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Particle mesh Ewald: An N -log(N) method for Ewald sums 
in large systems 

Tom Darden, Darrin York, and Lee Pedersen 
National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709 

(Received 5 March 1993; accepted 14 April 1993) 

An N ·log(N) method for evaluating electrostatic energies and forces of large periodic systems 
is presented. The method is based on interpolation of the reciprocal space Ewald sums and 
evaluation of the resulting convolutions using fast Fourier transforms. Timings and accuracies 
are presented for three large crystalline ionic systems. 

INTRODUCTION 

We consider a lattice A defined by elementary transla­
tion vectors al' a2' and a3 with Euclidean lengths al. a2. 
and a3, respectively. The Cartesian components of the kth 
lattice vector. ak. are denoted ak[ (1= 1.2.3). The conjugate 
reciprocal lattice A * is defined by elementary translations 
at • a~ • and a~ • with Euclidean lengths at • a~ • and a~. and 
Cartesian components a~[ (k.Z= 1,2,3). These reciprocal 

translations satisfy at· a{=8k{ (k.l= 1.2.3). The unit cell U 
of the lattice A consists of all points r having fractional 
coordinates (fl' f2. f3) with -~<fk,;d, for k= 1,2,3 
(wherefk=at· r). 

We define the functions <I>dir(r;{3) and <I>rec(r;f3). where 
r is a point in U and {3 is a positive number. by 

and 

where erfc(x) is the complementary error function, 
V=al . a2Xa3 is the volume of the unit cell U, and nand m 
are given by n=nlal +n2a2+n3a3' and m=mlaT 
+m2a~+m3a~, for integers nk and mk (k=I,2,3). The 
effect of {3 on the Ewald pair potential, 'I/J(r;{3), defined by 
'I/J(r) = <I>dir(r;{3) + <I>rec(r;{3), is that of an additive con­
stant. Hence. for a neutral system. the total electrostatic 
energy (and its derivatives) are invariant to {3. 

The infinite series defining <I>dir and <I>rec are both rap­
idly convergent. Their rates of convergence are controlled 
by adjusting the value of {3. If {3 is chosen so that only the 
minimum image terms in the direct space sum <I>dir(r;f3) 
are retained, the total electrostatic energy of a neutral unit 
cell U, containing N point charges Ql>Q2, ... ,qN, located at 
positions rl'r2 •...• rN' is given byl-3 

1 N N 

+2" L L Qllj<I>rec(rj-r;;{3) +J(D), 
i=1 j=1 
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(2) 

where rij is the minimum image distance. De Leeuw et al. I 
derived the fourth term J(D) in Eq. (2), which depends 
quadratically on the dipole moment D of the unit cell, as 
well as the macroscopic boundary conditions of the crystal 
and the external dielectric constant. 

Choosing {3 as above makes evaluation of the electro­
static energy an order N2 computational problem. Adjust­
ing {3 to optimize computational effort results in an order 
N 3/ 2 algorithm.4 Although conventional Ewald summation 
is widely used for simulations of small periodic systems. 
the computational cost becomes prohibitive for large (N 
> 104

) macromolecular simulations. Alternative tech­
niques for improving the evaluation of long range electro­
static forces include expansion of the Ewald pair potential 
in cubic polynomials. S table lookup of the pair potential.6 

use of Wigner potentials,7 multiple time step ("twin 
range") methods,S particle-mesh techniques,9 and efficient 
Taylor and/or multipole expansions.lO-IS 

The particle-mesh Ewald (PME) method presented 
here involves choosing {3 sufficiently large that atom pairs 
for which rij exceeds a specified cutoff (e.g., 9 A..) are neg­
ligible in the direct space sum in Eq. (2) which reduces 
this term to order N. The reciprocal space sum in Eq. (2) 
is then approximated by a multidimensional piecewise­
interpolation approach inspired by the particle-mesh 
method of Hockney and Eastwood.9 The approximate re­
ciprocal energy and forces are expressed as convolutions 
and can thus be evaluated quickly using fast Fourier trans­
forms (FFTs). The resulting algorithm is of order N 
In (N), is easily programmed, and is shown below to be 
efficient and accurate for macromolecular systems. 

METHOD 

If <I>rec(r;{3) is expressed in fractional coordinates {Ii} 
we have 

X exp [21Ti(mdl +mz!2+m3f3)]. 

(3) 

Given positive integers K I , K 2 , andK3 , we compute <I>rec as 
well as its (Cartesian) gradient on the grid of fractional 
coordinates (IlK!, lz/Kz, 13/K3), for Ik=I, ... ,Kk, 
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k= 1,2,3, and store these quantities into arrays at the be­
ginning of the simulation. Given a pair of atoms i and j, 
with fractional coordinates fik and fh' k= 1,2,3, the in-

where the functions (}p,K are obtained from the barycentric 
form of the weights used in (2p-l)th order Lagrangian 
interpolation using the grid of points (kIK) , k E z.16 

More specifically, for real argument x, let [x] denote the 
largest integer less than or equal to x, and define the in­
terger function kp,K(X) by kp,K(X) = [Kx] -p+ 1. Next de­
fine tPp,K(x,k) by 

for 0<k<2p-1 
1 

"l!.o'( -1)'<1'-') (x-~) 

=0 otherwise, (5) 

and finally let (}p,K(x,k) =tPp,K[x-kp,K(X),k-kp,K(X)]. 
Note that (}p,K(x,k) is nonzero for 2p values of k, and 
that the sum of (}p,K(x,k) over all k is unity. Since 
(}p,K(kIK,k) = 1 and (}p,K(iIK,k) =0 for l=l=k, we see that 
(}p,K(x,k) are continuous in x. Note also that x is always in 
the central grid interval, with respect to the weights, so 
that we avoid the ill-conditioning associated with high or­
der polynomial interpolation. The approximate gradient is 
obtained by replacing <P ree in Eq. (4) by its gradient, ob­
tained by term-by-term differentiation, at each grid point. 

Defining Q at the grid points by 

the expression for the approximate reciprocal sum energy 
Eree,pU) at atom i due to the atoms of the unit cell U is 

terpolation approximation (order p) to the reciprocal 
space pair potential, <l>ree,p, at each point is given in terms 
of the precomputed array values of <Pree , 

(4) 

'" (~!2.~) (ll-kl 12-k2 13-k3) 
£.J Q K 'K 'K <Pree K ' K ' K 

III I 2 3 I 2 3 l' 2' 3 

(
kl k2 k3) 

. <Pree*Q KI' K2 'K3 ' (7) 

where <Pree*Q denotes the discrete convolution operator, 
and we have used the fact that <pree (r;f3) = <pree( -r;f3). 
Since (}p,K(x,k) is continuous in x, the approximate ener­
gies and forces will be continuous with respect to particle 
position, which is not true of the cell multipole meth­
ods. 10-

15 We can evaluate <Pree*Q using the fast Fourier 
transform in order KIK2K3 log (KIK 2K 3) steps, whereas 
evaluation of Q and Eree,pCi), i= 1, ... ,N can be achieved in 
order (2p) 2 • N steps. Similar results hold for evaluation of 
the gradient. In practice, we pack <Pree and its three gradi­
ent components at the grid points into two complex arrays 
and precompute their Fourier transform (FT) once at the 
start of the simulation. At each subsequent step we com­
pute Q as a complex array, transform it, multiply the trans­
formed components by the precomputed complex arrays at 
each grid point, and then back transform the resulting pair 
of complex arrays. 

An upper bound for the absolute error I <I> ree,p - <P ree I 
can be estimated as follows. Given integers m, and K> 0, 
from standard error estimates on Lagrangian interpola­
tionl6 we have for all x 

lexp(21Timx)- L exp(21Tim~)(}p'K(X'k)1 
keZ 

From Eqs. (4) and (8) we see that, pointwise 

A (2P) I exp( _~m21f32) 
I <Preep-<precpl <4 -V I m2 , , P1T moFO 

[ ( 
ml )2

P 
(m2 )2

P 
( m3 )2

P
] 

X 4KI + 4K2 + 4K3 . 

(8) 

(9) 

The right hand side of Eq. (9) can be estimated by 
replacing the sum by an integral. We can change variables 
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TABLE I. The relative potential error (nnsE), relative force error (nnsf), and maximum relative force 
error (maxerrf) are: nnsE=[(E-E)2/.wj1l2, nnsf=[~f(fi-f)2/~ffilll2, and maxerrf 
=max{[(fi-fi)2/f;jl12; l.;;;i.;;N}; where E is the total electrostatic energy and fl is the force vector at atom 
i, evaluated using the exact Ewald pair potential for all atom pairs. The" A" symbol indicates the 
approximate values evaluated with the PME method using a 9 A atom-based list for the direct space 
contribution. The percent overhead (% overhead) is: timePME/timeCoulombX 100%; where timePME is the 
time for evaluation of the total nonbond potential energy and forces usiitg the PME method for the 
electrostatics, and timeCoulomb is the time (2.28 s for B-DNA) required for evaluation of the total nonbond 
energy and forces using conventional Coulombic interactions. 

Approximate grid size (A)/Dimensions (K1.K2,K3) 

Order 
p 

2 

3 

4 

InnsE 
Innsf 
Imaxerrf 
1% overhead 

InnsE 
Irmsf 
Imaxerrf 
1% overhead 

InnsE 
Irmsf 
Imaxerrf 
1% overhead 

InnsE 
Irmsf 
Imaxerrf 
1% overhead 

1.0 0.75 

(24,40,64) (32,54,96) 

4.9XlO-3 3.1 X 10-3 

2.9XI0-2 1.4 X 10-2 

0.50 0.36 
16.2% 21.5% 

l.4x 10-3 4.3x 10-4 

4.0xI0-3 1.1 X 10-3 

0.13 2.8XlO-2 

21.5% 26.8% 

5.0XlO-4 9.1 X 10-5 

LOX 10-3 1.6X 10-4 

4.3xI0-2 3.4XlO- 3 

35.5% 39.9% 

2.2X 10-4 2.5XIO-5 

3.7XlO-4 3.7XlO- 5 

1.6x 10-2 7.4 X 10-4 

62.2% 64.9% 

in the integral by xk=aflJnl+a!km2+arkm3' and mk 
=aklxl+ak2x2+ak3x3, for k=I,2,3. If we then transform 
to spherical coordinates, and apply the Cauchy-Schwarz 
inequality to the quanitities mkt k= 1,2,3, we see, using 
standard results on the moments of Gaussian distribu­
tions,17 that the right hand side ofEq. (9) is bounded from 
above by 

8(2P) (2p)! £ (!!...)2P[(~)2P +(a2)2p +(a3)2
P

]. 
p p! .J;. 81T KI K2 K3 

(10) 

A similar result can be obtained for the gradient. The 
error in the interpolation can be made arbitrarily small by 
fixing al/KI, a2/K2, and a3/K3 to be less than one, and 
then choosing p sufficiently large. Thus, the quantity 
KIK2K3 is of order the system size ala2a3 and hence of 
order N, for any desired tolerance, and so the proposed 
algorithm is of order N log (N). 

RESULTS 

The PME method was implemented by modifying the 
AMBER3.0 (Rev. A) molecular dynamics code in the fol­
lowing way. The direct space pair potential, cI>dir> was com­
puted along with the van der Waals and H-bond terms 
from an atom-based nonbond list. The erfc(x) function 
and its derivative were obtained by table look up (relative 
error <1.0x 10-8) for increased efficiency. The approxi­
mate reciprocal space pair potential <i>rec was evaluated as 
described above in a separate routine. An additional cor-

0.5 

(48,81,128) 

2.0XIo- 3 

7.5xlO-3 

0.17 
39.9% 

1.1 X 10-4 

2.6XlO-4 

6.1 X 10-3 

45.2% 

1.1 X 10-5 

1.9X 10-5 

4.0XIO-4 

58.3% 

1.7 X 10-6 

5.7XIO- 6 

1.5 X 10-4 

83.8% 

rection was needed to account for exclusion of nearest im­
ages of masked atom pairs (bonded pairs, etc.). All tests 
were run as single processor jobs on the Cray YMP at the 
Frederick Cancer Research and Development Center. 

The accuracy and computational efficiency of the PME 
method were tested on several macromolecular crystals. 
Unit cells were constructed from the space groups using 
the crystallographic coordinates for the heavy atom posi­
tions, as in previous work. 18,19 Point charges were assigned 
using the AMBER force field.2o Electrostatic energies and 
forces for each atom are compared to the corresponding 
values calculated using the exact Ewald pair potential (rel­
ative accuracy < 1 X 10 - 7) . 

Table I shows the results for an ionic B-DNA crys­
tal.21 Results are given for grid densities (a l/K1 xa2/K2 
Xa3/K3)1/3 of approximately 1.0, 0.75, and 0.5 A, and 
interpolation order p= 1,2,,3,4. The computational cost of 
the PME method is compared to that of normal evaluation 
of nonbond interactions using a 9 A atom-based Verlet list 
on a single processor Cray YMP. The overhead above nor­
mal nonbond interactions ranges from approximately 16% 
to 84% corresponding to root mean square (rms) relative 
force errors of 2.9 X 10-2 and 5.7 X 10-6

, respectively. We 
conclude that reasonable relative accuracy (about 2 X 10-4 

rms force error) can be obtained with approximately a 
40% overhead, by using triquintic interpolation (p = 3) on 
a 0.75 A grid. Similar accuracies and computational costs 
are obtained for large protein crystals22

,23 using compara­
ble grid densities and interpolation orders (Table II). Note 
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TABLE II. Accuracy and timings for several crystal unit cells. Triquintic 
interpolation (p= 3) was used for each system. In each case {3 was chosen 
to be 0.386. 

B-DNA HIV-l PR p21 
(Ref. 21) (Ref. 22) (Ref. 23) 

Space group P212121 P41212 P3221 
a,b,c (A) 24.87,40.39,66.20 50.24,50.24,106.56 40.3,40.3,162.2 
a,{3,r C) 90,90,90 90,90,90 90,90,120 
No. of atoms 7938 29661 25797 
Approximate 0.75 A 0.84 A 0.80 A 

grid size 
Grid dimensions (32,54,96) (64,64,128 ) ( 48,48,192) 

(Kl ,K2 ,K3 ) 

rmsE 9.1 X 10-5 3.6XlO-5 4.9XlO-5 

rmsf 1.6x 10-4 1.6X 10-4 2.3XlO-4 

maxerrf 3.4x 10-3 1.2 X 10-2 I.4X 10-2 

timePME 3.19 s 10.76 s 9.46 s 
% overhead 39.9% 39.0% 43.3% 

the PME method is completely general to nonorthogonal 
unit cells. 

Traditional particle-mesh techniques have been criti­
cized as not being able to attain high accuracy efficiently, 
especially for nonuniform particle distributions. 11 Our re­
sults indicate that high precision (rms relative force error 
< 1.0 X 10-5

) is easily obtained for macromolecular sys­
tems by using higher order interpolation with only a mod­
est increase in computational time. Although the PME 
method has increased memory requirements over conven­
tional nonbond list-based methods, the cost of memory 
appears to be rapidly decreasing, and hence may not be an 
issue in the future. 

The PME method offers several advantages as a 
method for the treatment of long-range forces in macro­
molecular systems. These include 

(1) High accuracy: High accuracy (z 5 X 10-6 relative 
force) can be obtained with relatively little increase in 
computational effort. 

(2) East o/implementation: The PME method can be 
efficiently implemented into conventional MD algorithms 
such as AMBER which use a Verlet list. 

(3) Continuity: The PME pair potential and its deriv­
atives are continuous functions of position, regardless of 
the accuracy required, and thus avoid problems involved 
with integration of discontinuous functions. 

( 4) Efficiency: The PME method is fast. For large 
macromolecular systems, the PME method requires only 

about a 40% overhead over conventional truncated list­
based methods to obtain relative force accuracies of z2 
X 10-4• 

The FORTRAN subroutines for performing the PME 
approximate energies and forces are available upon request 
from the authors. 
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