in rural macro-cell
network deployments.

2) Angle of Arrival: The Angle of Arrival (AOA) tech-
nique uses simple geometric relationships to estimate the user
location at the intersection of lines formed by measuring the
arrival angles of radio signals exchanged between the MS and
multiple BSs. This technique is known as triangulation. AOA
can be measured with the aid of directive antennas or antenna
arrays, while a minimum of two BSs are required to determine
location in 2D.

3) Signal Strength: RSS readings observed at the MS can
be employed to estimate the corresponding distances from
surrounding BSs through mathematical models (known as path
loss models) that describe signal attenuation as a function
of distance. Each distance defines a circle on which the
user may reside and essentially the user location can be
inferred from the intersection of circles. RSS measurements
from at least three BSs are required to resolve the 2D user
location unambiguously and in this case the technique is
known as trilateration; the term multilateration is used if more
measurements are available.

The lateration approach can be affected by the inherent
inaccuracy of the path loss model, as well as NLoS con-
ditions and multipath propagation due to signal reflection
and diffraction on obstacles especially in complex urban
and indoor environments. This may introduce large errors
in the estimated distances, thus leading to inaccurate user
location. Fingerprint matching, also known as Scene analysis,
is an increasingly popular technique to address the above

limitations by collecting location-tagged signal signatures (i.e.,
fingerprints) at known locations and storing them together with
the associated location information in a database, commonly
known as radiomap. Location can be determined by finding
the best match between the fingerprint observed at the MS and
the fingerprints in the radiomap through pattern recognition
methods. In this case, higher accuracy can be attained at the
expense of data collection time and effort for populating the
radiomap to cover the target area.

4) Signal Propagation Time: Time of Arrival (TOA) can
be measured when a signal is transmitted by the MS and
received at multiple BSs to estimate the distances from the
corresponding BSs by multiplication with the speed of light.
Therefore, each TOA measurement provides a circle and the
lateration approach described previously can be employed to
determine location.

Alternatively, Time Difference of Arrival (TDOA) can be
measured when the transmitted signal is received at multiple
pairs of BSs. A TDOA measurement defines a hyperbola,
instead of a circle, where the user may reside, while the foci
is located at one of the two BSs. Typically, one of the BSs
is taken as reference and used to obtain TDOA measurements
from the remaining BSs. Contrary to TOA, the exact time of
signal transmission is not required, which solves the issue of
precise clock synchronization among BSs.

5) Hybrid: The above types of measurements can be used
in combination to build hybrid location systems that either
improve the localization accuracy compared to stand-alone
systems due to the additional location-related information
or offer a fall-back solution in case of lack of a specific
type of measurements thus increasing system availability in
challenging scenarios.

III. LOCALIZATION ARCHITECTURES

To successfully deploy an indoor positioning solution in
a commercially viable way, profound consideration needs to
be given on the technical system architecture. Architectural
considerations are closely related to the use case to be served
with the indoor positioning solution. While architectures can
be classified from various perspectives, the categorization
selected here is based on the entity responsible for the location
estimation. The following summarizes the three most typical
architectures and discusses their applicability for different use
cases.

A. UE-based Architecture

In this architectural model the mobile device, denoted User
Equipment (UE), is responsible for the location estimation
[207]. The device performs the location estimation using
the assistance data the device receives from the network.
This assistance data can, e.g., be information regarding the
radio node locations. More complex variants may include, for
example, spatial signal strength profiles for each radio node.

UE-based model is best-suited for scenarios, where the
device itself needs to be location aware and there is a large user
base. An exemplary design approach is to serve per-building
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Fig. 1. Fundamental localization techniques: Proximity (a), Trilateration (b), Triangulation (c), Fingerprint matching (d).

signal maps, also known as radiomaps, from a Content Deliv-
ery Network (CDN) for the devices that want to locate them-
selves in the building. The CDN-based delivery guarantees
global low-cost, low-latency delivery capability with failovers
for high availability. As the only network interaction required
is the download of the building radiomap, the operational costs
of the service are in control and do not scale unpredictably
with the increasing number of service users. Also, because
only assistance data is carried over the network, the security
measures need not necessarily be as rigorous, because no
information regarding the user location is carried between
the client and the server. Especially, performing the location
estimation in the device itself preserves the user privacy.

B. UE-assisted Architecture

In this scenario the role of the device to be located is
to perform measurements and provide them to the network
entity for location estimation [207]. A simple example is an
IoT device that measures the Wi-Fi and/or Bluetooth signal
strengths and provides them to the network element via Wi-
Fi or Bluetooth Mesh connectivity. The network element is
responsible for the location estimation.

The UE-assisted approach is well-suited for cases in which
the device to be located does not need the location information.
An example of such a use case is object tracking. When
tracking the movement of deliveries, the delivery itself does
not need to know its whereabouts, but the location information
is of interest to the process controllers. The operational costs
of the UE-assisted approach are potentially much higher than
those of the UE-based architecture. This is because a server
transaction is required for each location event. While the
amount of data transferred per event is not large, the sheer vol-
ume of the objects to be tracked may result in the net amount
of transactions being very high. Moreover, the operational
costs increase unpredictably as the number of transactions
is related to the usage of the service and not directly to the
number of users. On the other hand, the complexity and the
cost of the tracking device itself can be kept low as it does not
need to be able to perform any calculations or have memory
for storing radiomaps.

C. Network-based Architecture

In this approach the network itself is responsible for the
measurements and the location estimation. To exemplify, a
building might be equipped with Bluetooth sniffers that detect
advertisement packets from Bluetooth devices. The sniffers
can, e.g., estimate the distance and direction to the devices
and through this process estimate their location. When many
such sniffers detect the same device, the location estimate can
be made even more accurate.

What makes network-based architecture appealing, is its
passiveness. For example, in the previous example nothing
was really required of the devices to be located except for
the Bluetooth radio. However, the complexity is in deploying
the sniffers as they need to be powered and require network
connectivity. Moreover, as the sniffers need to detect each
device to be positioned, there is an upper limit to the number
of devices the system can track.

D. Case Study: LTE Positioning Architecture

In this section we outline the positioning architecture for
4G LTE networks based on the introduction of the LTE
Positioning Protocol (LPP) [12] and the LTE Positioning
Protocol annex (LPPa) [13] by 3GPP. In particular, LPP aims
to define Assisted GNSS (A-GNSS) and cellular positioning
for 4G networks, i.e, LTE and LTE-Advanced (LTE-A).

LPP is natively a control plane positioning protocol. With
control plane implementations, most commonly used in emer-
gency services, positioning messages are exchanged between
the network and the UE, i.e., the LTE device to be positioned,
over the signaling connection [208]. The LTE location ar-
chitecture is shown in Figure 2, where the Evolved Serving
Mobile Location Center (E-SMLC) is the component in charge
of positioning activities, which resides at the Location Service
(LCS) server. The Mobility Management Entity (MME) gives
the positioning request to the E-SMLC, which then controls
the UE and, possibly, LTE base stations (denoted eNodeBs
or eNBs), to perform positioning [209]. Depending on the
application scenario, the UE location information can then
be forwarded back to a requesting LCS client through the
Gateway Mobile Location Center (GMLC).
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On the other hand, user plane positioning over LTE uses
the data traffic link to transmit positioning information, and is
enabled by the Secure User Plane Location (SUPL) protocol
proposed by a group of companies in Open Mobile Alliance
(OMA) [210]. SUPL 2.0 supports positioning over LTE as
well as 2G and 3G networks, and provides a common user
plane platform for all air interfaces. SUPL uses the data link
to transmit positioning information, and is enabled by an
entity called the SUPL Location Platform (SLP) at the LCS
server. The SLP handles SUPL messaging, and is typically
able to interface with the E-SMLC for obtaining assistance
data. SUPL messages are routed over the data link via the
Packet Gateway (P-GW) and the Serving Gateway (S-GW)
entities, as shown in Figure 3.

Different localization methods for LTE are defined in the
3GPP standard, including A-GNSS, Enhanced Cell-ID, and
Observed Time Difference of Arrival (O-TDOA) in Release 9.
Enhanced Cell-ID improves the accuracy compared to tradi-
tional Cell-ID method that localizes the user at the location
coordinates of the BS. This is feasible using sector-cell infor-
mation, where a particular Cell-ID corresponds to a directional
antenna, e.g., 3-sector and 6-sector cells, that places the user
inside a circular sector of 120◦ or 60◦ width centered at the
main antenna beam. Moreover, timing information similar to
Timing Advance (TA) in GSM and Round Trip Time (RTT)
in Universal Mobile Telecommunications System (UMTS)
networks places the user inside a ring of variable width
depending on the resolution of the timing information. This
can be further refined with AOA information.

O-TDOA follows the same principle as in UMTS systems
where the time difference of signals transmitted by two BSs is
observed (i.e., measured) at the UE, thus defining a hyperbola
on which the user is located; see [211] for more details.
Known issues with O-TDOA are the need for TOA measure-
ments from multiple BSs, the interference experienced among
neighboring BSs whose signals are usually weak and the
serving BS, synchronization of BSs’ clocks, and the fact that
synchronization signals are not suitable for positioning. These
issues are addressed in LTE by considering Reference Signal
Time Difference (RSTD) measurements, which are based on
dedicated Positioning Reference Signals (PRS). In particular,
PRS are transmitted on non-overlapping sub-carriers, while no
data is included in PRS sub-frames. Moreover, PRS frames
are transmitted with higher power than data frames, and
transmissions are muted to prevent collisions. Finally, the
network BSs are synchronized and different seeds are used
for the PRS random code [212].

O-TDOA is a downlink positioning method, which is in-
herently UE-assisted. In contrast, the Uplink Time Difference
of Arrival (U-TDOA) method is also defined in LTE standard
(Release 11), where the arrival time of a signal transmitted by
the UE to a number of Location Measurement Units (LMU)
is measured at the network side as shown in Figure 2, thus
making U-TDOA a network-based method [213].

Interestingly, the LTE standard (Release 13) makes provi-
sion for additional methods, including barometric sensor, Wi-
Fi, Bluetooth, and Terrestrial Beacon System (TBS) that is
discussed later in Section VIII-A. In line with these develop-

ments, OMA released in 2014 the specification of a positioning
protocol that builds on top of LPP referred to as OMA LPP
extensions (LPPe) [214]. LPPe protocol supports positioning
with the aid of Wi-Fi as well as short range nodes, e.g.,
Bluetooth and Bluetooth Low Energy (BLE) tags or beacons,
RFID tags, Near Field Communication (NFC), etc., which
can be augmented with the use of Inertial Measurement Unit
(IMU) sensors integrated into the UE, such as accelerometer
and gyroscope, and other sensors including magnetometer and
barometer. Therefore, Wi-Fi positioning methods have become
fully standardized because both the 3GPP control plane so-
lution [215] and the OMA SUPL user plane solution [210]
allow for UE-assisted and UE-based Wi-Fi based positioning,
via support of the OMA LPPe protocol. For a single Wi-Fi
AP, the corresponding attributes include AP location Lat/Lon
or civic address, transmit power, antenna gain and coverage
area among others.

Lessons Learned

The architecture of the localization system is directly related
to the target use case and a typical classification of localization
architectures is based on the entity that computes the estimated
user location. Three main categories can be identified, namely
UE-based, UE-assisted, and network based architectures.

In the UE-based architectural model the device performs the
location estimation using location-dependent measurements
available in-situ and possibly assistance data from the network
(e.g., BS locations, spatial signal strength profiles, etc.). This
option is preferred in application scenarios where the device
itself needs location-awareness, when there is a large user
(or customer) base, while the advantages include less strict
security measures (because no information that can be linked
to the user location, only assistance data, are exchanged with
the network) and preservation of the user privacy as location
is estimated directly by the device itself.

In the UE-assisted architecture, localization is performed
on the network side with the aid of location-dependent mea-
surements collected by the user device and forwarded to
the appropriate network element. This architecture is usually
selected for applications where the device does not need
the location information, e.g., in object or asset tracking

Fig. 2. LTE control plane location architecture.

Fig. 3. LTE user plane positioning architecture.
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scenarios. One of the drawbacks is the amount of data that
needs to be transferred to the network for handling location
requests, which may become overwhelming as the number
of objects/assets increases or the usage of the service (not
proportional to the number of users) scales up. On the other
hand, it removes the computational overhead from the device,
which is highly desirable for resource-limited devices, e.g.,
sensor nodes in WSNs or connected IoT devices.

Network-based solutions compute the user/device location
using only information available at the network side without
any explicit communication with the device. This option is ap-
pealing for monitoring applications and has been traditionally
used by cellular network operators because it exploits network
measurements recorded as part of standard network operation
without introducing additional communication overhead. On
the down side, the cost of deploying extra infrastructure for
offering a location service in a new area can be high; however,
this is not an issue in the case of cellular networks or WLANs
that are typically deployed with the main objective to deliver
connectivity, while localization is an added-value built on top.

IV. CELLULAR NETWORK LOCALIZATION

Besides the need for location information to support net-
work planning and optimization, network operators have re-
cently identified several scenarios for monetizing on the huge
volume of location data that is daily logged on the network
side. These scenarios include Smart City use-cases (e.g.,
transit planning, traffic management, store siting, autonomous
vehicles and intelligent transportation systems, public trans-
portation optimization, and large-scale event response), public
safety services (e.g., emergency response E911/E112, tracing
lost children and elderly, etc.), as well as consumer and
mobile gaming applications (e.g., in-shop advertisements and
customer analytics, indoor PokemonGO-like applications, etc.)

In this section, we focus on solutions that compute 2D
location; the more challenging 3D location calculation is
discussed later in Section VIII-A. Cellular-based systems that
deliver 2D location are summarized in Table I.

A. Academic Solutions
There are several efforts from the academic research com-

munity to address 2D location estimation. Some of them rely
on fingerprint matching algorithms that leverage the radiomap
collected prior to localization to determine location by finding
the best match between the fingerprint observed by the user
and the fingerprints in the radiomap; see Section V-B for more
details about fingerprint matching. For instance, CellSense is a
probabilistic RSS fingerprint matching location determination
system for GSM phones that delivered median error of 42.43 m
and 27.86 m in a rural and an urban test-bed, respectively
[25]. Authors in [26] use semi-supervised and unsupervised
machine learning techniques to reduce or eliminate the effort
to collect location-tagged measurement data and report sub-
100 m median localization accuracy with very little or no
location-tagged data in a GSM network. CAPS (Cell-ID Aided
Positioning System) uses a cell-ID sequence matching tech-
nique to estimate current position based on the history of cell-
ID and GPS position sequences that match the current cell-ID

sequence [27], while the reported error ranges from 31.0 m
to 72.3 m for two mobile phones across four different routes
through AT&T’s GSM network and Verizon’s Code Division
Multiple Access (CDMA) network. The CTrack system uses
a two-pass Hidden Markov Model (HMM) that sequences
cellular GSM fingerprints directly without converting them to
geographic coordinates (i.e., through a fingerprint matching
algorithm), and fuses data from low-energy sensors available
on most commodity smartphones, including accelerometers (to
detect movement) and magnetic compasses (to detect turns)
[28]. Authors report median error of 45 m, however, CTrack
employs data from the smartphone’s sensors which does not
allow the solution to be applied directly for network-based
localization before LPPe protocol is fully deployed by network
operators.

Another major limitation of the solutions presented in [25]–
[28] is that they require a high number of BSs to be present
in the observation. This is the reason for considering mostly
GSM networks, where the observations may contain RSS
measurements from up to seven cells (i.e., the serving and
six stronger neighbor cells). However, the situation is very
different in 3G and 4G networks. In fact, researchers at Sprint,
U.S.A. report that in more than 50% of their network ob-
servations through Sprint’s commercial CDMA2000 network
contain only one BS [29]. To address this challenge, authors
employ information such as the distance to the BS, location of
neighboring BSs, and levels of interference and noise into a
Bayesian-based method that improves the standardized Cell-ID
method (enhanced with RTT measurements) by 20%. The low
number of BSs is confirmed by researchers at Alcatel-Lucent,
U.S.A. who report that most of the observations in a 4G LTE
commercial network contain only signal strength information
from the serving cell and in some cases (depending on the
network event that generated the measurement) one additional
signal strength value from the strongest neighbor cell [30].
A machine learning solution is presented based on supervised
training of Random Forest with labeled drive-test data to learn
the signal strength values at different locations, combined
with particle filter-based HMM to perform user tracking with
network Measurement Reports (MR). The median error is 20 m
to 25 m depending on the ratio of training to testing data.

B. Commercial Solutions
This implies that there might be a mismatch between

academic research and what is observed in practice. Therefore,
in the following we overview some commercially proven
solutions that are currently used by network operators. In
fact, the market of location platforms is dominated by some
key players, including Comtech Telecommunications (former
TeleCommunication Systems – TCS) with their wide range
of Location-Based Services (LBS) products [31] and Er-
icsson with their Mobile Positioning System that supports
complementary positioning methods for 2G, 3G and 4G/LTE
networks [32]. They both sit in very strong positions based on
their traditional place in this market and very strong market
share [216].

Other companies that provide LBS platforms to network op-
erators include Viavi, Netscout, and Groundhog Technologies.
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Viavi (former Arieso, and later JDSU) offers the ariesoGEO
platform, which uses proprietary methods to geolocate and
analyze billions of events per day, while the platform supports
a wide range of infrastructure vendors and cellular access
technologies [33]. In a recent field trial over a 2-week period
more than 5 million voice and data calls were localized
by ariesoGEO with 100 m accuracy, which is suitable for
identifying hotspots to aid microcell and in-building system
deployment. Netscout (former Newfield Wireless) offers the
TrueCall platform featuring a geolocation engine that includes
a multi-step algorithm to derive locations based on the sector
(antenna) database and network measurements [34]. Their
algorithm is weighted by timing information, signal strength,
and uses multiple sectors to increase accuracy. Using this plat-
form, LTE operators can assess for example channel quality
index of their LTE network. As a former MIT Media Lab
spin-off, Groundhog Technologies launched its mobility intel-
ligence platform based on chaos theory and multi-dimensional
modeling [35]. The application of chaos theory gave rise to the
company’s mathematical models of subscribers’ mobility and
usage behavior, which can be used for different applications
such as by mobile operators to optimize networks according
to the user demands.

TruePosition (merged with Skyhook) follows an U-TDOA
approach to determine location based on the time it takes
a signal to travel from a mobile phone to a number of
LMUs [36]. They devised a method that utilizes High-Speed
Uplink Packet Access (HSUPA) sessions to establish a higher
handset transmit power, emulating the transmit power of
a powered-up voice call placing a E911 call. In addition,
their hybrid Assisted GPS (A-GPS) and U-TDOA algorithm
takes both locations and returns the location that has lower
uncertainty. According to field trials, the U-TDOA solution
achieves positioning error of 57.1 m@67%2 in urban and
28.4 m@67% in suburban areas, whereas the hybrid solution
achieves 48.8 m@67% in urban and 20.5 m@67% in suburban
areas, respectively [217].

Advanced Forward Link Trilateration (AFLT) is a solu-
tion proposed by Qualcomm that uses ranging to multiple
cell towers, which is also relevant to the O-TDOA location
solution. Their hybrid A-GPS/AFLT location solution takes
advantage of the complementary nature of the GPS satellite
constellation and the terrestrial wireless network. Based on
extensive field tests for localizing indoor E911 calls, the hybrid
solution delivered 155.8 m, 226.8 m, 75.1 m, and 48.5 m@67%
in dense urban, urban, suburban, and rural areas, respectively
[4]. Obviously, this solution works best in suburban and rural
areas, where satellite signals are not severely obscured.

The Radio Frequency Pattern Matching (RFPM) technology
developed by Polaris Wireless uses radio frequency finger-
print matching to compare mobile measurements (RSS values,
signal-to-interference ratios, time delays, etc.) against a geo-
referenced database of the mobile operator’s radio environ-
ment [37]. During the same performance evaluation with
Qualcomm’s solution, RFPM was reported to attain 116.7 m,

2We use X m@67% to denote that the positioning error of a sys-
tem/algorithm is less than or equal to X m in 67% of the tests, i.e., the 67-th
percentile value of the cumulative distribution function of the positioning error.

198.4 m, 232.1 m, and 575.7 m@67% in dense urban, urban,
suburban, and rural areas, respectively [4].

Finally, Glopos offers a software-only solution for position-
ing, which estimates location based on signals and network
parameters from cellular BSs [38]. This technology uses self-
learning probabilistic models to estimate positions based on
these data, referred to as Intelligent Probability Hierarchy
(IPH), models of cell area and shape, and integration of
signal data from neighboring cells when available. In the
original network-assisted solution, all of the data can be
crowdsourced, and when it is available on the phone, the
system can run without Internet connectivity. In principle,
however, the solution can also be used for network-side po-
sitioning of mobile devices. Glopos technology demonstrated
6 m to 13 m accuracy during field trials in the Grand Gateway
66 Mall, Shanghai, China using different cellular radio access
technologies [218].

C. 5G Localization

Unlike conventional macro-cell cellular networks, 5G wire-
less networks will provide significantly beneficial foundation
for mobile localization. In past years, various techniques based
on TOA, TDOA, AOA, and signal strength have been con-
sidered for localization in cellular networks [219]. However,
their accuracy was heavily limited to hundreds and tens of
meters due to the severe channel impairments (i.e., multipath,
shadowing, NLoS propagation) between the BS and mobile
and insufficient bandwidth and received signal power.

Location-awareness in 5G can be used for various applica-
tions, including content prefetching, radio environment maps,
proactive radio resource management, routing in the backhaul,
and cognitive localization and prediction [39]. Authors in
[40] discuss the prospects of positioning with respect to tech-
nologies envisaged for 5G communication systems, including
higher carrier frequencies, higher signal bandwidths, denser
networks, MIMO technologies, etc., which will significantly
increase the pseudorange estimation accuracy for signal propa-
gation delay based positioning methods like TDOA. Waveform
optimization is explored in [41] for positioning in 5G based on
signal propagation delay estimation in the uplink case. In this
parametric waveform approach, a scalar parameter is provided
for controlling the distribution of the available signal power
over the spectrum. The prospects and enabling technologies for
high-efficiency device localization in 5G ultra-dense networks
are discussed in [39].

Key features of 5G wireless networks consist of small-cell,
Device-to-Device (D2D) communication, Heterogeneous Net-
works (Het-Net), massive MIMO, millimeter-wave (mmWave)
communication with highly directive transmission, which have
the potential to enable centimeter-level accuracy localization
systems; yet, as this is a new area of study, it remains to be
verified through measurement campaigns.

To date, the potential for such high accuracy has been
demonstrated mostly through simulations in several recent
works. For instance, the feasibility of 5G signal for au-
tonomous driving scenario was studied in [42], and showed
that accuracy below 30 cm can be obtained with current 50
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or 100 MHz system bandwidth. In [43], it is reported that
accurate positioning performance can be achieved in cmWave-
based 5G ultra-dense networks under the time-varying clock
errors by continuously estimating the clock parameters. The
compressive sensing approach of [44] can facilitate such
high accuracy in mmWave channels, as demonstrated through
simulations. Centimeter-level accuracy was reported in [45]
using mmWave MIMO channel measurements obtained by a
vector network analyzer.

1) mmWave and massive MIMO: In 3GPP Release 9, PRS
was defined so that the TOA can be measured between BS
and mobile [46]. Many mobile device and service providers are
investigating the localization performance with PRS. However,
the performance is still significantly limited by the bandwidth
and the NLoS propagation. In 5G networks, the small-cell and
D2D transmission will prevail to make the distance between
the BS and mobile shorter. It is noted that the shorter distance
will increase the LoS probability. In addition, the increasing
bandwidth of the wireless networks will clearly make the
localization more accurate.

Highly directive transmission with mmWave and massive
MIMO is also another important feature that will make TOA
and AOA more reliable localization measurements [47]. In
particular, mmWave transmission is occupying the bandwidth
up to 2 GHz with center frequencies around 20 GHz and above.
Considering that the currently available UWB technology is
using the bandwidth around 500 MHz and 1 GHz, the large
bandwidth of mmWave is a clear advantage. This will also be
the case with RSS measurements. For instance, authors in [48]
investigate fingerprint matching techniques based on vectors of
RSS measurements in a massive MIMO system.

Authors in [44] exploit the sparsity of the mmWave channel,
and employ a compressive sensing approach with iterative
refinement steps for accurate estimation of the channel pa-
rameters, including the departure and arrival angles as well
as the time-of-arrival for each observed propagation path, that
can facilitate such high accuracy. A site-specific propagation
model is used for indoor localization in 5G to exploit multipath
in mmWave MIMO channels [45]. Along the same line,
Channel-SLAM is a recursive Bayesian filtering approach that
treats multipath components as signals emitted from virtual
transmitters, thus leading to a more accurate position estimate
or enabling positioning when the number of physical transmit-
ters is insufficient [49].

In the 5G mmWave systems where high speed mobility
scenario and massive MIMO are widely considered, the angle
estimation can be actively exploited in the localization. How-
erver, without knowing the orientation of devices containing
the antenna array, the direction of arrival or departure can
be insufficient information to know the true direction of
signal in three dimensional space. There exists some works
looking into the estimation of the orientation of devices in 5G
scenario. The performance bound on position and orientation
estimation is derived in [50] and the potential advantage of 5G
mmWave system was discovered. Authors in [51], investigate
the localization and orientation performance limits of networks
employing wideband massive arrays both at receiving and
transmitting devices for enabling mobile terminal localiza-

tion using only one single AP. In addition, Abu-Shaban et.
al. shows that the 5G mmWave system provides sub-meter
localization capacity by computing Cramer-Rao lower bound
in [52].

2) Cooperative Localization: In the recent localization lit-
erature, a special emphasis is made on cooperative localization.
Although it has been recently spotlighted in [23], [220] and
experimentally evaluated in [221], network cooperation in the
distributed estimation has been already long studied in [222].
Localization in cooperative ad-hoc network has been shown in
[223] where the TOA and AOA measurements are combined
in a distributed estimation framework. The locations of nodes
were updated iteratively by means of extended Kalman filter
with an optimal information fusion technique. In addition, non-
parametric belief propagation has appeared for localization in
sensor networks in [224].

A cooperative fingerprint matching localization algorithm
was shown through computer simulations to significantly
improve accuracy in LTE networks [225]. It was assumed that
the UE uses signal strength, i.e., RSRP in LTE systems, TA
measurements for UE-eNodeB connections and RTT measure-
ments for UE-UE connections. The performance gain is mainly
because fingerprint matching is independent of LoS links and
performs very well in rich multipath and NLoS environments.

Another cooperative positioning algorithm addresses the
hearability problem in modern cellular networks (i.e., the
mobile device can only utilize the estimated distance from
its home BS) [53]. The distances from neighboring users can
be estimated through RSS ranging from D2D communication
and then all distance estimates are forwarded to a processing
unit for centralized position estimation.

A Sum-Product Algorithm over Wireless Networks
(SPAWN) was shown in [220] to localize nodes in a dis-
tributed manner with the cooperation between nodes by ex-
changing messages containing probability density functions,
and achieves significant performance gains compared to non-
cooperative algorithms. In [54], cooperative self-localization
and distributed tracking have been combined to localize mul-
tiple agents including non-cooperative objects. In general,
Bayesian belief propagation for cooperative localization suf-
fers from the complexity arising from exchanging messages.
Authors in [55] showed a sigma point belief propagation by
which a low-complexity approximation can be achieved.

Recently, a cooperative localization strategy via a distributed
optimization technique known as the Alternating Direction
Method of Multipliers (ADMM) was introduced in [56]. In
this work, the message passing algorithm is implemented in the
form of ADMM, and the paper demonstrates how such scheme
can be used in the cooperative driving scenario. It provides a
practical, in terms of complexity, solution compared to the
optimal SPAWN under the 5G autonomous driving scenarios.

Authors in [40] investigate the capability of D2D commu-
nication to enable cooperative positioning in 5G for scenarios
with high UE density and demonstrate through simulations
for an exemplary environment that when the density is greater
than 1,100 UEs per square kilometer sub-meter positioning
accuracy with outage probabilities converging to zero can be
achieved.
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Lessons Learned

Academic projects for cellular network localization usually
rely on signal strength measurements from a sufficiently large
number of BSs. This is mainly due to the lack of access to
real cellular data from network operators that necessitates the
use of applications installed on the user device for collecting
network data. Such data is limited to the signal strength
values and BS identities, while more that one or two BSs are
commonly available only for older generation GSM networks,
but not for 3G/4G. On the other hand, commercial solutions
developed by network operators or LBS platform vendor
feature advanced capabilities and offer higher accuracy, due
to the access to real network data including time, angle, and
signal strength measurements, and are typically applicable to
a much broader range of cellular networks.

Especially in the context of the upcoming commercial
deployments of 5G networks, significantly higher localiza-
tion accuracy is anticipated. This is due to higher carrier
frequencies and signal bandwidth, network densification with
the proliferation of small-cell installations, mmWave and mas-
sive MIMO technologies, as well as opportunities for D2D
communication that enables cooperative localization. Recent
results in this important new research area have demonstrated
the potential for centimeter-level accuracy.

V. WLAN-BASED LOCALIZATION

With the widespread deployment of WLANs and Wi-Fi
equipped devices, Wi-Fi positioning emerges as a promising
location solution in areas covered by Wi-Fi signals (especially
indoors). As WLANs are typically uncoordinated and de-
ployed for individual purposes in the open industrial, scientific,
and medical spectrum bands, timing information (i.e., TOA,
TDOA) is rarely provided. Moreover, due to NLoS conditions
and signal fluctuation, which stem from the presence and
appearance/disappearance of obstacles, radio interference, and
noise, the majority of Wi-Fi positioning solutions are based
on RSS information. Table II summarizes WLAN-based lo-
calization and tracking solutions.

A. Geometric Approach

Originally, location-tagged vectors of RSS measurements
(i.e., fingerprints) were used to build a database with approxi-
mate AP locations. The main idea is that using the RSS values
of a specific AP observed at known locations, the location
of the AP itself is approximated as the weighted centroid of
those measured locations, e.g., a strong RSS value at location
A would pull the location of the AP closer to location A,
compared to a weaker RSS value of the same AP observed
at another location B. Using the database of approximate AP
locations, the unknown user location can be estimated as the
centroid of the (approximate) locations of the APs contained in
the measured fingerprint weighted by the corresponding RSS
values.

This approach is followed by Google Maps Geolocation
API, while the database is built using GPS-tagged RSS ob-
servations collected by survey cars during the imagery data
collection for Google Street View project [57]. Companies

including Skyhook and Navizon use the same approach. The
Skyhook positioning system is a metropolitan-wide location
determination system, which combines Wi-Fi based position-
ing system as discussed above, with cellular based position-
ing system, GPS and accelerometer information in order to
quickly deliver accurate and reliable location information [58].
Fingerprint data are collected by professionals using a large
fleet of survey cars. Apple and Samsung are using Skyhook as a
location service provider. On a different line, Navizon’s global
positioning relies on its own global AP database with known
geographic location, which is assembled and maintained by
a worldwide community of over 1.2 million users [59]. This
database covers most urban and sub-urban areas around the
world. Navizon licenses access to the database, including lo-
cation lookup or to third parties, e.g., carriers who may choose
to deploy a Wi-Fi location solution. There are also some
open public AP databases updated using data collected by
volunteers, which provide location information to user requests
through dedicated APIs. Such public databases include Wigle
[60], Mozilla Location Service [61], and OpenCellID [62]
which typically include locations of both cellular BSs and Wi-
Fi APs computed from data collected with smartphone logging
applications.

B. Fingerprint Matching

Instead of using RSS fingerprints to infer AP locations,
another approach is to store those fingerprints as raw data in
a database and then employ sophisticated pattern recognition
algorithms to determine user location given the observed RSS
values. This approach is commonly known as Wi-Fi fingerprint
matching and has attracted interest of the research community
after the seminal work of Bahl and Padmanabhan at Microsoft
Research who introduced the RADAR location and tracking
system in 2000 [63]. Since then, several research teams around
the world developed work in Wi-Fi fingerprinting, and a very
large number of papers have been presented at scientific events
or published by scholarly journals.

The basic operation of Wi-Fi fingerprint matching is as
follows. In the offline phase, a radiomap is constructed with a
set of RSS fingerprints measured at Reference Points (RP), i.e.,
points with known coordinates, either in a global coordinate
system compatible with GNSS solutions or a local Cartesian
system. In the online phase, a user’s RSS fingerprint is
compared with those in the radiomap, and the location of the
user is determined as the closest RP (or combination of closest
RPs) in signal space.

Deterministic [63], [64] and probabilistic methods [65], [66]
can be used for estimating the position, both with advan-
tages and drawbacks in terms of complexity and accuracy
of the position estimates. In deterministic methods, the user’s
RSS fingerprint is compared directly with each one of the
fingerprints in the radiomap by using a similarity function
(e.g., the Euclidean distance in the signal space). In the 1-
Nearest Neighbour method (1-NN) the position where the most
similar fingerprint in the radiomap was collected is assumed
to be the best position estimate. Alternatively, in the k-Nearest
Neighbour (k-NN) the k most similar fingerprints can be used
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to estimate the position as the (weighted) centroid of the
corresponding positions. It has also been shown that using
different functions and methods to compare the user’s RSS
fingerprint with those in the radiomap has a significant impact
on the positioning accuracy [67]–[69]. In [68], several alterna-
tives for matching fingerprints are evaluated in the context of
a GSM-based underground positioning system. In this case,
the Euclidean distance proved to be the function leading to
a better accuracy. In a different context, that of a multi-
building, multi-floor environment, [69] reports the results of an
exhaustive study involving 53 alternative functions to measure
the similarity between Wi-Fi fingerprints. Using k-NN, the
authors concluded that the Sørensen distance function with
k = 13 leads to the best results.

With probabilistic methods, the position is estimated by
computing the probability of receiving the measured RSS
value at each location based on the distribution of RSS values
across the operational area. During the offline phase, the
histogram of RSS values measured from each AP at each RP is
used to model the probability of observing a given RSS value
at each location. In the online phase, the estimated position
is obtained as the RP where the probability of observing
the measured RSS fingerprint is the highest [66]. With this
method, accuracy of 0.6 m (average error) has been reported in

[66], with the advantage of being computationally lightweight.
Creating radiomaps for large buildings is a tedious and time-

consuming task, as many fingerprints need to be collected
manually over a large set of RPs. Moreover, it is known
that the denser the set of RPs and the larger the number of
fingerprints collected at each RP, the better the accuracy of
the position estimates, which calls for even harder work in
building the radiomaps [70], [71]. Authors in [70] performed
an experimental study where they measured the accuracy of
a positioning system for several densities of the radiomap,
namely by considering a different number of fingerprints
collected at each RP. They concluded that accuracy increases
significantly as more fingerprints are collected. An evaluation
on the impact of the radiomap density in the accuracy of
the positioning system, using four different methods, was also
performed in in [71]. The key finding was that a reduction on
the density of RPs always results in an accuracy degradation,
while also showing that some methods are more robust than
others to a decrease of the radiomap density.

In practice, the radiomap becomes outdated by the RSS vari-
ation [72], and poor results are obtained. This phenomenon is
known to be incurred by the changes of environmental factors
(e.g., humidity, people movement, door/window open/close,
etc.), heterogeneous device types, and device statues (e.g.,

TABLE I
SOLUTIONS FOR CELLULAR NETWORK LOCALIZATION.

Category Scheme Solution Accuracy Networks

Academic

CellSense
Probabilistic RSS fingerprint matching

Median error 42.43 m (rural),
GSM

[25] 27.86 m (urban)
[26] Semi-supervised and unsupervised machine learning Median error below 100 m GSM

CAPS
Cell-ID and GPS position sequence matching technique Error 31.0 m to 72.3 m GSM, CDMA

[27]
CTrack Uses HMM and processes cellular fingerprints directly

Median error 45 m GSM
[28] without converting them to geographic coordinates

Commercial

Sprint Bayesian method with distance to the base station, location
20% better than Cell-ID CDMA2000

[29] of neighboring base stations, and SNR levels
Alcatel-Lucent Supervised training of Random Forest with labeled drive-

Median error 20 m to 25 m 4G/LTE
[30] test data, combined with HMM

Comtech Xypoint end-to-end solution offers hybridization of indoor
N/A 2G, 3G, 4G/LTE

[31] and outdoor positioning techniques
Ericsson Mobile Positioning System supports complementary

N/A 2G, 3G, 4G/LTE
[32] positioning methods
Viavi

ariesoGEO multi-vendor and multi-positioning platform Error 100 m 2G, 3G, 4G/LTE
[33]

Netscout TrueCall platform uses a multi-step algorithm with antenna
N/A 2G, 3G, 4G/LTE

[34] sectors weighted by timing and signal strength information
Groundhog CovMo intelligent mobility geolocation platform that uses

N/A 2G, 3G, 4G/LTE
[35] chaos theory and multi-dimensional modeling

TruePosition U-TDOA approach that utilizes HSUPA sessions Error @67% 57.1 m (urban)
2G, 3G, 4G/LTE

[36] Hybrid A-GPS and U-TDOA algorithm Error @67% 48.8 m (urban)
Qualcomm

Hybrid A-GPS and AFLT solution Error @67% 155.8 m (dense urban) 2G, 3G, 4G/LTE
[3]

Polaris Wireless
Radio frequency pattern matching technology Error @67% 116.7 m (dense urban) 2G, 3G, 4G/LTE

[37]
Glopos Self-learning probabilistic method with models of cell area

Error 6 m to 13 m (indoor) 2G, 3G, 4G/LTE
[38] and shape, and signal data from neighboring cells
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hand-held, carried in pocket or bag, device orientation, etc.)
in the on/offline phases [73], and cell breathing (i.e., dynamic
transmit power control for network operation reasons [226]).
Moreover, RSS readings can be affected by RF interference
from other electronic devices, e.g., microwave ovens or cord-
less phones operating on the same frequency, which calls for
robust fingerprint matching algorithms, as discussed in [67].

Given the effort associated with creating and maintaining
radiomaps, solutions based on crowdsourcing (discussed later
in this section), SLAM (discussed in Section X), as well as
parametric and non-parametric models have been proposed
[71], [106]. In particular, radiomaps based on models can be
obtained from a much sparser set of RSS fingerprints and have
the potential of reducing the computation effort in estimating
the position. While model-based radiomaps usually result in
accuracy degradation, models based on non-parametric Gaus-
sian Process (GP) regression have been reported to provide
better accuracy results than the traditional radiomap construc-
tion based solely on data collection [71].

Based on the empirical observation that RSS variation due
to device heterogeneity follows linearity, the work in [74]
proposes a device calibration step between the offline and
online phases to create a mapping in signal space. However,
this approach requires numerous RSS samples at several
known locations for a new mapping device, which is a labor-
intensive task, and it brings lack of device compatibility. To
avoid the inconvenience of data collection and to increase
compatibility, a histogram-based approach is proposed in [75].
This approach exploits RSS histograms and does not require
location information at which the measurements are obtained.
Hence, it allows a user to perform calibration (repeating every
10 seconds) while positioning. Other techniques manipulate
the absolute RSS values to compute differences or ratios
of RSS values from Wi-Fi APs within the original RSS
fingerprint, which are shown to mitigate the effect of device
diversity; see [76], and references therein for an overview and
evaluation of such techniques with real-life data.

Contrary to the idea that device diversity results mainly from
the use of different Wi-Fi chipsets, different antenna design
and placement within the mobile devices, and even different
device drivers and operating systems [20], [77], recent results
reported in [78] suggest that noise and fast fading have a
significant impact on the measured RSS values. Experimental
results show that RSS measurements taken simultaneously, at
the same location, by a set of similar Wi-Fi devices, are poorly
correlated.

Wi-Dist is an indoor localization framework that fuses
noisy fingerprints with uncertain mutual distances given by
their bounds. It achieves low errors by a convex-optimization
formulation, which jointly considers distance bounds and only
the first two moments of measured fingerprint signals [79]. Ex-
perimental results indicate that Wi-Dist achieves significantly
better accuracy than other state-of-the-art schemes (often by
more than 40%).

Due to the low reliability of RSS, authors in [80] present a
robust and efficient model for integrating human-centric col-
laboration to improve the accuracy of a baseline Wi-Fi system
by collecting both positive and negative feedback from users

on their estimated locations. The model is robust with respect
to malicious feedback, quickly self-correcting based on subse-
quent helpful feedback from users. More advanced solutions
complement Wi-Fi fingerprint matching with Bayesian filters
such as Kalman and particle filters to improve accuracy. For
instance, the system presented in [81] establishes a Bayesian-
rule based objective function and then applies the particle
swarm optimization technique to identify the optimal solution
(i.e., estimated location). Subsequently, the Kalman filter is
used to update the initial location and track the mobile user,
thus mitigating the estimation error. Other systems employ
motion sensors together with Bayesian filters [73], [82], [83].
In these solutions, the device location is predicted from motion
sensor readings, and the predicted location is updated with Wi-
Fi fingerprint matching results. The location prediction can be
done with discrete Markov chain models (e.g., random walk).
However, in the presence of RSS variation, the fingerprint
matching results contain large errors, and the filter output will
diverge (has an error monotonically increasing) after a few
iterations. This problem is interpreted as the model mismatch
in the sense of Bayesian inference [83], [84]. Although the
aforementioned calibration methods can be a good solution
for the model mismatch mitigation, it is still vulnerable to the
sudden change of the RSS variation characteristics.

One major challenge in fingerprint-based systems is mod-
eling the statistics of the errors, i.e., in estimating the error
associated to each position estimate. While some progress
has been reported recently, error estimation still needs further
investigation [85], [86]. Authors in [85] propose a conditional
entropy metric as a dynamic measure of the uncertainty
associated to each position estimate, and conclude that a low
value of the conditional entropy is highly correlated with
small positioning errors, while high values of the conditional
entropy are associated to both small and large errors. Aiming
to dynamically estimate the positioning error, an extensive
analysis was performed in [86] for the causes of large errors
in Wi-Fi fingerprint matching, using both simulation and real-
world data. In this work, the authors concluded that some of
the causes for large errors are related to the geometry of the
space and access points placement, and that, in the real world,
it is quite difficult to estimate the error associated to each
position estimate.

The work in [82] proposes a non-parametric information
filter to adaptively compute the reliability (or uncertainty)
of Wi-Fi fingerprint matching results. Also, RP selection,
AP selection, and outlier detection are introduced to avoid
divergence due to RSS variation. More specifically, in this
approach, only RPs close to the predicted location are selected,
and APs whose RSS observations are stable are selected
for Wi-Fi fingerprint matching. Such selections enforce the
proximity constraint and are effective to prevent large errors.
Outlier detection, checks if the fingerprint positioning results
fall within an acceptable level. If not, the results are dis-
carded. Similar idea is also presented in [83] where the Wi-Fi
fingerprint matching is formulated as a compressive sensing
problem. Although these approaches improve robustness to
the RSS variation, strong belief in the sensors make them
vulnerable to sensor biases.
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The Peak-based Wi-Fi Fingerprinting (PWF) approach pro-
posed in [73] exploits a time sequence of RSS observations to
correct the location estimate by capturing an inherent local
property. When a user moves towards a specific AP, the
RSS value of the AP is increasing under the low-level noise
assumption. Based on this fact, the PWF approach adjusts the
location estimate by selecting a RP at which RSS peak is
detected. This approach provides reliable results when the user
moves along a corridor, but it may fail in rooms where RSS
levels are similar and when RSS measurements are missing.
Besides, since the computation of particle weight is simply
computed to be proportional to the Euclidean distance between
the particle and fingerprint matching result, any robustness to
the RSS variation is not supported in the tracking framework.

Recent work in [72] introduces a Bayesian framework for
simultaneous user tracking and mitigation of RSS variation.
This approach is based on a time-varying RSS variation model
and a spatial correlation-based channel estimation [227], which
can be done by GP [228]. While other works assume a constant
RSS variation for all the APs, the solution in [72] presumes
that the RSS variation for each AP varies independently in
order to consider different propagation conditions over time
and space. By estimating the contributions of random effects
in measurements, this approach enables higher accuracy and
improved robustness to the RSS variation with a small number
of APs. However, it also has a definite weakness under severe
RSS variation conditions, which is common for the model-
based approaches.

Authors in [87] address the requirement of Wi-Fi fingerprint
matching for an up-to-date database to achieve best accuracy
by using GP for modeling RSS values and creating the ra-
diomap based on few training data. In particular, a parametric
pathloss model for the GP mean and a flexible non-parametric
covariance function are used to get reliable estimates with
low data collection effort. Experimental results suggest that
with 23 RPs the proposed solution performs equally well
as traditional fingerprint matching with over 230 RPs for
an office space of 2500 m2. Along the same line to address
the cost of constructing the radiomap in the offline phase, a
new empirical propagation model called Regional Propagation
Model (RPM) is used in [88]. The proposed system first
collects sparse fingerprints at some certain RPs followed by
an affinity propagation clustering algorithm, which operates
on the sparse fingerprints to automatically divide the whole
scenario into several clusters or sub-regions. The parameters
of the RPM are obtained in the next step and are further used
to recover the entire fingerprint database.

C. Lateration Approach
Even though the vast majority of modern WLAN-based po-

sitioning systems rely on fingerprint matching to compute the
user location especially in indoor environments, in principle
the lateration approach is also applicable. In fact, several early
systems tested indoor positioning solutions based on lateration;
for example, the RADAR system combines empirical RSS
measurements with signal propagation modelling to determine
user location and compares the performance against fingerprint
matching [63].

The inputs for lateration can be either TOA/TDOA or RSS
measurements. For instance, TOA/TDOA can be measured
using different signalling techniques such as Direct Sequence
Spread Spectrum (DSSS) as described in [89], where authors
analyze the performance of geolocation systems for DSSS
and OFDM WLANs and compare them in terms of symbol
synchronization performance. However, timing measurements
are hard to obtain because precise synchronization is required,
while the multipath propagation and NLOS conditions indoors
due to walls and obstacles introduce high inaccuracies in
timing measurements.

To this end, most of the Wi-Fi lateration solutions rely
on RSS measurements. Typically, these solutions employ a
signal propagation model or equivalently a path loss model that
provides the signal attenuation as a function of the distance
from a Wi-Fi AP. Capturing signal propagation in complex
indoor environments with a model is very challenging because
the signal strength at a given distance can be significantly
lower than expected due to walls or people walking or even
higher than expected owing to constructive reflections. An-
other limitation is that the exact locations of the Wi-Fi APs
need to be known for the lateration algorithm which is not
always the case in indoor installations, as opposed to outdoor
cellular tower deployments.

Therefore, before the application of the actual lateration al-
gorithm several research works exploit Wi-Fi data collected in
the target indoor environment and attempt to estimate the AP
locations and derive optimal coefficients for the propagation
model in the sense of best fitting the real data. Authors in [90]
use a Bayesian method for off-line estimation of the position
and the path loss model parameters of a transmitter (i.e., cellu-
lar tower or Wi-Fi AP) and then test three different methods in
an indoor office environment: a grid method that uses standard
Monte Carlo integration, the Metropolis-Hastings algorithm,
and the Iterative Reweighed Least Square algorithm. Along the
same line, a Bayesian positioning algorithm based on the Rao-
Blackwellized particle filter, where the parameters of the path
loss model are estimated independently for each AP in addition
to localizing the user, is presented in [91]. The key idea of
the EZ localization system is that the RSS observations, less
with GPS location at the building entrance or near a window
and most from unknown indoor locations, are constrained by
the physics of wireless propagation [92]. EZ models these
constraints and then uses a genetic algorithm to solve them,
yielding a median localization error of 2 m and 7 m in a small
and a large building respectively, which is slightly worse but
comparable to the Horus fingerprint matching solution [66]
while avoiding the data collection effort.

Interestingly, recent research efforts investigate the combi-
nation of lateration with fingerprint matching to leverage on
their strengths. For instance, the INTRI system first forms a
contour consisting of all the RPs with the same signal level
from an AP received by the device and then finds the device
location by minimizing the distance between the position and
all the contours with an optimization formulation following
the spirit of trilateration [93].
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D. Radiomap Construction Through Crowdsourcing

While some fingerprint matching solutions reduce the cost
of constructing the radiomap through signal propagation mod-
els and sparse data collection by professionals or trained sur-
veyors (e.g., [87], [88]), there is an increasing trend to exploit
localization data collected and shared by common people
acting as volunteers. Such solutions leverage on the emerging
new paradigm of crowdsourcing and the high availability of
smartphone devices featuring multiple sensors [229].

Crowdsourcing is becoming increasingly popular for Wi-
Fi RSS fingerprint matching systems mostly targeting indoor
environments, which are also known as “organic” systems;
however, the concept has been applied successfully to create
radiomaps from cellular signals, including [57]–[62] discussed
above, or signals from other radio sources. In fact, the Intel
Place Lab project was one of the pioneering research efforts to
build an indoor/outdoor localization system that relies solely
on users scanning and contributing ambient radio signals
from cellular, Wi-Fi, and Bluetooth beacons [94]. Place Lab
built on top of early systems, like ActiveCampus [95] that
introduced the concept of employing feedback from regular
users for fast and accurate updating of the Wi-Fi radiomap.
Authors in [96] argue that feedback about a user’s actual
position as indicated by the user to the system, either explicitly
or implicitly, greatly helps in fine-tuning an under-trained
positioning system with proper filtering. Moreover, if users
are well-behaved, it was shown that the participation of end-
users can assist in the construction of a radiomap incrementally
from scratch, while their Bluetooth-based system adapts well
when the surroundings change.

Similar approach to Place Lab was followed subsequently
by several systems, including Herecast [97] where users
contribute by sporadically reporting their location at room
level using a simple laptop application, Redpin [98] where
users train the system while using it in a collaborative fashion,
and more recently SmartCampusAAU [99]. More advanced
solutions motivate users to involve in crowdsourcing by trying
to reduce the data collection effort on the user-side. For
instance, Zee enables training data for the radiomap to be
crowdsourced without any explicit effort on the part of users
by leveraging the inertial sensors present in the mobile devices
carried by users, to track them as they traverse an indoor
environment, while simultaneously performing Wi-Fi scans
[100].

Recently, autonomous crowdsourcing systems have been
presented that rely on Trusted Portable Navigator3 to build
and update the databases for trilateration (i.e., AP locations
and propagation parameters) and fingerprint matching Wi-
Fi positioning systems [101], [102]. These systems eliminate
various limitations of current crowdsourcing systems such as
the requirement for floor plan map or GPS, suitability to
specific environments, and implementation of simple sensor-
based navigation solutions.

3Trusted Portable Navigator is a commercial software that converts inertial
sensors into a navigation solution and is used to provide navigation informa-
tion such as a time tag as well as position and its accuracy [102].

Even though crowdsourcing is very appealing for the cre-
ation and updating of the radiomap, it brings new challenges
that need to be addressed in order to deliver similar or slightly
worse accuracy compared to systems where the radiomap
is built rigorously by experienced professionals or trained
volunteers. These challenges include i) the construction of
the radiomap using data collected with heterogeneous devices,
ii) determining when user input is actually required, iii)
discarding erroneous data contributed either unintentionally or
maliciously (also known as “polluted” data) as well as stale
data, and iv) radiomap scalability, i.e., keeping the radiomap
size manageable as the volume of user contributions increases.

In the face of these challenges, authors in [103] use Voronoi
regions for reasoning about gaps in coverage (i.e., areas with
low density of fingerprints) and a clustering method for identi-
fying potentially erroneous user data. They demonstrate rapid
coverage while maintaining positioning accuracy comparable
to that achieved with a professionally collected radiomap. Data
from various sensors, such as accelerometer and gyroscope,
are used in [104] to tag more accurately the locations of the
Wi-Fi RSS fingerprints collected by numerous users, while
optimization algorithms along with a filtering method are
employed to remove erroneous data. Authors in [105] assess
the quality of a radio map built collaboratively and propose a
method to classify the credibility of individual contributions
and places recognized by the system, as well as the reputation
of individual users.

The Molé system allows for aggregation of fingerprints from
many users and is compact enough for on-device storage,
while it employs a scalable cloud-based fingerprint distribution
system [106]. FreeLoc addresses radiomap construction across
heterogeneous devices by employing relative, rather than abso-
lute RSS values, and uses techniques for maintaining a single
fingerprint for each location in the radiomap, irrespective of
any number of uploaded data sets for a given location, thus
keeping the radiomap to a reasonable size [107]. Differential,
instead of absolute, RSS values have been explored for fusing
crowdsourced RSS data collected with heterogeneous devices
to make the resulting radiomap completely device independent
[108]. The Anyplace system [109], [110] uses the concept
of RSS differences for crowdsourcing the radiomap, while it
guides crowdsourcers to uncovered or low fingerprint density
regions through heatmaps that visualize the volume of data
collected in different areas or rooms.

Even though there is still room for improvement with
regards to the above challenges, crowdsourcing is a promising
and viable solution for decreasing the cost of building and
updating the radiomap, thus increasing the adoption of fin-
gerprint matching systems. This is evident from the fact that
several commercial fingerprint matching systems, including
IndoorAtlas [111], indoo.rs [112], and Navigine [113], offer
crowdsourcing as a main feature.

We note that, in the context of localization and tracking,
crowdsourcing has also been explored for floor determination
and sensor calibration (Section VIII) and indoor mapping of
the physical space (Section X).
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Lessons Learned

Fingerprint matching is the preferred approach for WLAN-
based localization in many application scenarios because the
complex propagation conditions and multipath are captured in
the measured RSS fingerprints spanning the area of interest.
Therefore, fingerprint matching methods outperform methods
based on signal propagation due to the inherent inaccuracies
of the signal models in typical indoor environments. The
key objective in fingerprint matching is the construction of
a reliable radiomap in an efficient and cost-effective manner,
while addressing challenges related heterogeneous devices, the
impact of AP and RP density on the position accuracy, and
keeping the size of the radiomap as low as possible.

Crowdsourcing has emerged as a promising and feasible
alternative for building and updating the required radimaps.
Non-participatory systems usually rely on experienced pro-
fessionals for collecting radiomap data, like in the Ekahau
commercial solution, or trained volunteers, like in the KAILOS
academic project [230]. However, the data collection task,
especially for large-scale indoor environments, is not only
tedious, it also could become cost prohibitive. For instance,
covering the 450.000 m2 COEX underground shopping mall
area in South Korea required 15 collectors to collect point-by-
point 200,000 Wi-Fi RSS readings at 10,000 unique locations
for about two weeks. Also, a measurement campaign following
the deployment of the Ekahau system can cost $10,000 for
a large office building with no maintenance included. On the
other hand, crowdsourcing approaches require the use of well-
planned incentive strategies to engage users and motivate them
to contribute their collected data, while guiding them to cover
areas with sparse data. In addition, users’ contributions are
prone to errors and the system is vulnerable to misbehaved or
malicious users, which requires the use of proper methods to
identify and filter out low quality fingerprints.

VI. RANGE-FREE LOCALIZATION IN WIRELESS SENSOR
NETWORKS

Multi-hop range-free localization, which uses connectivity
information between radio nodes (devices), has attracted re-
search interest in the field of WSNs for many years. The
fundamental idea behind multi-hop range-free localization is
to offer the location information less accurate for each node,
but to achieve cost- and energy-effectiveness from the network
perspective, and to have robustness to NLOS propagations. In
this sense, the importance of multi-hop range-free localization
is increasing nowadays with the predicted booming in IoT
applications over the next years.

The multi-hop range-free localization problem has been
investigated from two perspectives: 1) the problem of con-
verting the hop counts (i.e. minimum hop counts) measured
along the shortest paths between anchor-node pairs into the
physical distances and performing trilateration, and 2) the
graph embedding problem with the hop counts among all
the nodes in a centralized manner or among neighboring
nodes in a decentralized manner. A brief overview of both
problems and relevant algorithms is presented in [17]. In this
paper, we focus on the former problem and review emerging

approaches with the focus on recent advances in the presence
of network anisotropy, causing the NLOS path4 between two
nodes and deteriorating localization accuracy, which has not
been analyzed in the survey papers.

Distance Vector-Hop (DV-Hop) [114] is a well-known
multi-hop range-free algorithm, and due to its simplicity, many
algorithms [115]–[119] have been developed by modifying the
original DV-Hop algorithm. Assuming the path between any
pair of nodes is linear and isotropic, in the DV-Hop algorithm
an average hop progress (i.e., average size for one hop) is
computed by each anchor, and the distance from an anchor to
a target node is estimated by multiplying the anchor’s average
hop progress and their minimum hop count. Many works
have focused on reducing errors of the anchors’ average hop
progresses in a probabilistic [115], [116] or heuristic [117]
manner and from the optimization perspective [118], [119].
However, the underlying assumption does not hold in practice
due to the existence of network anisotropy (e.g., non-uniform
node deployments, irregular radio propagation), and significant
performance degradation is observed in anisotropic networks.

The works in [120], [121] propose location refinement
algorithms to minimize the average localization error over
the network under the strict constraint of one-hop or two-hop
connectivity. While these approaches improve the performance
of a family of the DV-Hop algorithm impressively, a large
increase in communication overhead is observed due to the
information exchange between neighboring nodes. Moreover,
the change of network topology by radio irregularity leads to
an oscillation of the location estimate. Based on a network hole
detection method [122] that detects nodes at the boundaries of
network holes, the Rendered Path (REP) algorithm measures
the deviation angle of the shortest path and estimates their
distance with the cosine rule [123]. Since higher localization
accuracy can be achieved with a small number of anchors,
the REP algorithm is known to be a cost-effective solution.
However, this approach is vulnerable to undetected small
holes, while the use of global connectivity information for hole
detection is energy intensive, which is improper for energy-
limited radio devices.

The work in [124] proposes the pattern-driven algorithm
that classifies anchors according to the hop count thresholds,
determined based on the empirical observations. This approach
uses anchors within eight hops from a target node for local-
ization. In particular, anchors which are less than four hops-
apart from the node are considered reliable, and the distances
to those anchors are simply computed as done in the DV-Hop
algorithm. The distances to the rest of the selected anchors are
estimated with the aid of a nearest reliable anchor to reduce
the error.

Other reliable anchor selection algorithms are also found
in recent works [125]–[127]. In the Reliable Anchor-based
Localization (RAL) algorithm [125], anchors having average
hop progresses larger than the minimum hop progress are
classified into a reliable anchor set. The works in [126], [127]

4The NLOS path is detoured from the LOS path, forming in a direct line
between two nodes. Depending on node deployments and radio irregularity,
node pairs may not have the LOS paths. This problem can be seen as the
blockage of the LOS signal in time and/or angle measurement techniques.
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use the concept of geometric dilution of precision to select
reliable anchors. The fundamental idea of these algorithms is
to test if anchors are reliable by using a closely placed anchor

as a reference. Hence, these approaches may fail in sparse
anchor scenarios. Moreover, the distance estimates to the
reliable anchors may include large errors, which means their

TABLE II
SOLUTIONS FOR WLAN LOCALIZATION AND TRACKING.

Category Paper Solution/Evaluation Study Remarks/Findings/Limitations

Geometric
[57]–[62]

Transmitter locations computed from location-tagged cellular/Wi-Fi RSS Location-tagged fingerprints must be
approach fingerprints; user is localized at the centroid of the detected transmitters well distributed around towers/APs

[63], [64]
RADAR introduced deterministic fingerprint matching and was later Demonstrated that fingerprint matching outperforms a
combined with a Viterbi-like algorithm for continuous user tracking signal propagation model-based lateration approach

[65], [66]
Horus relies on probabilistic matching using histograms of measured RSS to Computationally lightweight solution,
model the probability of observing a RSS value from each AP at each RP average error 0.6 m

[67]
Experimental evaluation of fingerprint matching methods under RF Strong indication that specific types of RF
interference using a combination of accuracy, latency and sensitivity metrics interference noticeably degrade accuracy

[68] Comparison of various distance metrics for fingerprint matching
Euclidean distance provided the best

accuracy

[69]
Evaluation of 53 alternative distance metrics to k-NN algorithm (k = 13) with Sørensen
measure the similarity between Wi-Fi fingerprints distance provided the best accuracy

[70]
Experimental study of fingerprint matching algorithms Accuracy increases significantly as more
for several densities of the radiomap fingerprints are collected

[71]

Evaluation on the impact of the radiomap density in the accuracy of Lower density always results in accuracy
fingerprint matching algorithms degradation, some algorithms are more robust

Model-based radiomap construction using non-parametric GP regression
Better accuracy than radiomap construction

based solely on RSS data collection

[72]
Time-varying RSS variation and spatial correlation-based channel models Sensitive to severe RSS
for Bayesian user tracking and mitigation of RSS variation variation conditions

[73]
Peak-based approach processes a Wi-Fi RSS sequence with particle filter Reliable along corridors, but may fail
and adjusts user location by selecting a RP at which RSS peak is detected when the user moves in open spaces

[74]
Addresses device diversity with a device calibration step between the High volume of RSS data collected at

Fingerprint offline and online phases to create a mapping in RSS space known locations for each new device
Matching

[75]
Addresses device diversity with an online RSS histogram-based mapping Low accuracy initially until enough data
between different devices while the user walks around are collected to build reliable histigrams

[77]
Evaluation of different devices to identify the challenges and Certain devices are unsuitable for positioning,
limitations of cross-device fingerprint matching 5 GHz band signals are more stable than 2.4 GHz

[78]
Experimental evaluation of the impact of noise and fast fading on the RSS readings at the same location and time, by
measured RSS values similar Wi-Fi devices, are poorly correlated

[79]
Wi-Dist uses a convex-optimization formulation and fuses noisy fingerprints Applicable to various sensors and wireless fingerprints,
with uncertain mutual distances given by their bounds up to 40% better accuracy than state-of-the-art

[80]
Integration of human-centric collaboration to improve accuracy by positive Robust with respect to malicious feedback, quickly
and negative user feedback on their estimated locations self-correcting based on subsequent helpful feedback

[81]
Bayesian-rule based objective function and particle swarm optimization Kalman filter updates the initial location and tracks
technique combined with Kalman filter for user tracking the user, thus mitigating the estimation error

[82]
Non-parametric information filter for Wi-Fi RSS fingerprints and sensor

Sensitive to sensor drifting
readings combined with RP selection, AP selection, and outlier detection

[83]
Bayesian filter predicts location from motion sensors and updates it with

Sensitive to sensor drifting
Wi-Fi fingerprint matching formulated as a compressive sensing problem

[85]
Conditional entropy metric as a dynamic measure of the uncertainty Low entropy values are correlated with small errors,
associated to each position estimate high values may indicate small or large errors

[86]
Extensive analysis for the causes of large errors in Wi-Fi fingerprint Some large errors may be due to the geometry
matching with the aim to dynamically estimate the positioning error of the space and access points placement

[87]
Parametric pathloss model for the GP mean and a non-parametric Using 23 RPs similar accuracy was achieved with
covariance function to create the RSS radiomap with a few training data over 230 RPs for an office space of 2500 m2

[88]
Empirical Regional Propagation Model to construct the RSS radiomap Better prediction of RSS values than existing models,
from sparse fingerprints through affinity propagation clustering 50% workload reduction for fingerprint data collection

Lateration
[89]–[93]

Employ the distances from Wi-Fi APs estimated with timing or RSS Timing and RSS measurements are hard to model
approach measurements to compute user location through standard lateration indoors, the locations of the Wi-Fi APs are required
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decisions could be wrong, but this point has been overlooked.
To deal with such drawbacks, the Reliable Anchor Pair

Selection (RAPS) approach tests if the shortest path between
two anchors via a target node is linear-shaped (undistorted) and
selects anchor pairs passing the test [128]. After selection, the
distances to the reliable anchors are estimated with the geomet-
ric approximation of the node location. The RAPS algorithm
does not require any reference anchor for the reliability test;
therefore, this approach is well-suited for networks with a
small number of anchors.

Other geometric approximation-based distance estimators
having robustness to path detour are found in [129], [130]. The
work in [129] introduces a virtual hole construction method to
approximate a detoured path as an arc of a circular sector of a
circular-shaped virtual hole. In [130], a Pascals’ triangle model
is proposed to provide location candidates and probabilities
for nodes of the shortest path. As the approximation gives the
possibility of the target node being placed at each location
by considering the degree of path detour, an error from path
detour can be effectively relieved. However, the approximation
is invalid for heavily detoured paths, which can be configured
in countless shapes.

Lessons Learned

The hop count significantly varies with configuration of
the shortest path between nodes, which is determined with
respect to local properties including node deployments (e.g.
node density, deployment method, and geography) and channel
characteristics. The path configurations of anchor pairs play
references in distance estimation for an anchor-node pair.
Specifically, the anchor pair information is used to transform
the hop count of the anchor-node pair into the distance domain.

However, it becomes useless for anchor-node pairs due to
mismatches in local properties for the anchor pairs and the
anchor-node pairs in anisotropic networks. Methods of select-
ing good anchors on the node side have been studied to avoid
the mismatches, but a fundamental requirement on anchor
numbers remains a fatal flaw. In other words, they are cost
prohibitive from the network operation perspective. Geometric
approximations, which derive a mathematical model for each
path configuration, could be alternative, but applications are
limited to those paths with low uncertainties in configuration.

VII. DATA FUSION

To improve system performance in terms of reliability of the
estimates (integrity), accuracy, and availability, it is appealing
to process information obtained from a number of sensors by
means of fusion techniques [131], [132].

Multiple data fusion solutions have already been released as
commercial products. For instance, the SiRFstarV architecture
by Cambridge Silicon Radio (CSR), which was acquired by
Qualcomm, gathers real-time information from GPS, Galileo,
GLONASS and COMPASS satellites, multiple radio systems,
such as Wi-Fi and cellular, and multiple IMU sensors, like
accelerometers, gyroscopes and magnetometers. It then com-
bines this real-time information with ephemeris data, mapping,
cellular BS and Wi-Fi AP location data and other cloud-based

aiding information using the SiRFusion platform, which is now
part of Qualcomm iZat location services [133]. Positioning
error of 9 m@68% and 13.1 m@95% over several test runs in
a shopping mall is reported [134].

A generic framework with different layers of fusion for
tracking in radio networks is presented in [135]. In the first
level, radio measurements can be combined, including TOA,
TDOA, RTT, AOA, RSS, and Doppler parameter β that
provides a measurement of the relative user speed. In the
second level, spatial fusion of radio measurements from a
sufficiently large number of transmitters takes place in the
form of lateration algorithms (i.e., trilateration or multilat-
eration depending on the number of transmitters) for TOA,
TDOA and RSS, triangulation for AOA, fingerprint matching
for RSS, and multi-static radar for Doppler. In the third
level, information fusion involves the combined processing of
multiple measurements of different modality (kind). At this
level, fusion of complementary sensor data can be performed,
including barometric pressure data to resolve vertical ambi-
guity and IMU data from the devices’ onboard sensors. Such
sensory data can be utilized to infer the mobility state of the
user as static, walking, running, cycling, etc., as discussed
in Section IX. Finally, temporal filtering of the location-
dependent measurements and/or predicted user locations with
the aid of an appropriate mobility model can be applied to
smooth the estimated user trajectory. Well-studied Bayesian
tools for such processing include the Kalman filter [131] and
different variants, e.g., the position Kalman filter [136], as well
as particle filters [137].

Authors in [132] study the optimal sensor fusion of het-
erogeneous position related measurements and investigate the
fundamental performance of linear fusion. The proposed esti-
mator combines information coming from ranging, speed, and
angular measurements, which are jointly fused by a Pareto
optimization problem where the mean and the variance of the
tracking error are simultaneously minimized, while assuming
a very simple dynamical model for mobility.

Lessons Learned
Data fusion is a powerful methodology for unleashing

the full potential in terms of accuracy, reliability, and ro-
bustness of localization and tracking systems in application
scenarios where complementary multi-source measurement
data are available. This is evident from the fact that existing
commercial products, either developed on software or hard-
ware, leverage on sophisticated fusion techniques to optimally
combine satellite, terrestrial radio, and sensor data to deliver
high level of accuracy. As described in [135], fusion tech-
niques can be employed across different levels for enhancing
tracking systems in wireless networks; namely at the radio
measurement level (e.g., TOA, TDOA, RTT, AOA, RSS, and
Doppler), at the algorithm level (e.g., proximity, triangulation,
lateration, fingerprint matching), at the processing level for
combining multi-modal measurements (e.g., data from inertial
or environmental sensors), and finally at the post-processing
level with the spatio-temporal filtering of measurements or
rough location estimates by means of statistical processing or
Bayesian filters.
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Especially, in the context of localization in 5G, hybrid
fusion of multiple radio and sensor data is attracting research
interest for achieving the envisioned centimeter-level and unin-
terrupted positioning required, for example, by the automotive
industry for enabling ITS application or emergency response
services.

VIII. VERTICAL POSITIONING

Most of the 2D fingerpint matching algorithms that rely
on RSS observations (either cellular or WLAN) can be easily
extended to three dimensions, as long as the radiomap contains
height information for every collection point across multiple
floors. Many practical positioning and tracking scenarios in-
side real world multi-floor buildings require determination of
the floor where the user or device is located. In some cases,
floor determination is even necessary to identify the floor plan
required by some tracking techniques, including those based
on scene analysis and especially those using particle filters.
Reliable detection of the floor has been identified as even more
important that 2D position for safety and rescue operations as
it minimizes search operations [138]. The combination of 2D
positioning with floor estimation is often referred as 2.5D, 3D,
or multi-floor positioning.

In 2015, NIST identified 3D geolocation as the top gap
with highest priority for LBS R&D investment [231]. This
highlights the importance of delivering vertical (i.e., height)
location information, either in the form of absolute height
value or floor label. In the following, we overview solutions
that rely on cellular networks, WLAN, and sensor-based ap-
proaches using either the accelerometer or the barometer (i.e.,
atmospheric pressure sensor). These solutions are summarized
in Table III.

A. Cellular-based Solutions

The appeal of RSS-based floor detection solutions derives
from the ubiquity of cellular and Wi-Fi networks. One of the
first works to report the use of RSS fingerprints for floor
detection is based on RSS data from GSM networks [138].
The proposed SkyLoc system attained accuracy around 73%
in detecting the correct floor (97% within a 2 floors error
margin) during an extensive evaluation performed in three tall
buildings in Washington D.C., Seattle, and Toronto.

Recently, baseline positioning performance results based
on the 3GPP 3D Multiple-Input-Multiple-Output (MIMO)
deployment and propagation model that has been adopted in
the 3GPP (Release 13) were presented in [139]. Simulation
results pertaining to outdoor-only and indoor-outdoor network
deployments with different number of macro cells and small
cells indicate that the Cell-ID and O-TDOA methods defined
for LTE are capable of meeting the FCC requirements for
positioning E911 calls. Interestingly, in the indoor-outdoor
simulation scenario for an 8-floor building with sufficient
indoor small cells the horizontal accuracy of Cell-ID and O-
TDOA is 31 m and 16 m for 90% of the tests, respectively.
Moreover, the vertical accuracy of Cell-ID is within 1 m error
for 99% of the tests, compared to 25% of the tests for O-
TDOA. The reason for this surprising performance of Cell-ID

is that all users are served by a cell in the same floor, and the
difference between the antenna and the user device heights is
1 m. This implies that Cell-ID can accurately estimate the 3D
user location in the case of dense small cell deployments. This
is confirmed in an experimental LTE femtocell test-bed, where
the Cell-ID approach is reported to achieve 1.79 m vertical
error and 69.88% floor detection rate [140].

Researchers at Ericsson present a 3D location solution for
LTE cellular networks that complies with the 3GPP stan-
dard [141]. Their solution is built upon the 2D Adaptive
Enhanced Cell IDentity (AECID) algorithm, which measures
fingerprint location information whenever high accuracy A-
GPS, O-TDOA or U-TDOA position measurements occur in
the LTE network [142]. The high accuracy measurements with
the same fingerprint are then clustered and a 3GPP polygon
that describes the boundary of the cluster is computed. AECID
is extended by using altitude information from A-GPS, O-
TDOA, and U-TDOA positions of opportunity to provide the
radiomap with altitude-tagged fingerprinted polygons. Subse-
quently, a geographical shape conversion algorithm transforms
the polygon with altitude information to the 3GPP point with
an ellipsoidal uncertainty, since the latter format is standard-
ized on all LTE position reporting interfaces.

A new 3D fingerprint matching scheme called Fingerprint
Correlation Localization (FCL) powered by an Enhanced
Nearest Neighbor Localization (ENNL) algorithm is presented
in [143]. Authors employ cell matching degree and choose the
best reasonable fingerprint according to the correlation of its
surrounding points, while improving search efficiency across
the radiomap by introducing a new searching window. Results
in a 4-floor supermarket building in Chengdu, China with real
network data, where the network MRs contain the RSS values
from seven cells, demonstrate 60 m horizontal error and 7 m
vertical error in 90% of the tests.

Regarding commercial solutions, InvisiTrack has developed
signal processing techniques that evolve existing O-TDOA,
with advanced multipath mitigation technology and ranging
signal processing [144]. Their Positioning over LTE (PoLTE)
technology uses LTE Sounding Reference Signal (SRS) for an
uplink solution. In this case, no changes would be needed to
the user’s mobile device, but the firmware in the LTE eNB
would require modifications. InvisiTrack’s downlink location
methods are compatible with LTE Cell-specific Reference
Signals (CRS) only defined in Release 8, unlike other meth-
ods which rely on the deployment of LTE PRS defined
in Release 9. If PRS is present, InvisiTrack will enhance
PRS functionality, while they can use PRS exclusively or in
conjunction with CRS. The reported accuracy is 1 m to 10 m
(horizontal) and less than 3 m (vertical).

Nokia Siemens Networks (NSN) is also using 3D geoloca-
tion solution to enhance network planning and optimization
after buying and further developing a 3D radio propagation
modeling technology from Israel-based NICE Systems. Such
3D solution enables network operators to replace much tradi-
tional drive and walk testing to reduce costs and deployment
time by up to 80% [145].

NextNav has commenced deployment of a nationwide net-
work of wireless transmitters in U.S.A. to deliver a positioning
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service to cellular and other mobile devices in environments
where GPS and other GNSS signals (e.g., GLONASS) are
significantly degraded or unavailable, such as indoors or in
urban areas [146]. Although, this is not a pure cellular loca-
tion method it has been provisioned in LTE standard (3GPP
standard, Release 13) as TBS. Thus, it has the potential to
be seamlessly integrated with existing cellular methods in
the future. The NextNav location system utilizes GPS-like
signals transmitted by the proprietary beacon transmitters.
These transmitters are deployed across a geographical area
and are strategically installed on selected sites (typically on
existing cell network sites) for optimizing their geometric
distribution to ensure high accuracy, but with significantly
lower density than cellular communication systems. Indoor
accuracy during field trials across multiple buildings in dense
urban, urban, suburban and rural areas was shown to be 94 m
(horizontal) and 4.8 m (vertical) in 90% of the tests [3].

B. Floor Identification with WLAN

Regarding 3D location with absolute height information
in WLAN, authors in [147] present a novel variant of the
well-known Weighted k-NN (Wk-NN) fingerprint matching
algorithm that is based on frequentist, rather than Bayesian,
inference and adopts a statistical metric based on Pearson’s
correlation. Even though several works follow the same ap-
proach, the majority of the WLAN-based solutions focus on
identifying the floor where the user resides.

For example, results reported in [148] show an accuracy
of 86% in detecting the correct floor using a Nearest Floor
Algorithm, a simplification of the k-NN method, with Wi-
Fi data. A method similar to 1-NN, combined with RF
trilateration, has also been used in the work described in [149],
with results showing accuracy of 100% in detecting the correct
floor, although tested only on a single building, with a limited
number of test samples. Accuracy of 97% in detecting the
correct floor is also reported in [150], where a RSS solution
based on path loss propagation model including a floor loss
factor is proposed. The solution has been evaluated for Wi-Fi
at 2.4 GHz and 5 GHz, and also using BLE, with the 2.4 GHz
technology providing the best results.

Authors in [151] employ unsupervised clustering to allow
the collected fingerprints to group freely in the signal strength
space, without precluding – through the imposition of archi-
tectural constraints – any natural arrangement of the collected
fingerprints. This is combined with majority voting committees
of backpropagation artificial neural networks to deliver floor
detection rates between 91% and 97%.

To reduce the computational complexity of floor determi-
nation in Wi-Fi, due to the size of the fingerprint database,
authors in [152] apply a two-step process, first by rearrang-
ing the fingerprints according to unique AP listed by the
fingerprint, and second by filtering the unique AP list by
selecting only ‘significant’ APs of the building. The floor
detection algorithm based on the reduced database employs
Bayesian posterior probability of each floor and is reported to
achieve 75% and 86% correct detection rates in two buildings.
Going one step further, Locus is a heuristics based indoor

localization, tracking and navigation system for multi-story
buildings that determines floor and location by using the
locations of infrastructure points, and without the need for
radiomaps [153]. Initial experimental results in an indoor
space spanning 175.000 ft2, show that Locus can determine the
floor with 99.97% accuracy and the location with an average
location error of 7 m.

C. Sensor-based Solutions

Researchers have addressed the problem of floor identifica-
tion using accelerometers or barometric sensors embedded in
high-end smartphones. However, as discussed in the following,
due to the technical challenges in processing sensory data,
most of the existing approaches rely on sensors to reliably
detect floor changes and then resort to cellular or WLAN data
to identify the correct floor.

It is known that atmospheric pressure decreases with height
(i.e., altitude), and this dependency can be exploited for floor
estimation as it is used outdoors to complement GPS altitude
estimations. However, the use of barometric data indoors
to estimate the floor is not straightforward [154]. Pressure
variations across the same floor due to temperature variations
and air flow, air conditioning systems, weather changes, errors
in pressure sensors and other causes, make it difficult to
associate absolute pressure values to specific floors [155],
[156].

The work performed by Li et al. is one of the first to perform
an in-depth analysis of the potential of using barometers
to estimate the height for indoor positioning [155]. After a
detailed analysis of the dynamics of pressure indoors, the
authors conclude that it is impossible to accurately estimate the
height using barometers in an absolute manner. To overcome
this limitation, the authors propose two solutions, namely the
use of reference pressure stations, and the combination of
pressure data with Wi-Fi positioning (fingerprint matching or
other). Evaluation of the combined pressure and Wi-Fi solution
on a 6-story building resulted in 100% accuracy in detecting
the correct floor.

Recent results indicate that the barometric sensor is a
robust and reliable solution achieving 0.42 m vertical error
and 98.8% floor detection rate [140]. However, it requires
punctual calibrations to remove fluctuations due to local
pressure changes. For instance, authors in [160] present the
Scalable Barometer Calibration (SBC) calibration algorithm
to automatically calibrate barometer for a large number of
smartphone users, which requires neither any infrastructure
nor any human intervention, and uses smartphone barometer
and accelerometer only.

The limitations of the barometer sensor are confirmed by
authors in [157]. In this work it is reported that pressure
difference can be used as a useful fingerprint to detect the
exact number of floors changed with almost 100% accuracy,
while pressure-based features (such as the change in pressure)
enable the classification of vertical activities (such as taking
escalators, stairs or elevators) with high accuracy. However,
the main finding was that it is difficult to use the barometer
to determine the actual floor that a user is on.
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The idea of using reference pressure stations is also ex-
ploited in [156]. After recognizing that pressure data suffers
from offsets and variations due to numerous causes, the
authors propose a solution where a reference pressure sensor
is installed in each one of the floors of the buildings to be
covered. Data from the reference sensors is shared through
a central server. The solution has been evaluated in three
large buildings (an office building, an airport terminal, and an
underground shopping mall) with accuracy results around 96%
in estimating the correct floor (estimations while changing
floors were not considered).

Authors in [158] also consider the use of pressure data to
improve a Wi-Fi RSS-based floor detection solution. In their
work, pressure data is used to calculate the value of a Vertical
Motion Indicator which, in turn, is used to detect when a
user is moving to a different floor, blending that information
with the output of the RSS-based floor estimator. Limited

evaluation on a single building showed accuracy higher that
99% in detecting the correct floor. This solution requires the
access to a database with the 3D position of the Wi-Fi APs.
Another solution based on Wi-Fi fingerprints and pressure
data has also been evaluated in the context of the IPIN 2016
Competition, and the results obtained from processing data
collected independently in 4 distinct buildings show an average
floor detection accuracy of 96.5% in real-world settings [159].

Detecting when a pedestrian is changing floors is also the
fundamental idea in most of the solutions based on processing
data from accelerometers. One common feature in many of
these approaches is the recognition of activities, such as taking
and elevator up or down, walking up or down stairs, and
distinguishing these activities from standing still or walking
across a single floor [161]–[164]. However, detecting when
a pedestrian is changing floors does not solve the problem of
detecting the absolute floor the user is at, and also requires the

TABLE III
SOLUTIONS FOR VERTICAL POSITIONING. CFDR STANDS FOR CORRECT FLOOR DETECTION RATE.

Category Scheme Solution Accuracy Remarks

Cellular

[138] SkyLoc RSS fingerprint matching 73% cfdr (97% within 2 floors error) GSM network

[139]
3GPP 3D MIMO propagation model, O-TDOA Vertical error ≤ 1 m in 25% of the tests LTE network
3GPP 3D MIMO propagation model, Cell-ID Vertical error ≤ 1 m in 99% of the tests simulation

[140] Cell-ID Vertical error 1.79 m and 69.88% cfdr LTE femtocell test-bed

[141]
2D algorithm extended with altitude information

70% polygon confidence
LTE network

from A-GPS, O-TDOA, and U-TDOA positions simulation
[143] 3D fingerprint matching Vertical error ≤ 7 m in 90% of the tests GSM network
[144] InvisiTrack PoLTE commercial SRS technology Vertical error ≤ 3 m LTE network
[145] NSN commercial 3D geolocation solution N/A 3D RF modeling
[146] Nextnav commercial TBS with GPS-like signals Vertical error 4.8 m in 90% of the tests LTE network

WLAN

[147] 3D fingerprint matching with frequentist inference Average 3D error ≤ 3 m Tested in a 2-floor building
[148] Nearest Floor Algorithm (RSS fingerprints) 86% cfdr Tested in a 4-floor building

[149]
Nearest Neighbor fingerprint matching

100% cfdr Tested in a 8-floor building
combined with RF trilateration

[150]
RSS path loss propagation model (Wi-Fi 2.4 GHz

97% cfdr
Tested in a 4-floor building,

and 5 GHz, BLE 2.4 GHz with floor loss factor BLE is better than Wi-Fi

[151]
Unsupervised clustering combined with majority

91%–97% cfdr
Tested in a

voting of back propagation neural networks 13-floor building

[152]
Bayesian posterior probability of each floor based 75% cfdr Tested in a 4-floor building

on reduced database of ‘significant’ APs 86% cfdr Tested in a 7-floor building
[153] Locus system that uses the locations of APs 99.97% cfdr Tested in a 4-floor building

Sensors

[155]
Combination of barometer and Wi-Fi

100% cfdr
Tested in a

(fingerprint matching or other) 6-floor building
[156] Reference pressure sensors in each floor 96% cfdr Tested in 3 buildings
[140] Standalone barometric sensor Vertical error 0.42 m and 98.8% cfdr Requires calibration

[160]
Scalable barometer calibration algorithm

N/A
Sensor calibration through

using smartphone barometer and accelerometer crowdsourcing

[157]
Pressure difference fingerprints 99.54% correct floor change

Tested in 7 buildings
to detect floor changes detection rate

[158]
Barometer to detect floor changes combined

99% cfdr
Requires 3D position

with RSS-based floor estimator of Wi-Fi APs
[159] Wi-Fi fingerprints and pressure data 96.5% cfdr Tested in 4 buildings

[161]–[164]
Accelerometer to detect floor changes

N/A
Require absolute

through vertical activity classification floor identification

[165]
F-Loc system uses Wi-Fi traces

98% cfdr
Tested in a

and accelerometer readings 10-floor building
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user to acquire and process data continuously. While results
reported by several authors, including those referred above,
point to 100% accuracy in detecting floor changes, some of
these solutions do not solve the absolute floor detection prob-
lem, or require the user to manually indicate the initial floor.
To this end, the F-Loc system leverages on crowdsourcing
and mobile phone sensing to collect users’ Wi-Fi traces and
accelerometer readings for building the Wi-Fi map of the entire
building though advanced clustering and cluster manipulating
techniques, which can then be used for floor localization [165].
A field study in a 10-floor building shows that F-Loc achieves
an accuracy of over 98%.

Lessons Learned

While some of the proposed solutions are showing a per-
formance compatible with the requirements of most location-
based applications, including emergency and rescue operations
(accuracy higher than 95%), some challenges still need further
investigation. Approaches based on the processing of data
from accelerometers in smartphones are dependent on the
way different individuals handle their devices for recognizing
activities (such as climbing stairs). Moreover, most of the
works only consider changing floors using elevators or stairs,
failing to address the use of escalators or ramps which are
very common in airports and shopping malls.

On the other hand, solutions based on signals of oppor-
tunity, such as cellular, Wi-Fi or Bluetooth, whether based
on fingerprint matching, trilateration, or other methods, often
depend on previous data collection efforts for building the
radiomap. Moreover, these solutions might be of little use
in disaster situations where there is a complete outage of
the communication infrastructures. In this respect, the use of
pressure or accelerometer data is more immune to damages to
infrastructures, but solutions based only on a single type of
data cannot determine the absolute floor.

IX. MOBILITY STATE ESTIMATION

Mobility State Estimation (MSE) is an integral part of cellu-
lar networks mainly for ensuring uninterrupted communication
service to all users, especially those moving at high speeds. For
instance, 3GPP introduces Mobility Robustness Optimization
(MRO) features to its LTE self-optimization functions, which
can dynamically improve the network performance of HO to
provide enhanced quality of experience for the users, and in-
creased network capacity. MRO can be done by automatically
adapting cell parameters to adjust HO thresholds based on
feedback of performance indicators [232].

Therefore, MSE is crucial for optimizing HOs in order to
reduce call drop and network signaling flow, optimize traffic
scheduling, and achieve resource optimization. MSE can also
be very beneficial to transmission scheduling, mobility load
balancing, channel quality indicator feedback enhancement,
energy efficiency, and many resource management scenarios.
One such scenario is choosing the most suitable channel de-
pendent scheduling scheme for LTE, either frequency selective
scheduling or frequency diversity scheduling according to the
user speed, as demonstrated in [233]. For HO performance

improvement the goal of 3GPP is not to obtain user speed
estimates that are highly accurate, but rather coarsely classify
the user speed into four mobility classes (i.e., 0–30 km/h, 30–
60 km/h, 60–90 km/h, and ≥90 km/h).

At the same time reliable MSE is also beneficial to user
tracking and navigation. For instance, if a user is determined
to be static, then the output of the user tracker could “freeze”
to prevent the undesirable jumping of the estimated location
due to signal fluctuations or measurement errors. Alternatively,
in case of high mobility the user location could be snapped
to a motorway on the road network, rather than a low speed
residential road. In both cases, the performance of tracking
and navigation can be significantly improved.

Recent approaches employ sensory data to address MSE,
including the use of similarities among the sensor data received
from a pair of magnetic sensors to determine the speed of a
vehicle [234]. However, they are not directly applicable in a
network-based solution due to the requirement for data that
are collected using external sensors, which are mounted on
the vehicle/user. In the following, we overview several MSE
approaches that rely on different information available at the
network side to infer the mobility state of the user. These
approaches are summarized in Table IV.

A. GPS Location

Several systems rely on GPS readings to determine the user
transportation mode (typically among static, walk, bike, bus,
train), including the semi-supervised approach in [166]. In
many scenarios, however, GPS locations are not available. For
instance, network operators perform MSE using cell network
data, i.e., MRs generated during network events, which typi-
cally do not contain the GPS location of the user device.

B. Signal Power Measurements

Some early solutions count the number of times that RSS
readings cross a certain level [167], where the proposed
solutions estimate the maximum Doppler frequency that is
proportional to the mobile speed. Other methods estimate
speed of mobiles by computing the covariance function of
the RSS. For instance, the algorithm in [168] employs a
modified normalized auto-covariance of received signal power.
The proposed algorithm works well for frequency selective
Rayleigh and Rician channels, it provides accurate speed
estimation even if the Signal-to-Noise Ratio (SNR) is as low as
0 dB, while simulation results indicate that the algorithm is can
reliably estimate mobile speed corresponding to a maximum
Doppler up to 500 Hz. Although covariance-based methods
are more efficient than crossing-based counterparts for small
observation windows, they are both sensitive to noise for
small Doppler spreads. This limitation could be addressed
with Doppler spread estimation techniques such as the Max-
imum Likelihood approach that relies on periodic channel
estimation and could provide near-optimal performance [235].
However, this technique requires knowledge of the SNR and
the Gaussian noise level, while it suffers high implementation
complexity.
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The solution proposed in [169] estimates the speed of a
mobile phone by matching time series of RSS data to a known
signal strength trace from the same road. The main idea is that
RSS profiles along roads remain relatively stable over time,
i.e., multiple passes on the same road with the same speed
generate similar signal strength traces. Passing over the same
road at a lower or higher speed leads to either stretched or
compressed version of the signal strength trace, respectively.
Thus, one can determine the speed of a phone by matching its
signal strength profile onto a training RSS profile obtained at
a known speed. The downside is that it might be difficult to
collect a training RSS profile traces at a known speed.

The MSE solution in [170] takes advantage of the speed
dependent time variations of the shadowing in the uplink SRS
measurements and the computed metrics are then compared
with a reference curve or look-up table (database), with re-
spect to the shadowing decorrelation distance. Two algorithms
are presented, namely the Spectral Analysis Method (SAM),
which evaluates the maximum frequency of oscillation of SRS
measurements built on Fast Fourier Transform (FFT), and the
Time-based Spectrum Spreading Method (TSSM), which eval-
uates in time domain the speed dependent spectrum spreading
of the SRS signal. The computational cost of TSSM is very
low and has very limited impact to the processing unit of the
LTE eNB. Moreover, TSSM is easier to implement as SAM
requires an accurate selection of the frequency peak, which
may be difficult to obtain under some conditions. A highly
desirable property of both algorithms is that they are network-
based according to 3GPP-LTE standard because they are based
on SRS power measurements to be conducted at LTE eNBs.

However, the SRS sampling frequency is an issue because
various network equipment vendors provide variable sampling
rates ranging from milliseconds to seconds. Moreover, the
database with reference curves needs to be created in advance.

The MonoSense system leverages serving cell information
only and the idea is that the phone speed can be correlated
with features extracted from both the serving cell tower ID and
the corresponding RSS [171]. This is an interesting approach
because the majority of network MRs, especially in LTE
networks, usually contain information only from the serving
cell and sometimes the strongest neighboring cell [29], [30].
MonoSense extracts features from both the time and frequency
domain information available from the serving cell tower
over different sliding window sizes. Both the logarithmic and
linear RSS scales can provide different information about user
movement, further enriching the feature space and leading to
higher accuracy. Results show an average precision and recall
of 89.26% and 89.84% respectively in differentiating between
the stationary, walking, and driving modes.

C. HO Information

HO-based solutions count the number of HOs made by the
user device during a predefined time window. For instance, the
invention in [172] proposes a threshold-based classifier using
cell and HO count.

The solution in [173] detects the location of the mobile
based on existing knowledge of HO zones. A HO zone is
the most probable location in a given road segment where
the mobile switches from the current BS to a new one.

TABLE IV
APPROACHES FOR MOBILITY STATE ESTIMATION.

Category Scheme Solution Classes Accuracy

GPS
[166]

Principal component analysis and semi motorized, non-motorized 65.71%, 88.00%
location -supervised Gaussian mixture models bike, bus, drive, walk 66.67% for drive, 57.14% for walk

[167]
Crossing-based estimation of

N/A
Error (in Hz) depends on

maximum Doppler frequency maximum Doppler frequency

[168]
Normalized auto-covariance of received signal

N/A
Error (in Hz) depends on

power to estimate maximum Doppler frequency maximum Doppler frequency
Signal power

[169]
Correlation algorithm for matching highway, constant speed, Median speed error 7 mph, 3 mph,

measurements GSM RSS traces to estimate speed arterial road 9 mph

[170]
SRS spectral analysis method 0–30 km/h, 30–60 km/h, 60% correct classification

SRS time-based spectrum spreading method 60–90 km/h, ≥90 km/h 64% correct classification

[171]
MonoSense system uses Cell-ID and

stationary, walking, driving
Average precision 89.26%

RSS information of serving cell Average recall 89.84%

[172] Threshold-based classifier with cell and HO count low, medium, high N/A

[173]
Speed estimation through estimated HO

N/A
Speed error ≈10% in GSM

locations based on known HO zones and ≈3% in UMTS

[174] Weighted MSE depending on HO type
92%, 10%, 3% (macro-only)

normal (30 km/h), 84%, 31%, 2% (2 picocells/macro)
Hand-Over/Off

[175]

Trajectory-based weighted MSE that counts HO medium (60 km/h), 84%, 45%, 23% (macro-only)
information successes and RSRP threshold crossing events high (120 km/h) 85%, 47%, 25% (2 picocells/macro)

Enhanced Trajectory-based weighted MSE that
89%, 51%, 55% (2 picocells/macro)

considers both successful and failed HO events

[176]
Stochastic geometry approach combined with 0–40 km/h, 40–80 km/h, RMSE 17 km/h at speed 60 km/h
minimum variance unbiased speed estimator >80 km/h 98%, 67%, 85% (200 cells/km2)
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Whenever a HO occurs in the testing trace, the location
of the mobile is estimated to be the location of the most
probable HO zone. A HO typically occurs when the SNR
drops below a certain threshold. It turns out that on any given
road segment, the locations where the SNR drops below the
threshold remain stable. The average speed estimate is then
the distance between the previously estimated HO location
and the currently estimated HO location divided by the total
time between the previous and the current HO. Building the
database of HO zones is the main limitation of this approach.

To prevent overestimation of UE’s mobility state in Het-
Nets, specific weights can be assigned to different HO events
and the final HO count for MSE is computed using a weighted
sum of the HO events, e.g., 0.45, 0.25 and 0.1 for macro-
to-pico, pico-to-macro, and pico-to-pico HO events [174].
Authors in [175] build upon this weighted MSE approach
and present two approaches that combine HO with signal
power information, namely the Trajectory-based MSE and
the Enhanced Trajectory-based MSE scheme. The Trajectory-
based MSE scheme counts the number of mobility events, i.e.,
HO successes and RSRP threshold crossing events, during the
counting time period. Each mobility event is assigned a distinct
weight based on the HO type (i.e., macro-to-macro, macro-
to-pico, pico-to-macro, and pico-to-pico) or crossing event.
While this scheme includes only successful HO events (as in
standard 3GPP MSE scheme), the Enhanced Trajectory-based
MSE scheme considers both successful and failed HO events.

Another solution models densely deployed small cells using
stochastic geometry, then analyzes the statistics of the number
of HOs as a function of user device velocity, small-cell density,
and HO count measurement time window, and develops a
minimum variance unbiased velocity estimator, whose vari-
ance tightly matches with the Cramer-Rao Lower Bound [176].
Using this velocity estimator, they formulate the problem of
detecting the user mobility state as low, medium, or high.

Lessons Learned

While the importance of accurate MSE was recognized in
the early generations of cellular networks for supporting effi-
cient and timely HO functionality while users are moving, it
has recently become a critical enabling technology for tracking
and navigation applications. For tracking, typical examples
include fixing the user location when she/he is estimated to
be static or optimizing the tracker processing and output if
the user is moving at higher, rather than lower, speeds. For
navigation, examples demonstrating the usefulness of MSE in
improving the user experience include showing a driving user
on a motorway, instead of a nearby residential road, if she/he
is moving at high speed (outdoor), or showing a user moving
to another floor if a vertical movement, e.g., taking the stairs
or elevator, is detected (indoor).

On the network side, user mobility can be identified through
temporal processing of network parameters including signal
power measurements, Doppler, or sequence of BSs involved
in HO operations. Higher resolution can be achieved if the
GNSS user location computed on the UE, and/or data from
the integrated inertial sensors are transmitted back to the

network, at the expense of increased signaling and traffic
in the control plane channels. In contrast, MSE does not
have these limitations in UE-based solutions, thus triggering
the development of a wide range of fitness and physical
activity monitoring applications enabled by accurate mobility
estimation.

X. INDOOR MAPPING

Indoor navigation and tracking solutions are impaired by the
unavailability of floor maps and the lack of standards. While
outdoor maps are now freely available from companies such
as Google [236], Apple [237] and Microsoft [238], and even as
the result of collaborative initiatives such as OpenStreetMap
(OSM) [239], no such global solutions exist for indoor maps.
Some of the companies mentioned above have been developing
proprietary indoor mapping solutions, including IndoorOSM
[240], Google Maps Indoor [241], HERE maps that were orig-
inally developed by Nokia [242], and apparently Apple as well
with their rumored indoor mapping and surveying application
[243]. Other companies are also entering this business, such
as mapspeople [244], IndoorAtlas [111], Cartogram [245],
MazeMap [246], and Micello [247] among others.

To this end, the development of tools to assist in creating
indoor maps has received a lot of attention by researchers
during the last decade. A maps editor, part of a toolkit for
building and using indoor maps, has been proposed in [177]
where authors identify the need for maps to enable seamless
indoor/outdoor pedestrian navigation, and propose a hierarchi-
cal model that integrates geometric and symbolic maps. The
proposed editor can be used to create maps on top of raster
images or architectural floor plans, and includes support for
multiple floors and the topology required for navigation. The
process is, however, completely manual and time consuming.
The authors also identify the need for adequate formats for
the representation of the maps and propose a solution based
on eXtensible Markup Language (XML).

Towards automation in the creation of indoor maps, authors
in [178] proposed a method to automatically generate maps
by parsing Computer-Aided Design (CAD) files containing
architectural floor plans. The extracted maps are also modeled
in a way that facilitates their use by particle filters employed
in some indoor systems. Authors in [179] also proposed a
method to automatically create indoor maps from photographs
of evacuation plans, which are further enhanced by processing
data collected from IMU. The motivation is that those evac-
uation plans are readily available in most of the buildings.
WifiSLAM that was acquired by Apple in 2013 followed the
same approach to extract the building maps [180].

A. Simultaneous Localization And Mapping

SLAM is an active research field that was firstly explored
by the robotics community. Nowadays, it has become very
popular bringing together robotics, computer vision, signal
processing, data fusion, and sensor experts. Essentially, SLAM
allows the 3D reconstruction of the interior physical map while
an individual or robot is moving freely and being continuously
tracked inside an unknown indoor environment.



IEEE COMMUNICATIONS SURVEYS & TUTORIALS 24

SLAM technology spans from expensive systems based on
Light Imaging, Detection, And Ranging (LIDAR) technology
including [249]–[252] that deliver centimeter-level mapping
accuracy to cost-effective smartphone-based solutions that
achieve meter-level accuracy. Between these two extremes,
camera-based solutions, especially those developed around Mi-
crosoft Kinect including [253]–[256], provide a good balance
between cost (in terms of equipment price and survey time)
and map accuracy. In this survey, we overview the increasingly
popular smartphone-based SLAM solutions because of their
capability to generate indoor radiomaps (i.e., cellular, Wi-Fi,
magnetic) together with the building physical map using the
on-board wireless communication and inertial sensor modules.
Such indoor radiomaps are necessary for enabling accurate 3D
fingerprint matching localization algorithms.

Note that several works in the literature take an existing
physical map (e.g., floorplan blueprint) as input and output
only the corresponding signal map. In this case, the building
map puts hard constraints on the collected data trajectories.
Thus, powerful map-matching techniques and Bayesian fil-
tering methods, such as particle and Kalman filters, can be
used to increase the user tracking accuracy and consequently
the quality of the signal map; see [22] for an overview
of map-matching algorithms on a contemporary smartphone
including application of wall constraints, topological indoor
maps, and building geometry for heading correction. These
are still considered as SLAM systems by some researchers
because they build the signal map. However, we focus on
solutions that have no prior knowledge of the indoor space
and output primarily the physical map and optionally the

TABLE V
SIMULTANEOUS LOCALIZATION AND MAPPING SOLUTIONS.

Scheme Solution Physical Radio Performance
map map

WiFiSLAM No IMU data, maps high-dimensional RSS data to a low-dimensional latent
yes yes

Localization error
[181] xy coordinate space 3.97±0.59 m

WiFi GraphSLAM Wi-Fi RSS, pedometry, and gyroscope data, uses similar Wi-Fi RSS
yes yes

Tracking error
[182] observations for loop closure 2.23±1.25 m

WiSLAM Uses foot-mounted IMU and Wi-Fi RSS data, combines FootSLAM and
yes yes

Improves performance of
[183] PlaceSLAM in a Dynamic Bayesian Network FootSLAM (preliminary results)

FootSLAM Rao-Blackwellized particle filter where the state is the user’s pose and step
yes yes

Relative position error 2 m
[184] measurements allow updating both user trajectory and environment map at two reference points

PlaceSLAM RSS measurements provide proximity information relative to some well
yes yes

Average tracking error
[185] recognizable places, e.g. doors 2–10 m in a 10 min walk

SignalSLAM Wi-Fi/Bluetooth RSS, 4G LTE RSRP, magnetic field, GPS reference locations,
yes yes

Median tracking error
[186] NFC tag or QR code readings at landmarks, and PDR based on IMU data 11–14 m

DPSLAM Distributed particle filter to constrain the drift of a hip-mounted smartphone
yes yes

Localization error 3 m
[187] IMU, user needs to revisit locations periodically for enabling loop closure at final location

FEKFSLAM Low complexity SLAM approximation, maintains only a single hypothesis of
yes yes

Localization error 4 m
[188] the state, requires a loop closure detection step at every measurement epoch at final location

SmartSLAM Switches between DPSLAM, FEKFSLAM and other fusion algorithms to
yes yes

Depends on the
[188] reduce complexity and save battery, while maintaining good accuracy scenario and algorithm

[189]
Uses IMU and a foot-mounted piezoelectric sensor to estimate the lengths and

yes X
Relative error 3% (length)

orientations of the hallways for relative floor mapping and 4◦ (orientation)

CIMLoc Uses crowdsourced data from smartphone IMU sensors to derive users’
yes X

Average map error < 0.4 m
[190] trajectories with PDR and particle filter compared to true map

MapGENIE Uses foot-mounted IMU data to generate the hallways and processes them to
yes X

Correctly detects 88% of the
[191] estimate the remaining structure (e.g., geometry of rooms and their areas) hallways and 81% of the rooms

Walkie-Markie Exploits the Wi-Fi infrastructure to define WiFi-Marks for fusing crowdsourced
yes X

Maximum discrepancy 3 m (anchor
[192] user trajectories obtained from smartphone IMU nodes) and 2.8 m (path segments)

CrowdInside Uses Wi-Fi RSS and IMU sensors and corrects inertial motion traces with
yes X

Distance error 1 m, displacement
[193] indoor points of interest, such as elevators and stairs, for error resetting error 6 m in 90% of the cases

SenseWit Uses only IMU data to identify motion state, extract features, label featured
yes X

Outperforms CrowdInside
[194] locations, and bundles sequences of locations to generate a complete floor plan (hallway shape, room size error)

Jigsaw Extracts the position, size, and orientation of landmark objects from images,
yes X

Position error 1–2 m and orienta-
[195] obtains the spatial relation between adjacent landmarks from IMU data tion error 5◦–9◦ in 90% of the tests

[196]
Automatic generation of 2.5D indoor maps by processing images collected

yes X
Area error 0.2%–2.1%,

with off-the-shelf tablets or smartphones and IMU data wall length error 5–16 cm
Google Tango Uses better IMU and multiple cameras, such as RGB, depth, and motion

yes X
Good (metric measures can

[197] tracking, to enable 3D indoor localization and mapping be performed) [248]
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radiomaps. These solutions are summarized in Table V.
The WiFiSLAM solution5 uses Gaussian Process Latent

Variable Models (GP-LVM) for mapping high-dimensional
data (i.e., RSS from surrounding Wi-Fi APs) to a low-
dimensional latent space (i.e., xy coordinates of the user
device) [181]. WiFiSLAM requires no IMU sensor data and the
underlying model incorporates a set of constraints, e.g., nearby
locations should observe similar RSS values, similar RSS val-
ues should be observed at nearby locations, and successive lo-
cations in the data should be nearby assuming a walking user.
The localization accuracy is 3.97±0.59 m. On the downside,
WiFiSLAM relies on a signature uniqueness assumption, which
limits applicability to only signal-rich environments featuring
a large number of Wi-Fi APs. Moreover, the computational
complexity is high requiring O(N3) operations per iteration,
where N is the number of user poses (i.e., 2D position and
orientation/heading).

The WiFi GraphSLAM solution uses Wi-Fi RSS, pedometry
(i.e., measured distance between two Wi-Fi scans), and gyro-
scope data [182]. GraphSLAM is a commonly used technique
in robotics community for simultaneously estimating a trajec-
tory and building a map offline. WiFi GraphSLAM shares many
benefits of GP and uses similar Wi-Fi RSS observations for
loop closure. Loop closure refers to the process of identifying
that the user has returned to a physical location, which was
visited previously while surveying, and enables resetting the
PDR tracking algorithm to avoid inertial sensor drift; a survey
of PDR systems based on inertial sensors can be found
in [257]. WiFi GraphSLAM requires O(N2) operations per
iteration and accuracy is 2.23±1.25 m. The main disadvantage
is that it uses a pedometry sensor to measure travelled distance
between two Wi-Fi scans, which may not work well with
smartphone IMU sensors. This is because step counting works
fairly well, but accurate step length estimation is challenging
on smartphones.

The WiSLAM solution uses foot-mounted IMU and Wi-Fi
RSS data. The main idea is to adapt the FootSLAM and PlaceS-
LAM algorithms and combine them in Dynamic Bayesian Net-
work approach [183]. FootSLAM uses a Bayesian approach,
where the state is the user’s pose and step measurements
allow updating both user trajectory and environment map. It is
implemented as a Rao-Blackwellized Particle Filter (RBPF),
where each particle is composed of a user trajectory instance
and its related map [184]. On the other hand, PlaceSLAM
assumes proximity information relative to some well recogniz-
able places, e.g. doors [185]. In WiSLAM, RSS measurements
provide distance, instead of proximity information, and require
no human interaction or RFID tags. The main limitations are
the foot-mounted IMU, which can be prohibitive in many
application scenarios, and the use of log-distance propagation
model for Wi-Fi RSS with path loss exponent fixed to 2,
which is unrealistic for indoor environments, while Wi-Fi AP
locations are estimated during SLAM.

The SignalSLAM system uses Wi-Fi/Bluetooth RSS, 4G
LTE RSRP, magnetic field, GPS reference locations (out-
doors), NFC tag or QR code readings at specific landmarks,

5Not to be confused with WifiSLAM that was acquired by Apple [180].

and PDR based on IMU data [186]. This is essentially a
modification of the WiFi GraphSLAM approach and the main
difference is that the similarity in signal space conditions
the proximity in physical space. Moreover, loop closure is
performed when landmarks (NFC, QR, GPS) are revisited or
known landmark locations can be directly used in the model.
The reported median error is 11 m to 14 m for tracking using
only Wi-Fi readings collected with different devices, which is
not directly comparable to previous SLAM approaches. The
main disadvantage is that it requires landmarks (NFC, QR,
GPS) with known or unknown location for loop closure.

The DPSLAM system uses Distributed Particle filter SLAM
(DPSLAM) to provide constraints on the drift of a simple hip-
mounted smartphone IMU [187]. DPSLAM does not require
any prior knowledge of floor plans, transmitter locations,
RSS signal maps, etc. The user is simply required to revisit
locations periodically to enable IMU drifts to be observed
and corrected using loop closure (or when GNSS fixes are
available). The complexity is O(PN), for the correction step
after loop closure (not iterative), where P is the number of
particles. Localization tests indicate 4 m error at final location
after 15 minutes’ walk, while the largest error across the whole
path is 12 m. The smartphone IMU is hip-mounted for more
robust PDR tracking, which can affect the applicability of the
system, but it could be feasible with other carrying modes
(hand-held, pocket, bag, etc.) as in SignalSLAM.

Fingerprint Extended Kalman Filter SLAM (FEKFSLAM)
is a low complexity approximation of the full SLAM [188].
FEKFSLAM maintains only a single hypothesis of the state
vector, unlike DPSLAM, and requires a loop closure detection
step at every measurement epoch. FEKFSLAM is recom-
mended when there is no RSS signal map available, but the
user’s PDR parameters are well known (e.g., the step length
and any compass bias have been recently calibrated during
a period of GNSS availability). FEKFSLAM exhibits lower
complexity O(N) for the correction step after loop closure
(not iterative) at the expense of lower accuracy compared to
DPSLAM (i.e., 4 m error at final location after 550 steps walk
against 3 m at a different test).

Both DPSLAM and FEKFSLAM are part of the SmartSLAM
hybrid solution that intelligently switches between these two
solutions, as well as other simpler fusion algorithms, depend-
ing on the available information to reduce the computational
load of the tracking engine and save battery, while maintaining
good accuracy [188]. Other simpler fusion algorithms include
a simple step-and-compass PDR solution and a Fingerprint
Extended Kalman Filter (FEKF) that uses fingerprint maps and
PDR. SmartSLAM is a general purpose all-in-one solution that
trades off computational complexity (directly affecting battery
life) with accuracy. However, it introduces overhead in terms
of system complexity in application specific scenarios, where
the available information is well known in advance.

The following solutions focus on the generation of the phys-
ical map, without building any radiomap. Essentially, indoor
floor plan maps are created by processing location-dependent
data traces obtained from crowdsourcing. The basic idea is
to mimic what has been done in the past for creating outdoor
maps from GPS traces contributed by volunteers. Since GNSS
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is not available or is not reliable indoors, several research
efforts looked into traces obtained from dead reckoning after
processing data from IMUs.

For instance, researchers at UC Berkeley developed a
method to automatically create the maps of indoor build-
ings [189]. They used data collected from an IMU and a
foot-mounted piezoelectric sensor to infer the trajectories of
pedestrians, and then used those trajectories to estimate the
structure of the buildings. While this method can only be
used to create maps of the hallways, it showed that users of
indoor positioning systems can contribute to build indoor maps
automatically.

The CIMLoc system follows a similar approach, where data
collected through crowdsourcing from smartphone sensors
(magnetometer, gyroscope and accelerometer) are uploaded to
a server for processing to derive the users’ trajectories using
PDR and a particle filter [190]. These trajectories are then
segmented and clustered to generate indoor maps that are
then used by the particle filter to improve the overall tracking
performance. In this case, the only use of the created maps
is to assist in the positioning method. This contrasts with the
MapGENIE system, where the goal is to create indoor maps
that can also be used for visualization [191]. In that approach,
data collected from a foot-mounted IMU is processed to detect
steps using a Zero-Velocity-Update protocol. The inferred
trajectories are then processed to generate the hallway skeleton
of the building (requires the exterior outline of the building
to be provided). The traces are then further processed and
combined with grammars to estimate the remaining structure
of the building, including the geometry of rooms and their
areas. Essentially, grammars are used to encode structural
information such as the dimensions of rooms, the number of
rooms, the relative room ordering, geometric constraints, etc.
While almost fully automatic, these solutions required the use
of specific equipment (foot-mounted IMUs or other sensors)
and some level of previous calibration.

Recently, smartphone-based SLAM solutions addressed the
limitations of external IMU sensors. For instance, Walkie-
Markie exploits the Wi-Fi infrastructure to define landmarks,
referred to as WiFi-Marks, to fuse crowdsourced user trajec-
tories obtained from inertial sensors on users’ mobile phones
[192]. WiFi-Marks are special pathway locations at which
the trend of the received Wi-Fi signal strength changes from
increasing to decreasing when moving along the pathway.
Walkie-Markie is able to reconstruct a high-quality pathway
map for a real office-building floor after only 5-6 rounds of
walks, with accuracy gradually improving as more user data
becomes available. The maximum discrepancy between the
inferred pathway map and the real one is within 3 m and 2.8 m
for the anchor nodes and path segments, respectively.

CrowdInside uses Wi-Fi RSS and IMU sensors and corrects
inertial motion traces by using points of interest in the indoor
environment, such as elevators and stairs, for error resetting
[193]. CrowdInside achieves 1 m distance error of the building
entrance position and the displacement error is 6 m in 90% of
the cases, while the number of rooms is always correctly iden-
tified with enough traces. The system requires sufficient anchor
points, e.g., locations with GPS reception or special inertial

data signature, such as escalators, elevators, and stairs, for
calibrating traces. Moreover, several traces that pass through
these anchor points need to be collected. Another drawback is
that different rooms should have distinctive Wi-Fi signatures
to ensure high room identification rate.

SenseWit uses only IMU data to identify motion state
(walking, static, and irregular), extract features (turning, water
dispenser, door, etc.), label featured locations and bundle to-
gether sequences of locations according to featured locations.
Subsequently, a complete floor plan is progressively generated
[194]. Map generation results suggest that hallway shape
similarity and room size error are better than CrowdInside.
The main disadvantage is that a significant volume of crowd-
sourced trajectories is needed.

Recent advances in image processing created new opportu-
nities to automate the creation of indoor maps. For instance,
Jigsaw extracts the position, size, and orientation information
of individual landmark objects from images taken by users
[195]. It also obtains the spatial relation between adjacent
landmark objects from inertial sensor data. Map generation
results at 3 floors of two large shopping malls indicate that
the position and orientation errors of landmark objects are
within 1–2 m and 5◦–9◦ in 90% of the tests, while hallway
connectivity and connection areas between floors are 100%
correct. Mapping performance is slightly better than SenseWit;
however, Jigsaw suffers from high energy consumption due to
imagery data from the smartphone’s camera, as opposed to
low-power IMU data recording. Other disadvantages include
the need for several crowdsourced trajectories, the significant
labor cost to obtain the images, and the requirement for high
image quality.

A method for automatic generation of 2.5D indoor maps
by processing images collected using off-the-shelf tablets or
smartphones is presented in [196]. These images are processed
to generate accurate maps of single rooms. If the used devices
are equipped with IMUs, a common feature in most of the
more recent smartphones, maps from single rooms can be
combined to create maps of entire buildings. While these maps
are not proposed specifically to assist indoor positioning sys-
tems, they can certainly be used to support many applications
including pedestrian navigation.

Along the same line, Google Tango (formerly Project
Tango) enables applications to compute a device’s position
and orientation within a detailed 3D environment, and to
recognize known environments [197]. This technology uses
advanced sensors, including better IMU and multiple cameras,
such as RGB, depth, and motion tracking, to enable a mobile
device to map indoor spaces and to know the location of the
device within that space. First experiments with Google Tango
reported that this technology does not allow performing highly
detailed scanning [248]. However, as discussed in [248], the
point cloud produced by Google Tango can be processed
with standard shape detection methods or simple heuristics to
identify floors and walls or detect doors/openings. Therefore,
it is a good candidate for constructing a 2D floor plan map
depicting rooms and corridors, as well as doors connecting
them. Furthermore, this could become the leading solution
for 3D indoor mapping and spatial positioning driven from
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the recent release of consumer smartphones that feature such
high-end sensors (e.g., Lenovo Phab 2 Pro) and the increasing
availability of enhanced technology-enabled applications on
Google Play Store.

B. Map-related Challenges

1) Indoor Space Modeling: Modeling of indoor spaces is
important to complement physical maps. Apparently, indoor
spaces exhibit complex topologies and they are composed of
entities that are unique to indoor settings, e.g., rooms and hall-
ways connected by doors. Therefore, conventional Euclidean
distances are inapplicable indoors, which necessitates the use
of symbolic and graph-based models [198].

The technology roadmap is towards indoor Geographic
Information Systems (GIS) integration, including GeoJSON
and IndoorGML. GeoJSON is a format for encoding a va-
riety of geographic data structures, which is not specifically
for indoor environments [199]. It supports multiple geome-
try types, including Point, LineString, Polygon, MultiPoint,
MultiLineString, and MultiPolygon. In 2015, the Internet
Engineering Task Force (IETF), together with the authors
of the specification, formed a working group to standardize
GeoJSON and the new specification of the GeoJSON format
was released in 2016 [200]. Although very popular, it is not
a formal GIS standard, i.e., it is not supported by the Open
Geospatial Consortium (OGC).

On the other hand, IndoorGML standard [201] specifies
an open data model and XML schema for indoor spatial
information, which is an application schema of OGC Geogra-
phy Markup Language (GML) [258]. While there are several
3D building modeling standards such as CityGML, Keyhole
Markup Language (KML), and Industry Foundation Classes
(IFC) data model, which deal with interior space of build-
ings from geometric, cartographic, and semantic viewpoints,
IndoorGML intentionally focuses on modeling indoor spaces
for navigation purposes. IndoorGML will soon be applied
to model the indoor network in the V-world 3D geospatial
platform, which includes the construction of national 3D map
of South Korea [202]. Note that IndoorOSM, which was
another older effort by OSM, is deprecated. Recent efforts
from industrial and academic partners try to develop an indoor
counterpart to OSM by bridging the gaps between IndoorOSM
and IndoorGML in the context of the EU-funded i-locate open
geodata project [203].

2) Privacy, Security and Map Representation: While sev-
eral research teams addressed some problems related to the
availability of indoor maps, very few referred to or proposed
solutions for issues related to privacy, formats for the repre-
sentation of the maps, protocols to access indoor maps, and
the different types of maps needed in the indoor environment.

Building owners might not want the indoor maps of their
buildings to be publicly available mainly due to security
reasons. However, they might recognize the usefulness of dis-
closing those maps locally to the users inside their buildings.
For instance, the Anyplace system offers the option in the
map architect to release a map as either public or private, thus
restricting access to specific users if necessary [110]. On the

other hand, probably indoor maps with certain levels of detail
should only be available to a certain group of users, while less
detailed maps could be provided to the general public. As an
example, consider a hospital or an airport; patients or travelers
only need access to the public areas of the buildings, while
medical staff or security personnel would benefit from having
access to more detailed maps. These requirements constitute
a challenge on how to provide secure access to indoor maps,
while simultaneously preserving privacy.

Global access to indoor maps also calls for standard formats
for map representation, and standardized protocols to access
them (also related to privacy). This problem has been briefly
discussed in [204] and a platform to make indoor maps
available to client applications has been proposed. In that
work, authors highlight the difference between symbolic and
geometric maps, and their different uses (see also [177]). In a
user study conducted in 2009 in a large shopping mall, it was
concluded that outdoor-like maps and architectural floor plans
are not optimal for indoor navigation because “. . . corridors
do not have street names”. In other words, outdoor and indoor
spaces are organized in very different ways. Actually, indoor
spaces are not like roads; thus, they are not well represented
by simple directed graphs where edges connect vertices as
in road networks. Moreover, pedestrian navigation is far less
constrained than car navigation, even in outdoor spaces.

The adequacy of indoor maps based on architectural floor
plans for visualization and pedestrian navigation has also been
discussed in [205], [206]. Among other aspects, the author
highlights the fact that different users have different needs
depending, for example, on their familiarity with the visited
place. In [205], a new type of indoor map, inspired by London
Underground maps, is proposed that can arguably better sup-
port several tasks performed indoors. In [206], the different
types of indoor maps are further discussed and a framework
is proposed to evaluate their quality in seven dimensions
including privacy, interactivity, and semantic accuracy.

The above works contributed to a better understanding of the
requirements for effective indoor mapping. We now understand
that maps are needed for visualization of people or assets
(geometry and/or symbolic maps), in large and small displays,
for pedestrian and robot navigation (topological maps), for
use by tracking techniques (e.g., particle filters), or even for
augmented reality applications.

Lessons Learned

The creation of indoor maps, as well as the mapping
process (i.e., the survey and data collection for producing
the maps), has many challenges. Firstly, each building owner
or administrator has to build the corresponding indoor maps
before they can be used, while for outdoors the maps are
already ready for use. For large and complex buildings, this
task might be hard, in particular for old buildings for which
blue prints are no longer available. Secondly, indoor maps built
for one platform cannot be used in applications supported by
other platforms due to the lack of interoperability. Standards
for indoor maps formats and for open access to maps (web
services) would stimulate interoperability among systems from
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different vendors, and would maximize the benefits of spend-
ing considerable effort in building indoor maps. Appropriate
tools to assist in the production of indoor maps by non-
professionals would also contribute to increase the number and
quality of maps. On the other hand, if the floor plan maps are
already available or can be extracted from architectural plans
to a usable picture format (e.g., jpeg, png, etc.) then they can
be easily overlayed on top of world maps. For instance, some
services offer web tools for resizing, stretching, and rotating
these pictures to align the floor plans with the boundaries of the
building on world maps, like the KAILOS positioning engine
[230], [259], or on top of Google Maps, like the Anyplace
indoor navigation service [110].

Smartphone-based SLAM approaches are a user-friendly
and cost-effective solution for the creation of indoor physical
maps, while many solutions in this category are capable of
building as a by-product the corresponding radiomap with ac-
curate enough location tags that can be later used by fingerprint
matching solutions for localization. However, SLAM solutions
usually require the collection of a considerable volume of (pos-
sibly crowdsourced) data for producing coarse-grain indoor
maps, which are usually of lower quality compared to other
mapping methods.

XI. DISCUSSION AND OUTLOOK

In this section, we first summarize lessons learned with
respect to the topics covered in this survey, followed by a
discussion on architectural considerations and an outline of
the technology roadmap and industry trends.

A. Lessons Learned

1) Localization architectures are classified as UE-based,
UE-assisted, and network-based, each having advantages
and disadvantages, while selecting one of them depends
entirely on the target application.

2) While cellular network localization has been studied
for several decades and mature solutions have made
their way into standards, the advent of commercial
5G deployments featuring novel radio technologies will
bring new opportunities for reaching centimeter-level
accuracy.

3) Fingerprint matching with signal strength data seems to
be the dominant approach for WLAN-based localization,
while crowdsourcing solutions address the overhead of
building and updating the radiomap at the expense of
countermeasures to ensure the integrity of the crowd-
sourced contributions.

4) Multi-hop range-free localization is a promising solu-
tion for low-power and low-complexity localization in
resource-constrained WSNs and high-volume IoT de-
ployments, given that network anisotropy is sufficiently
mitigated.

5) Data fusion techniques are applicable to different levels,
ranging from raw measurements to location algorithms
and advanced post-processing methods at the final stage,
and are expected to further enable the high accuracy
demanded in low-latency safety-critical 5G applications.

6) Vertical positioning can be achieved by cellular,
WLAN and sensor-based solutions; however, reliable
height/floor estimation for the provision of accurate 3D
location is yet to come. To understand the importance of
vertical positioning, for example, emergency responders
taking action after an E-911 call initiated inside a multi-
floor building prefer the user location to be determined
in the exact floor with possibly higher horizontal error,
instead of the wrong floor, because it is easier for them
to spot the victim.

7) MSE is an important enabling technology for tracking
and navigation, which is easier to implement on mobile
devices, rather than on the network side, due to the
availability of satellite, terrestrial radio and sensor data
on the devices which can be costly in terms of bandwidth
to transmit in order to improve network-based MSE.

8) Indoor mapping has been greatly facilitated owing to the
recent advances in smartphone-based SLAM solutions;
yet, many of the challenges need to be resolved, includ-
ing indoor space modeling and map security, privacy and
representation. In addition, even though there are many
ongoing standardization efforts for indoor maps and data
management systems there is still a long way to go to
reach indoor GIS systems offering the same services as
their well-established outdoor counterparts.

B. Architecture Considerations

1) Availability: Architectural considerations also come into
play, when designing systems for robustness. It can easily
be envisioned that indoor positioning will become society’s
critical infrastructure in the next decade or so. GNSS is
already considered such critical infrastructure especially due
to its use for timing of data networks, banking services, etc.
With the advent of the FCC E911 emergency call positioning
requirements for indoors [2], it is to be expected that indoor
positioning will also become a critical infrastructure.

Because such development is inevitable, any party willing
to provide their products for such purposes needs to consider
Service Level Availability (SLA) requirements. It may well be
that accuracy is somewhat secondary consideration in the E911
applications, but the primary concern will be the availability of
both the service itself and that of the location estimate [2]. The
first concern can be addressed by redundancy, i.e., distributing
the required servers geographically and having the proper DNS
failover mechanisms in place. The second concern is related
to the positioning coverage and can be ensured by appropriate
crowd-learning techniques.

2) Scalability: Scalability is related to the cost and effort
required to deploy and maintain the indoor positioning solu-
tion. It is a relative measure with respect to the expected added
value. Therefore, there is no universal answer to the question,
whether some technology is expensive or cheap to deploy.

Indoor positioning solutions can be divided into Business-
to-Business (B2B) and into small and large scale Business-
to-Consumer (B2C) solutions depending upon their intended
target users. In the B2B use case the service end users are,
e.g., the employees of a certain company. The application may
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be a smart office application helping the employees to find
meeting rooms or services. Another example is an industrial
automation application targeted at increasing productivity in
the factory floor by, e.g., guiding maintenance personnel to
correct locations.

The common factor for the B2B deployments is that they are
deployed to a limited number of buildings and can typically
add high value to the organization and for the individual
users. Also, the bulk of the investment is in developing the
end user application and its integration to the organization’s
other services. Therefore, the deployment cost of the indoor
positioning solution does not play a large role in the investment
decision. The ease of deployment is required, but the solution
does not necessarily need to be scalable.

In the B2C solutions the end user is a consumer. An example
of such a use case is an application targeted at shopping
mall visitors. In the small scale, such an application may be
created by a single shopping mall or retail chain for loyal
customers. The added value per user may be small, but the
large volume compensates for the low per-unit value. Again,
in the small scale the cost of the solution is dictated by the
application development – not the expense related to the indoor
positioning deployment.

The large scale B2C refers to the case, when the availability
of the indoor location becomes platformized. An analogy can
be found from the GNSS and 2D WLAN-based positioning;
today the application developers can trust that platforms such
as iOS and Android provide location information at some level
of accuracy anywhere in the world [260]. However, this is not
yet the case with accurate 3D indoor location (i.e., location
error of a few meters, floor level). Before this can be achieved,
the scalability issue must be resolved. In practice, to enable
indoor positioning in public and semi-public venues in large
scale globally, crowdsourcing technologies must evolve. It may
be acceptable, with a question mark, to require the initial radio
survey to be made manually by a site visit, but the up-keep and
maintenance of the radiomap must take place automatically.
Full automation would also solve the venue owners’ problem
of deciding which vendor to co-operate with.

3) Security and Privacy: All information regarding the
whereabouts of people and assets needs to be treated as
confidential and private data by default. Indoor location in-
formation, whether it refers to individuals or objects, makes
no exception. Even more so, whereabouts of people indoors
may be even more private than outdoors in some cases.
Also, the understanding of the radio environment indoors
may possibly be considered private information as it may
provide valuable information for malicious people regarding
the company network. Therefore, it is advisable to handle also
the assistance information (locations of the radio nodes, signal
strength landscape) with proper care in the indoor positioning
system. There are many aspects to protecting the personal and
private data, which are discussed next.
Authentication. Refers to the set of measures, how the in-
dividual or machine is identified to be the entity it claims
to be. The mechanism can range from using an application-
specific identity or code (not safe) to requiring individuals to
login or to use client-side/personal certificates (very safe). The

authentication mechanism needs to be decided based on the
use case and the confidentiality of the data to be accessed. The
basic question, however, always is if the entity, a person or a
machine, accessing the location information can be identified
reliably with a suitably strong authentication mechanism.
Authorization. Once the entity has been identified, the next
step is to authorize the access to the services and information.
There may be various access levels (e.g. lower and higher
accuracy indoor positioning) or available services (indoor and
outdoor positioning) depending upon the person and the type
of the object. The authorization step is typically already easier
after the entity has been authenticated at sufficient certainty.
Encryption. Relates to the set of measures ensuring that even
in case of data leakage, it cannot not be utilized by any
malicious party unless they also get access to the encryption
keys. There are at least three dimensions to encryption that
need to be taken care of. Firstly, the data needs to be protected
at rest in the cloud or in databases. This ensures that even if the
malicious user gains access to the data or databases, the data
is not compromised given that the encryption keys are appro-
priately protected. Secondly, whenever data is transferred over
the Internet, they need to be protected by suitable means to
prevent eavesdropping. In the most typical case it is sufficient
to use HTTPS transport. Finally, the data also needs to be
protected at rest in the client device. For instance, on Android
devices it may suffice to use the internal storage (sandbox for
the application) without extra encryption. However, whenever
there is sensitive data, it should also be encrypted in the client
side. Further issues then arise related to storing the actual
encryption key securely in the application.
Privacy. Includes both technical and behavioral aspects. The
technical aspect refers to designing the system so that neither
the user location information is stored with unique identifiers,
nor such data is transferred as plain text over the Internet. On
the other hand, the behavioral aspect is harder to control. In the
end, it is in the hands of the user, how much he/she is willing
to expose to others through, e.g., social media applications.

C. Technology Roadmap and Industry Trends

Authors in [135] have identified some important trends that
are expected to have an impact on radio network positioning in
the near future. One trend is that information and algorithms
are shared between different layers in the classical Open
Systems Interconnection (OSI) model. For instance, if Power
Delay Profile (PDP) information was available not only at the
physical layer, but in the higher layers as well, then more
sophisticated algorithms could easily be derived by taking
into account the variance of measurement uncertainty, the
temporal correlation of the uncertainty between successive
measurements of the same type, and the correlation between
signal strength and timing measurements. Another trend is the
increasing availability of new and better information, including
Fine Timing Measurements (FTM) in the IEEE 802.11v stan-
dard [261], accurate Direction of Arrival (DOA) estimation
in MIMO systems, and distance estimation based on short-
range single-hop or multi-hop techniques in ad-hoc networks
where no direct communication is required [135]. Another
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trend is the deployment of new infrastructure, including BLE
beacons, IoT devices, Machine-to-Machine (M2M) networks
that contain a number of devices such as RFID, sensors, tags,
etc., and 5G communication networks [135].

So far, wireless networks have been used to determine user
location for enabling a multitude of location-based services
and applications. A recent trend is to move from network-
based localization to location-aided communications [262].
This has opened an entirely new research field regarding the
use of location information to improve network operation,
especially in upcoming 5G networks. This is of great value
to network operators who can improve network performance
(e.g., throughput, latency, etc.) and optimize resource alloca-
tion to meet increasing demands.

Authors in [263] highlight the importance of location-
awareness in 5G networks and identify how location infor-
mation could be employed across the OSI protocol stack. For
instance, in the physical layer, network processes that can
be benefited include spatial spectrum sensing for cognitive
radio and interference coordination in 5G, slow adaptive
modulation and coding or channel estimation, beamforming,
pilot decontamination in MIMO systems as described in [264],
[265], and Channel State Information (CSI) estimation [266]–
[269]. Medium Access Control (MAC) layer applications
include resource scheduling algorithms (e.g., for frequency
reuse), inter-cell interference coordination techniques, and
multicasting algorithms. Network and transport layer appli-
cations include enhanced HO mechanisms, routing protocols
(known as georouting) in ad-hoc and vehicular networks.
Higher layer applications include location-assisted information
delivery (e.g., advertising) and multimedia streaming, Intelli-
gent Transportation Systems (ITS) and autonomous vehicles,
and location-enabled security and privacy schemes such as
encryption key management and wormhole attack detection.

XII. FUTURE RESEARCH DIRECTIONS

In future wireless communication systems, the problem of
accurate localization and tracking will have to be addressed
by several methods that include, among others, a synergy
between wireless access, networking theory, statistical data
analysis, and optimization theory methods [132]. In these
future wireless communication systems, localization services
will face new possibilities and challenges given by heteroge-
neous protocols, low-latency and mmWave communications.
The new ground-breaking results within Machine Learning
will likely have an important impact in the redefinition of
localization and tracking. We will address them shortly in the
following.

A. Fundamental Research

One of the powerfully emerging research areas, within the
fundamental domain, is the area of Machine Learning, and
especially Statistical Machine Learning. The recent develop-
ments in this domain will likely have a major impact to engi-
neer localization systems and services. In fact, machine learn-
ing has been already exploited for the well-known methods of
SLAM, where wireless devices estimate or learn the received

signal strength at a given point in space with respect to a Wi-Fi
AP or cellular BS and such a knowledge is then used to derive
the location. Among the emerging breakthrough in Statistical
Machine Learning, there are the new theory that are capable to
estimate missing data or corrupted data by using the hidden
statistical correlation properties from various measurements.
These ideas can be potentially applied to further improve or
define new localization methods, especially for those scenarios
where the measurements are insufficient or missing.

B. Heterogeneous Networking Protocols

Future wireless access networks will rely on heterogeneous
networking protocols, which will operate according to dif-
ferent standards and on different frequencies. A fundamental
question to be addressed is how rapidly we may switch from
one communication protocol to another, while still ensuring
accurate positioning services. This will be particularly diffi-
cult, because current state-of-the-art physical layer and MAC
methods are not concerned with positioning accuracy as a main
metric.

1) Heterogeneous IoT Protocols: Within the IoT network-
ing protocols, a tangible example of this heterogeneity is
given by the numerous standards, such, among others, Blue-
tooth, ZigBee, SigFox, LoRa, Narrow Band IoT (NB-IoT).
In principle, a wireless device could be using one such
standard at a time and could profit of the communication
with anchor nodes or other distributed nodes that are using
those standards. However, how to make efficient such potential
localization procedure is an interesting open question, due to
the unavoidable delays that will be introduced for switching
from one standard to another, and for the time needed to
receive beaconing information.

2) 5G New Radio: The 5G wireless communication net-
works will use a new wireless access technology called New
Radio (NR) [270], [271]. NR is a standardization activity go-
ing on by 3GPP, in the Release 15. The essential characteristic
of NR is that it will simultaneously support several wireless
requirements and protocols (in terms of data rates, latency,
coverage, capacity, and reliability) for many use cases (such
as machine to machine, industrial, people-centric, infrastruc-
ture, and vehicular communications). NR will have a new
complex set of protocols specifications and the physical and
medium access control layer, especially the novelty concern
waveform, frame structure, multiple access, and initial access
management. How to exploit these new characteristics is a
largely open problem. As this paper is being written, very few
or no publications can be found concerning NR and indoor
localization, whereas some initial studies are available for
outdoor communications [272].

C. A Prominent IoT Protocol: NB-IoT

Among the emerging protocols for IoT, NB-IoT will most
likely play an essential role in the future. In fact, such a
standard has been introduced in the 3GPP releases and will
be compatible for LTE, with particular reference to M2M
communications. It is expected that NB-IoT will be capable
to cover wide areas where there will be a massive IoT
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deployment. The characteristics of LTE such as modulation,
channel coding, and multiple access, will be inherited by NB-
IoT. Therefore, we can think that IoT devices using NB-IoT
can enhance their localization abilities not only by the tradition
localization methods implemented among NB-IoT devices, but
also by the exploitation of the communication with mobile
cellular phones using LTE and GSM. An initial activity in this
direction can be found in [273], where it was shown that the
localization method based on O-TDOA is promising. However,
the obtained accuracy is of the order of tens of meters, which
suggests that still much research is needed to arrive at order
of meters precision for both indoor and outdoor localization.

D. Low-Latency Communications
The new paradigm of low-latency communications [274]

predicts that any wireless device will be capable to commu-
nicate short messages within few milliseconds from source
to destination and back. Such a short latency will enable
new localization methods that will deliver centimeter-level
accuracy. One of the problems with network-aided localization
is the unpredictable delay introduced by the communication
protocols in the physical and MAC layers. However, low la-
tency communication will substantially reduce these latencies,
while carrying timing information directly on the waveforms.

Wireless communications networks capable to offer low
latency below 1 ms have therefore the tremendous potentiality
to revolutionize the localization accuracy of mobile wireless
devices. An interesting research direction will consist in under-
standing what are the fundamental performance limitations for
localization services in low latency networks. In fact, there is
a tradeoff between latency and throughput for different MAC
scheduling schemes. The classic tradeoff between latency and
reliability of slotted ALOHA and CSMA is shown in [275],
and the tradeoff between delay and energy consumption in
[276]. The tradeoff between latency and throughput in ad
hoc network routing is given in [277]. The tradeoffs may
be different for different regions (i.e., different throughput
or reliability). For different techniques, such tradeoffs are
expected to exist, and the related boundaries should be well
determined. Given that these tradeoffs can determine the actual
latency of the communications, and that the latency can be one
of the input to the localization algorithms, it will be interesting
to estimate the tradeoff between location accuracy and the
techniques mentioned above.

However, not all the communication services and use cases
will benefit from low latency communications, due to the cost
and complexity of such a requirement. Therefore, only the use
cases that demand low latency will potentially enjoy feature
also sub-centimeter localization algorithms.

E. High Data Rate Wireless Systems
The growing need for higher data rates motivated the

development of the 60 GHz mmWave communications for
future high-data rate wireless systems [278]. FCC released
an unlicensed continuous spectrum of 7 GHz over 60 GHz
in many countries worldwide. This unlicensed band is par-
ticularly useful for applications such as smart communica-
tion environments, smart cities, independent robot navigation,

assistive technology, habitat monitoring, vehicular networks,
industrial logistics, and medical equipment [279]. Thus, with
the emergence of mmWave communications, accurate and
low-cost device localization algorithms are essential for de-
vices using such a communication technology. This calls
for new fundamental communication theory methods (e.g.,
location-aided beamforming) to ensure fast communications
for positioning. For instance, authors in [280] demonstrate
that geometric location-based beamforming schemes become
technically feasible, which can offer substantially reduced
reference symbol overhead compared to classical full CSI-
based beamforming.

A drawback of milliliter waves communications is the time
to set up and maintain the narrow beams [281]. Such a
delay can potentially affect localization algorithms that are
dependent on communication delays between transmitter and
receiver. Another major issue is that in indoor applications of
millimeter waves, the presence of obstacles between transmit-
ter and receivers (e.g., people), will block the line of sight
communications, and therefore the actual communication will
occur through reflectors. In such a case, the direction of
arrivals of signal, which will be not the line of sight, may
potentially hinder good accuracy.
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JRC Joint Research Centre UE User Equipment

KML Keyhole Markup Language Wk-NN Weighted k-Nearest Neighbor

k-NN k-Nearest Neighbour WLAN Wireless Local Area Networks

LIDAR Light Imaging, Detection, And Ranging WSN Wireless Sensor Networks

LMU Location Measurement Units XML eXtensible Markup Language

LBS Location-Based Services

LCS Location Service

LTE Long Term Evolution

LTE-A LTE-Advanced

eNodeB, eNB LTE base station

LPP LTE Positioning Protocol

LPPa LTE Positioning Protocol annex

LPPe LTE Positioning Protocol extensions


