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ABSTRACT 21 

Renewable energy resources such as wind and solar are increasingly more important in 22 

distribution networks and microgrids as their presence keeps flourishing. They help to reduce 23 

the carbon footprint of power systems, but on the other hand, the intermittency and variability 24 

of these resources pose serious challenges to the operation of the grid. Meanwhile, more 25 

flexible loads, distributed generation, and energy storage systems are being increasingly 26 

used. Moreover, electric vehicles impose an additional strain on the uncertainty level, due to 27 

their variable demand, departure time and physical location. This paper formulates a two-28 

stage stochastic problem for energy resource scheduling to address the challenge brought by 29 

the demand, renewable sources, electric vehicles, and market price uncertainty. The proposed 30 

method aims to minimize the expected operational cost of the energy aggregator and is based 31 

on stochastic programming. A realistic case study is presented using a real distribution 32 

network with 201-bus from Zaragoza, Spain. The results demonstrate the effectiveness and 33 

efficiency of the stochastic model when compared with a deterministic formulation and 34 

suggest that demand response can play a significant role in mitigating the uncertainty. 35 

KEYWORDS: demand response; electric vehicles; energy resource scheduling; smart grid; 36 

stochastic programming; uncertainty. 37 



 

 

Nomenclature 38 

Indices  
e  ESSs 
i  DG units 
l  Loads 
m  Market 
s  External suppliers 
t  Time periods 
v  EVs 
z  Scenarios 
Parameters  
SupplierC  External supplier cost [m.u. /kWh] 
LoadDRC  Load reduction cost [m.u./kWh] 
DischargeC  Discharging cost of ESSs/EVs [m.u. /kWh] 
DGC  Generation cost of DG unit [m.u. /kWh] 
NSDC  Non-supplied demand (NSD) cost of loads [m.u. /kWh] 
GCPC  Curtailment cost of DG units [m.u. /kWh] 
SellMP  Forecast price of markets [m.u. /kWh] 

π  Occurrence probability of scenarios 
T  Number of time periods in the scheduling horizon 
Z  Number of scenarios 
tΔ  Duration of period t (1 = hour) 
iN  Number of DG units 
eN  Number of ESSs 
lN  Number of loads 
sN  Number of external electricity suppliers 
vN  Number of EVs 
mN  Number of markets 
DGScenarioP  Forecasted generation of non-dispatchable DG units [kW] 
DGMinLimitP  Minimum active power of dispatchable DG units [kW]  
DGMaxLimitP  Maximum active power of dispatchable DG units [kW] 
SMinLimitP  Minimum active power of suppliers [kW] 
SMaxLimitP  Maximum active power of suppliers [kW] 
LoadDRMaxLimitP  Maximum limit of active power reduction of loads [kW] 

argDisch eLimitP  Maximum active discharge rate of ESSs/EVs [kW] 
ChargeLimitP  Maximum active charge rate of ESSs/EVs [kW] 
MarketOfferMaxP  Maximum energy offer allowed in markets [kW] 
MarketOfferMinP  Minimum energy offer allowed in markets [kW] 
TripE  Forecasted energy demand for EVs’ trip [kWh] 
BatCapE  Maximum energy stored allowed by ESSs/EVs [kWh] 
MinChargeE  Minimum energy stored required in ESSs/EVs [kWh] 

cη  Charging efficiency of ESSs/EVs 
dη  Discharging efficiency of ESSs/EVs 
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Variables  
1D

TotalOC +  Day-ahead operation cost [m.u.] 
DGp  Active power generation of DG unit [kW] 
Supplierp  Active power of external supplier [kW] 
LoadDRp  Active power reduction of loads [kW] 
Dischargep  Active power discharge of ESSs/EVs [kW] 
argCh ep  Active power charging of ESSs/EVs [kW] 
NSDp  Active power of NSD of load [kW] 
GCPp  Generation curtailment power of DG units [kW] 
Sellp  Active power sold to market [kW] 
StoredE  Energy stored in ESS/EVs [kWh] 
DGx  Binary variable of state of DG units 
Supplierx  Binary variable of choosing suppliers 

/ESS EVx  Binary variable representing discharging state of ESSs/EVs 
/ESS EVy  Binary variable representing charging state of ESSs/EVs 

Marketx  Binary variable that represents the choice of markets 
Sets  

d

DGΩ  Set of dispatchable DG units 
nd

DGΩ  Set of non-dispatchable DG units 

1. Introduction 40 

The increasing number of renewable energy sources, such as wind and solar-based 41 

generation, positively contributes to the reduction of the carbon footprint of electricity 42 

generation. It also leads to independence from the fossil fuels in power generation. However, 43 

unlike the conventional generation units, renewable sources are characterized by a high level 44 

of uncertainty and variability. Another important feature of modern power systems is the 45 

increasing flexibility of customers, provided by controllable loads, i.e. non-critical loads that 46 

can be adjusted by the customer or by a third-party utility on a contractual basis to enable 47 

efficient management of the affordable resources. An example of such loads is Electric 48 

Vehicle (EV). In contrast to other types of loads, EVs can be connected to different locations, 49 

thus increasing the level of uncertainty [1]. An advanced scheduling model taking into 50 

account these factors is important. In fact, one of the top R&D needs identified by department 51 

of energy in United States is to have robust control and predictive models to deal with the 52 



 

 

stochastic behavior [2]. The motivation of establishing a stochastic modeling framework is 53 

associated with the increasing challenge of addressing the uncertainty of energy resources in 54 

smart distribution networks and microgrids [3]. These resources’ share is significantly 55 

increasing and can constitute a large portion of the total generation portfolio. In this context, 56 

the entities related with the Energy Resources Management (ERM), such as energy 57 

aggregators [4], need adequate tools to tackle the increasing level of uncertainty. 58 

The topic of energy scheduling in smart grids using stochastic methods is still in its 59 

infancy. Several works have been reported in the literature, mainly focusing on deterministic 60 

operation [5–11]. At the transmission-level, the stochastic energy management has 61 

demonstrated good results in taking into account the uncertainty associated with renewables 62 

and worst-case scenarios [12–15]. However, at the distribution and microgrid levels more 63 

advances are needed. The work presented in [1] regards a two-stage stochastic formulation 64 

to address the energy scheduling in MicroGrids (MG) with Distributed Generation (DG), 65 

EVs and Energy Storage Systems (ESS). The model solves the day-ahead energy scheduling 66 

using a linear formulation without network constraints and not considering Vehicle-To-Grid 67 

(V2G). An iterative approach is used to validate the network constraints with a power flow 68 

software returned from the master linear problem. Several scenarios were considered only 69 

for wind and solar power, while the EVs’ behavior, load demand and hourly market prices 70 

are considered deterministically. In [4], an optimal bidding strategy for EV aggregator is 71 

formulated under uncertainty in day-ahead context to minimize charging costs while 72 

satisfying EVs’ demand. V2G possibility of EV aggregators is not modeled in the paper. The 73 

day-ahead stochastic scheduling method presented in [13] considers the hourly forecast 74 

errors of wind energy and system load. The work is developed for a conventional generation 75 



 

 

system with wind energy, but at transmission network side. In [16], the authors develop a 76 

stochastic energy scheduling model for a local smart grid system with a single energy source 77 

and several consumers. The problem is transformed into an easier and simple optimization 78 

in order to be used in a distributed and real-time environment. The uncertainty in the fuel cell 79 

outages is considered in the optimization model developed in [17] to perform the battery 80 

scheduling of a MG. The stochastic model results indicate that a conservative yet more 81 

lucrative solution is obtained, resulting in potential savings exceeding 6%. In [18], an optimal 82 

day-ahead scheduling is formulated for a microgrid. The model proposed by the authors is a 83 

two-stage stochastic formulation to cope with the intermittent nature of the renewable energy 84 

while exploiting the thermal dynamic characteristics of the buildings. Recently, in [19], a 85 

two-stage stochastic model is proposed to address the centralized ERM in hybrid AC/DC 86 

microgrids considering DGs, ESS and EVs and uncertainty in regular and EV demand, 87 

renewable generation, and fluctuating electricity prices. However, the possibility of DR is 88 

not considered in the referred work. Furthermore, evaluated it considers a smaller grid system 89 

(38-bus) with only 8 DG units. Their work is more oriented for smaller hybrid AC/DC grids 90 

whereas our model is devised for larger smart grids and tested with a real 201-bus system. 91 

Their model is mixed integer nonlinear whereas ours is mixed integer linear to increase 92 

computational performance. The works presented in [20,21] address the day-ahead resource 93 

scheduling of a renewable-based virtual power plant. The work considers uncertainties in 94 

price, load demand and renewables but fails to consider the possibility of DR, EVs and V2G. 95 

A specific work regarding stochastic energy management using compressed air storage 96 

integrated with renewable generation is studied in [22]. In [23], authors provide a robust 97 

optimization for scheduling optimization considering uncertainties. These works [20–23] 98 

demonstrate that it is possible to mitigate system uncertainties with adequate use of energy 99 



 

 

resources, namely ESS systems. However, these works do not consider EVs and its related 100 

uncertainties, which are a relevant feature of future grids. In [24] a two-stage stochastic 101 

offering model for a VPP is presented. The model considers an intermittent source, a 102 

dispatchable and a storage unit. The VPP trades in the day-ahead and balancing markets, 103 

while the uncertainty is considered in the market price and intermittent generation. In [25], a 104 

two-stage robust optimization approach is used to deal with uncertainties in wind power and 105 

market price of a VPP participating in both day-ahead and real-time markets. Authors 106 

indicate that their approach is suitable to represent the uncertain data, but suggest stochastic 107 

programming could be used and compared as future work. In [26], a multi-stage risk-108 

constrained stochastic complementarity approach is proposed for wind power producers to 109 

tackle uncertainties in wind, market prices, demands' bids and rivals' offers using a set of 110 

scenarios. The results reveal that the expected profit increases when a strategic position is 111 

adopted, while taking a risk-averse position decreases the expected profit by a small margin. 112 

Authors claim they use a computer with 250 GB of RAM to tackle the optimization problem. 113 

They suggest that the model may be decomposable and subject of future research. These 114 

works [24–26] are more concerned in the market interaction, namely the VPP risk and 115 

strategy than the energy resources scheduling, particularly of large-scale nature. 116 

These works reveal some gaps that require additional attention. Uncertainty on wind and 117 

solar generation are usually considered, while the variability of market prices and load 118 

demand is frequently overlooked. Moreover, when formulating the energy scheduling from 119 

the viewpoint of an EV aggregator, the uncertain problem is formulated without considering 120 

the V2G possibility. Furthermore, Demand Response (DR) is not considered in most of the 121 

studied works and the case studies are relatively small in terms of optimization problem size, 122 



 

 

therefore lacking realism. This paper presents a stochastic programming approach for ERM 123 

in a smart distribution network, in the context of Smart Grids (SG) considering several forms 124 

of energy resources, including DR. The proposed model formulates the uncertainty in regular 125 

load demand, wind and photovoltaic (PV) power, EVs demand and location. In addition, the 126 

variability of market prices is considered in the model. The energy aggregator aims to 127 

minimize the expected operation cost while managing Distributed Energy Resources (DER), 128 

including DG (e.g. Wind, PV, and biomass), EV with V2G possibility, ESS, electricity 129 

supplier contracts, market transactions and DR. Thus, the proposed integrated energy 130 

management model with the several sources of uncertainty is innovative in the literature. 131 

Table 1 summarizes the features found in the studied references regarding sources of 132 

uncertainty considered and the features present in the models. 133 

Table 1.  Summary of the contributions regarding revised papers 134 

Ref. Model includes Sources of uncertainty V2G DR ESS 
[1] No No Yes Only in wind and PV 
[4] No No No Driving patterns and market bids 

[13] No Yes No Only in wind 
[16] No No No Only in energy demand 
[17] No No Yes Only in the fuel cell outages 
[18] No Yes Yes Load, renewable generation and electricity price 
[19] Yes No Yes Load, renewable generation, EV demand and price 
[20] No No No Renewable generation, load and electricity price 
[21] No No No Renewable generation, load and electricity price 
[22] No Yes Yes Wind/PV, load demand and market price 
[23] No Yes Yes Wind/PV only 
[24] No No No Wind, market bids and price rivals’ offers 
[25] No No No Wind and market price 
[26] No No Yes Intermittent source and market price 

Proposed 
work Yes Yes Yes All sources of uncertainty (Wind/PV, EVs, regular demand and 

market price) 
Regarding previous works, the major contributions of this paper are as follows: 135 



 

 

1) proposing a two-stage stochastic model for smart grids characterized by 136 

heterogeneous management of large-scale energy resources considering uncertainty 137 

in wind, PV, EV and market price integrated in the same model; 138 

2) consideration of DR program in the two-stage stochastic model, and assessing its 139 

impacts when uncertainty is considered; 140 

This paper is organized in five main sections: after this introduction, section 2 presents 141 

more details about the stochastic model approach and describes the two-stage stochastic 142 

formulation, section 3 describes the test system, while the results of the case study and the 143 

discussion are presented in section 4. Finally, section 5 presents the conclusions. 144 

2. Stochastic Model 145 

The energy scheduling problem is formulated in this section as a two-stage stochastic 146 

model. Theoretical background on two-stage or multi-stage stochastic programming models 147 

can be found in [27]. The idea is to make an optimal decision in the first stage, on the day-148 

ahead energy transactions, while taking into account possible real-time operations like the 149 

wind, solar power and EVs’ uncertainty, in the second stage. The objective is to minimize 150 

the expected operation costs, by reducing the risk of energy transactions for the energy 151 

aggregator. With the proposed model, it is possible to obtain the amount of electricity to be 152 

purchased from the electricity suppliers, the sale of energy to the market and the commitment 153 

of the dispatchable DG units over the next 24 hours. To achieve this, a scenario based 154 

approach is used to model the underlying uncertainty. It means that wind and solar generation 155 

or the load demand varies from one scenario to another. The first-stage decisions do not 156 

change across the scenarios in the second stage, i.e. the variables without uncertainty remain 157 

the same for every scenario. 158 



 

 

2.1.Uncertain data 159 

In stochastic programming problems, the stochastic processes are represented with 160 

continuous or discrete random variables. Dealing with a finite set of possible outcomes is the 161 

adopted way in decision-making problems under uncertainty, otherwise it would be 162 

impossible to solve the problem [28]. An appropriate representation of a continuous random 163 

variable using a finite set of values can be difficult. Scenarios can be generated using different 164 

techniques, including path-based methods, moment matching, internal sampling and scenario 165 

reduction [28]. Different realizations of the random variables can be represented by arcs in a 166 

scenario tree. The probability of a scenario to occur is the product of the probabilities 167 

associated with the arcs. The sum of the probabilities of the generated scenarios is equal to 168 

1. Figure 1 presents a simple example of one scenario tree with 5 scenarios and 10 nodes. 169 

Node 6 (n6) corresponds to scenario 1 and its probability results from the product of nodes 170 

n2, n3. 171 

 172 

Fig.1. Scenario tree with 5 scenarios and 10 nodes [29] 173 

In order to improve computational performance, scenario reduction is usually applied to 174 

downsize a scenario set while keeping stochastic information as intact as possible. Scenario 175 

reduction techniques start with a large set of randomly generated scenarios. The large set is 176 

reduced to a small set trying to maintain the original probability distribution function. In other 177 

words, it would be possible to measure the quality of the reduction process by comparing the 178 



 

 

optimal solution obtained with the reduced set and with the original set. If the solutions are 179 

close enough, it means that a good reduction has been obtained. Nevertheless, this 180 

comparison is only possible for small instances due to computational limitations. 181 

The ERM problem under study involves several sources of uncertainty in the input data, 182 

namely in the load demand, market price, wind and solar generation forecasts. Moreover, the 183 

presence of EVs poses an additional source of uncertainty in the ERM problem, because trips 184 

and energy demand of EVs depend on the users’ behavior, which is not easy to predict. The 185 

aggregator requires knowing the timing of the trips and the associated expected energy 186 

consumption, as well other parameters, such as battery size. This means that the drivers 187 

would need to notify the aggregator of their planned trips in advance, or eventually machine 188 

learning algorithms could be used to forecast driving needs [4]. 189 

The lack of realistic historical data is a barrier to actually build accurate case studies. 190 

Hence, most of the time, forecasts and associated errors are assumed based on previous 191 

experiences, trying to simulate real-world behavior. The stochastic model is used assuming 192 

that a correct set of scenarios can be generated considering future availability of such 193 

historical data. In fact, scenario generation is a broad topic that is beyond the scope of this 194 

paper. Nevertheless, in the current literature, some authors have presented possible 195 

approaches that can be implemented in scenario generation tools in control centers for the 196 

ERM. In [1], Monte Carlo Simulation (MCS) is used to capture the uncertainty of the wind 197 

power forecast. A scenario reduction technique is used to reduce the number of scenarios 198 

generated. Furthermore, they assume that solar scenarios forecast errors follow a normal 199 

distribution. The authors finally consider 10 independent scenarios for the wind generation 200 

and another 10 scenarios for the solar generation, which results in 100 scenarios with an equal 201 



 

 

probability of 0.01. A traffic simulation is used in [4] to observe arrival, departure times and 202 

energy consumption for each vehicle. The authors model the arrival, departure time and trip 203 

consumption as stochastic variables using exemplary distributions. By using these 204 

distributions, it is possible to generate different realizations of the driving pattern for each 205 

individual vehicle. Authors in [30] use the statistical nonparametric bootstrap method as an 206 

alternative to MCS to account for the EVs charging temporal uncertainties. 207 

2.2.Implementation requirements 208 

The proposed model is one-step forward towards an effective energy management of the 209 

future smart grid. The optimization can be implemented in real-world cases once the main 210 

pillars of smart grid are developed, i.e., technology, policy and standards. It is assumed that 211 

the infrastructure has the following characteristics:  212 

1) the smart distribution grid and microgrids are independent entities that are able to manage 213 

its assets, local DERs and energy supply;  214 

2) the advanced metering infrastructure is in place with communication capability to allow 215 

the broadcast of the electricity market prices for the next 24 hours;  216 

3) the control center can communicate with the local controllers of DERs and is equipped 217 

with an energy management system, in which the proposed model can be implemented; 218 

4) the energy management system runs the two-stage stochastic optimization routine every 219 

24 hours and has forecasting and scenario generation tools required to run the model; 220 

5) in the considered model the energy aggregator does not buy energy to the market, instead 221 

it buys from external supplier with fixed contract price; 222 

6) Generation curves and hot/cold start-up constraints of the small dispatchable generation 223 

units are not considered in the present model. 224 



 

 

2.3.Objective function 225 

The objective function ( )1D
TotalE OC + , which represents the expected day-ahead operation 226 

costs in monetary units (m.u.), is minimized over the scheduling horizon T (1). The 227 

scheduling horizon covers the 24 hours of the next day. The first stage variables correspond 228 

to the dispatchable DG units, suppliers and market bids. Second stage variables are clearly 229 

identified in the formulation when the z index is present in the variables’ subscript. 230 
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 231 

2.4.Stochastic model constraints  232 

The constraints incorporate the multi-period equations for EV charging and discharging 233 

rates, battery capacity and balance considering predicted demand and location, technical 234 

limits of ESSs, balance and capacity in each period, dispatchable DG capacity and supplier’s 235 

limits. In addition, the DR is considered in the constraints, namely the maximum amount of 236 

power reduction of each load. It is important to note that some of the constraints spread across 237 



 

 

all scenarios, like the energy balance equation. However, there are few constraints that are 238 

not dependent on the variation of the scenarios, e.g. the limits of the dispatchable generation. 239 

1) Energy balance 240 

The balance constraint (2) is included in the proposed model. The amount of generated 241 

energy should equal the amount of consumed energy at every instant t. In the proposed model, 242 

balance equation (2) is a multi-period, multi-scenario equation as the balance must be 243 

satisfied not only for each period t but also within the different scenarios z. Compared with 244 

the deterministic counterpart, the stochastic model has a much higher number of energy 245 

balance constraints. The equation terms include the dispatchable DG generation, the 246 

acquisition of energy with external suppliers, the non-dispatchable DG forecast, the load 247 

demand (subtracting the scheduled demand response or the “non-desirable” not supplied 248 

demand), the EVs charge and discharge, and the storage charge and discharge. Finally, the 249 

market sale is added to the balance. The result of this equation as represented should be zero. 250 

The stochastic balance constraint will validate if the first stage variables can match the load 251 

balance among the different scenarios z as follows: 252 
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2) DG units and external supplier 253 

A binary variable is used to represent the commitment status of dispatchable DG units. 254 

A value of 1 means that the unit is connected. Maximum and minimum limits for active 255 

power in each period t can be formulated as: 256 



 

 

( , ) ( , ) ( , ) ( , ) ( , )           , d
DG i t DGMinLimit i t DG i t DG i t DGMaxLimit i t DGx P p x P t i⋅ ≤ ≤ ⋅ ∀ ∀ ∈Ω  (3) 

( , , ) ( , , )           , ,nd
DG i t z DGScenario i t z DGp P t i z= ∀ ∀ ∈Ω ∀  (4) 
The upstream supplier maximum limit in each period t regarding active power can be 257 

formulated as: 258 

Supplier( , ) ( , ) ( , ) Supplier( , ) ( , )        ,s t SMinLimit s t Supplier s t s t SMaxLimit s tx P p x P t s⋅ ≤ ≤ ⋅ ∀ ∀  (5) 

3) Energy storage systems 259 

The constraints for the ESS (batteries) are described below. The ESS charge and 260 

discharge cannot be simultaneous. Therefore, two binary variables guarantee this condition 261 

for each ESS: 262 

( , , ) ( , ,z) 1      , ,ESS e t z ESS e tx y t e z+ ≤ ∀ ∀ ∀  (6) 
The battery balance for each ESS can be formulated as: 263 
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The maximum discharge limit for each ESS can be represented by: 264 

( , ,z) ( , , ) ( , , )         , ,Discharge e t DischargeLimit e t z ESS e t zp P x t e z≤ ⋅ ∀ ∀ ∀  (8) 
The maximum charge limit for each ESS can be represented by: 265 

( , , ) ( , , ) ( , , ) , ,     Charge e t z ChargeLimit e t z ESS e t z t e zp P y ∀ ∀ ∀≤ ⋅  (9) 
The maximum battery capacity limit for each ESS can be represented by: 266 

( , , ) ( ) , ,          Stored e t z BatCap e t e zE E ∀ ∀ ∀≤  (10) 
Minimum stored energy to be guaranteed at the end of period t can be represented by: 267 

( , , ) ( , , ) , ,Stored e t z MinCharge e t z t e zE E ∀ ∀ ∀≥  (11) 
4) Electric vehicles 268 

The charge and discharge of each EV is not simultaneous. Two binary variables are 269 

needed for each vehicle that can be represented by: 270 

( , ,z) ( , , ) 1          , ,EV v t EV v t zx y t v z+ ≤ ∀ ∀ ∀  (12) 



 

 

Battery balance for each EV. The energy consumption for period t travel has to be 271 

considered jointly with the energy remaining from the previous period and the 272 

charge/discharge occurred in the period: 273 

( , , ) ( , 1, ) ( , , )
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 (13) 

When connected to the grid the vehicle cannot discharge to the grid more than the 274 

admissible rate. The discharge limit for each EV considering battery discharge rate can be 275 

formulated as: 276 

( , , ) ( , , ) ( , , )        , ,Discharge v t z DischargeLimit v t z EV v t zp P x t v z≤ ⋅ ∀ ∀ ∀  (14) 
When connected to the grid the vehicle cannot charge more than the admissible safety 277 

rate. The charge limit for each EV considering battery charge rate can be formulated as: 278 

( , , ) ( , , ) ( , , )          , ,Charge v t z ChargeLimit v t z EV v t zp P y t v z≤ ⋅ ∀ ∀ ∀  (15) 
The maximum battery capacity limit for each EV can be represented by: 279 

( , , ) ( ) , ,          Stored v t z BatCap v t v zE E ∀ ∀ ∀≤  (16) 
Another important aspect is the minimum stored energy to be guaranteed at the end of 280 

period t. This can be seen as a reserve energy (fixed by the EVs’ users or estimated by the 281 

operator) that can be used for a regular travel or an unexpected travel in each period t: 282 

( , , ) ( , , ) , ,       Stored v t z MinCharge v t z t v zE E ∀ ∀ ∀≥  (17) 
5) Demand response 283 

Equation (18) formulates a DR model, namely direct load control, in which the consumer 284 

receives an incentive if their load is reduced. The maximum amount that each load l can be 285 

reduced in each period t in scenario z , can be formulated as: 286 

( , , ) ( , ) , ,         LoadDR l t z LoadDRMaxLimit l t t l zp P ∀ ∀ ∀≤  (18) 



 

 

6) Market 287 

The stochastic model is compatible with the possibility to make offers in several markets, 288 

for instance in the wholesale market and/or the local energy markets [31]. The energy 289 

aggregator may desire to keep its market offers within certain limits or a given market may 290 

have a minimum required amount to access. Therefore, the market offers are constrained by 291 

(19) and (20), namely maximum and minimum offer: 292 

( , ) ( , ) ( , ) ,         Sell m t MarketOfferMax m t Market m t t mp P x ∀ ∀≤ ⋅  (19) 

( , ) ( , ) ( , ) ,         Sell m t MarketOfferMin m t Market m t t mp P x ∀ ∀≥ ⋅  (20) 

2.5.Solution Algorithm 293 

The formulated problem is a Mixed Integer Linear Programming (MILP), due to the 294 

presence of both continuous and integer variables and linear constraints. The MILP is 295 

implemented in TOMLAB, which is an advanced optimization toolbox for MATLAB [32], 296 

using CPLEX solver. 297 

Several quality metrics can be used to appraise the interest of using stochastic 298 

programming models and to evaluate the value of having accurate forecasting procedures to 299 

obtain the most likely scenarios. The Expected value of Perfect Information (EVPI), 300 

described by (21), represents the quantity that the decision maker would need to pay to obtain 301 

perfect information about the future. 𝑧"∗ is optimal objective function of the two-stage 302 

stochastic programming problem, and 𝑧$∗ is the optimal objective function of the same 303 

problem when the nonanticipativity of decisions is relaxed. In this problem, which is known 304 

as the wait-and-see problem, all variables are defined as scenario-dependent [28].  305 

S* P*EVPI z z= −  (21) 
The Value of Stochastic Solution (VSS) measures the economic advantage of using the 306 

stochastic programming approach over a deterministic problem (22). In order to obtain 𝑧%∗, 307 



 

 

the first step is to replace the uncertain parameters in the original two-stage problem with 308 

their expected values. After solving this deterministic problem, the first stage decision 309 

variables of the original problem are replaced with the optimal values obtained in the 310 

previous step. A new stochastic programming is obtained, and 𝑧%∗ is the optimal objective 311 

function of this modified problem [28]. 312 

D* S*VSS z z= −  (22) 

3. Test System 313 

The proposed methodology is tested using a case study implemented on a real 314 

distribution network with 201 buses. This network is part of the distribution grid in Zaragoza, 315 

Spain. Figure 2 depicts the single-line diagram of the 201-bus 11 kV distribution network 316 

[33]. Given the original network one optimal reconfiguration was obtained with the 317 

considered DGs, storage units and EVs. In this case study, the production and consumption 318 

values are modified to meet the expectations for year 2030. A high penetration of DG units 319 

was considered, corresponding to about 70% of the installed capacity, according to what is 320 

expected in 2030 [34]. Regarding DG, the photovoltaic installed capacity represents about 321 

30%, wind represents 22 %, small hydro represents 11%, biomass represents 4% and the 322 

cogeneration represents 33%. Moreover, an approximate number of 1300 EVs was estimated 323 

to connect to this part of the distribution grid during a typical day, taking into account the 324 

expected rate of EVs’ penetration (14%), in the fleet size of Spain for 2030 [35]. The 325 

mentioned penetration rate is the recommended value, according to [35], in order to 326 

understand the effects of mass integration of EVs in the different applications. The charging 327 

and discharging efficiency considered for EVs and ESS is 90% and the minimum state of 328 

charge in the end of day should be at least 30% (imposed by hard constraint (16)). 329 



 

 

 330 

Fig.2. 201-bus MV network used in the case study (adapted from [33]) 331 

In this case study, the energy aggregator is able to manage 118 DG units, the energy 332 

bought from external supplier, 6 storage units, 1300 EVs
1
, and 89 aggregated consumers with 333 

DR programs. It is assumed that the aggregator manages the customers in the area, using the 334 

proposed stochastic model, with the aim to minimize the expected operation costs. The 335 

scenario-based approach requires to have scenarios that catch the representative uncertainty 336 

in the data. Due to computational limitations, a simplified load balance and few 337 

representative scenarios are considered for each uncertain type of data, namely wind and 338 

solar energy production, as well as the EVs’ travels and market prices. In this work, EVeSSi 339 

[36] was used to generate different samples of driving patterns using departure times, and 340 

locations as stochastic variables. Therefore, varying trip duration and energy consumption 341 

was obtained in each sample. Then, 3 representative samples of the obtained trips’ 342 

realizations were chosen to be used in the scenario-based approach. For wind, solar 343 

                                                             

1 1300 EVs are aggregated in 100 equivalent units to reduce computational burden. 



 

 

generation, and regular demand, 3 representative scenarios were generated based on the 344 

initial forecast available as well as the corresponding average error. These scenarios can be 345 

seen in Figures 3 and 4. The techniques learned from [37,38] have been used to generate 346 

these scenarios, namely MCS and clustering to track similarity features and reduce burden to 347 

3 representative scenarios. The 3 representative EV scenarios can be seen in Figure 5.  348 

 349 

Fig.3. Wind and solar scenarios 350 

In the case of the market price 2 different scenarios are considered as can be seen in 351 

Figure 6. In addition, only one market m was considered in this case study, namely the day-352 

ahead market. Finally, equiprobable scenarios were built, using a scenario tree to obtain a set 353 

of 162 possible scenarios, i.e. combining each of the representative scenarios. 354 



 

 

 355 

Fig.4. Regular load demand scenarios 356 

357 

Fig.5. Electric vehicles scenarios: number of grid-connected EVs 358 

 359 

Fig.6. Market prices scenarios 360 



 

 

Table 2 shows the energy resources data and prices. The information of price is depicted 361 

in monetary units per MWh (m.u./MWh). 362 

Table 2.  201-bus grid scenario characterization 363 

Energy resources 
Prices 

(m.u./MWh) 
Capacity 

(MW) 
Forecast 
(MW) Units # 

min – max min – max min-max 
Biomass 150 – 150 0.00 – 0.52  1 

CHP 100 – 120 0.00 – 4.00 4 
Small Hydro 130 – 130 0.12 – 0.35 1 
Photovoltaic 200 – 200  0.00 – 1.70 82 

Wind 120 – 120 0.07 – 0.94 30 
External Supplier 90 – 200 0.00 – 7.30  1 

Storage Charge 120 – 120 0.00 – 1.50 6 Discharge 180 – 180 0.00 – 1.50 
Electric 
Vehicle 

Charge 130 – 130 0.00 – 6.94 1300 Discharge 190 – 190 0.00 – 6.16 
Demand 
Response Reduce program 110 – 170 0.33 – 0.89 89 

Load 90 – 150  4.77 – 13.88 168 
Market 80 – 130 0.00 – 4.00  1 

The prices in Table 2 have been designed according to [39]. The capacity column is the 364 

aggregated minimum/maximum availability of a given resource during the considered day in 365 

MW. Analogous the forecast column is the aggregated minimum/maximum predicted 366 

amount of a given resource or load during the considered day in MW. The aggregator has 367 

several contracts with different energy resources and consumption sources. The DG and ESS 368 

units are not owned by the aggregator in this case. The aggregator incurs in a cost when 369 

buying energy from the different energy resources at the contracted price and receives an 370 

income when selling energy. 371 

Two different cases have been considered to compare the performance of the two-stage 372 

stochastic programming under different situations. Case 1 considers DR availability, while 373 

case 2 does not. The results discussion of these cases are described in the next section. 374 



 

 

4. Results and Discussion 375 

The proposed two-stage stochastic model is applied to the described case study in section 376 

3, namely the 2 cases regarding DR availability. The dimension of the optimization problem 377 

is 3,802,992 variables (of which 824,424 integer) with 1,594,740 constraints (162 scenarios). 378 

The work was developed in MATLAB R2014a 64 bits using a computer with one Intel Xeon 379 

E5-1650 processor and 12 GB of RAM running Windows 8.1. 380 

Figures 7 and 8 present the stochastic resource scheduling for cases 1 and 2, respectively. 381 

The scheduled generation (first stage decisions) concerning the external suppliers is 382 

respectively 138.27 MWh and 147.22 MWh for cases 1 and 2 (dark blue in the figure). The 383 

dispatchable generation scheduled is respectively 79.30 MWh and 81.08 MWh for cases 1 384 

and 2. The uncertain dispatched amount, only certain in real-time (includes EVs, ESS and 385 

DR) is provided by the optimization and shown as blue-grey semi-transparent bars for each 386 

period, while the certain amount is a solid bar. As shown in the figures, the uncertainty is 387 

higher during daylight periods, namely between periods 9 and 20. This is due to the higher 388 

uncertainty in renewable generation, particularly in solar power. 389 

 390 

Fig.7. Stochastic energy resource scheduling for case 1 (with DR) 391 



 

 

 392 

Fig.8. Stochastic energy resource scheduling for case 2 (no DR) 393 

Figures 9 and 10 present the stochastic consumption scheduling for cases 1 and 2, 394 

respectively. The optimal values for the market purchases (in light blue) are same for all 395 

scenarios, namely 18.11 MWh and 14.82 MWh for cases 1 and 2, respectively. In case 2, 396 

there is a small possibility that NSD occurs in some scenarios (up to 0.53 MWh in period 397 

13), depending on the available renewable energy production. This value could be higher in 398 

a traditional deterministic approach, which is not desirable. 399 

 400 

Fig.9. Stochastic consumption scheduling for case 1 (with DR) 401 



 

 

 402 

Fig.10. Stochastic consumption scheduling for case 2 (no DR) 403 

Figures 11 and 12 present the stochastic energy resources for cases 1 and 2, respectively. 404 

It can be seen that there is a reasonable uncertainty in the variable renewable generation. This 405 

can lead to the use of DR in some scenarios. In case 2 there is no DR possibility, which can 406 

impact the use of ESS and EVs discharge (see Figure 12) when compared with case 1. In 407 

fact, this depends on the scenario, which means that the values can vary between the depicted 408 

minimum and maximum in the figures. 409 

 410 

Fig.11. Stochastic scheduling of energy resources for case 1 (with DR) 411 



 

 

 412 

Fig.12. Stochastic scheduling of energy resources for case 2 (no DR) 413 

Table 3 summarizes the obtained results in both cases for 162 and 81 scenarios (without 414 

market uncertainty). When DR is not available (case 2), the VSS, EVPI, and the expected 415 

total operation cost of the stochastic solution is higher. VSS reduces with DR up to just 2-416 

3% of the expected costs. Without implementing DR programs, there is less flexibility from 417 

loads as it not possible to use it to mitigate generation imbalances. In this case, the cost is 418 

much higher with a deterministic approach in both 162/81 scenarios and the proposed model 419 

reduces the expected cost up to 17-19%. The higher EVPI in case 2 also indicates that the 420 

importance of the uncertainty ahead is higher. There is a small percentage difference 421 

regarding VSS and EVPI with or without market uncertainty. However, the expected 422 

operation cost (zS*) is higher with market uncertainty due to the imperfect information about 423 

future market price. Regarding the computational performance, execution times seem 424 

adequate for the decision maker, but due to the high number of variables, high memory use 425 

is expected (about 10 GB in case 2). The scenario without market uncertainty is considerably 426 

lighter in terms of computational burden, i.e. execution time is almost one third and memory 427 

use about half. This may suggest that memory use grows linearly with the number of 428 



 

 

scenarios. The indicated memory is the maximum peak during execution and usually lasts 429 

for a brief moment before stabilizing in lower values. For a higher number of scenarios, a 430 

server with 64GB or 128GB is advisable. 431 

The results of VSS in general shows that stochastic modeling is more essential when the 432 

aggregator is not employing DR programs, because the gain obtained is higher. Additionally, 433 

EVPI reveals that having perfect information is more essential for the aggregator when they 434 

are not employing DR programs. 435 

Table 3.  Advantage of stochastic programming approach 436 

Indicator 
162 scenarios 81 scenarios (no market uncertainty) 

Case 1 
(with DR) 

Case 2 
(without DR) 

Case 1 
(with DR) 

Case 2 
(without DR) 

VSS (m.u.) 607 (2%) 6259 (17%) 967 (3%) 6959 (19%) 
EVPI (m.u.) 549 (2%) 1587 (5%) 503 (2%) 1340 (4%) 

zS* (m.u.) 29,639 30,814 29,174 30,147 
zP* (m.u.) 29,091 29,227 28,672 28,807 
zD* (m.u.) 30,246 37,073 30,141 37,106 

Memory**  (GB) 9.5 9.4 5.7 5.7 
Execution time (s) 247 237 93 84 

**Peak memory monitored using Windows resource monitor. Values may vary with system configuration and solvers. 437 

Finally, a sensitivity analysis for the scenario with market uncertainty (162 scenarios) has 438 

been made to evaluate VSS and EVPI metrics under different DR availability. To simulate 439 

different DR availability, the limit represented by (18) has been modified from 0% to 100% 440 

using increments of 20%, then VSS and EVPI were calculated. Figure 13 shows VSS and 441 

EVPI percentages when DR availability was gradually incremented (a) and the reduction of 442 

the expected operation cost (b). Indeed, 100% availability corresponds to case 1 and 0% 443 

corresponds to case 2 already presented in this section. The VSS and EVPI percentage 444 

reduction is most noticeable in the 0-60% range, i.e. VSS declines from 17% to 6% while 445 

EVPI declines from 5% to 2.7%. Afterwards, the reduction is more gentle, but sill reducing 446 

to 2% for both VSS and EVPI with 100% DR availability. The reduction means that the 447 



 

 

advantage of the stochastic programming when DR is present is less noticeable but still 448 

positive. Another interpretation is that the results suggest that increasing DR availability 449 

further mitigate the impact of the uncertainty in the operation costs, by using DR resource as 450 

a way to balance the uncertainty effects. 451 

  
a) b) 

Fig.13. Sensitivity analysis regarding varying levels of DR availability (0% to 100%) 452 

5. Conclusions 453 

Wind and solar are increasingly being adopted in distribution networks. While it is true 454 

that they contribute to reduce the carbon footprint of power systems, it is also inevitable that 455 

they complicate planning and operation activities. This is mainly caused by the intermittency 456 

nature of these resources. Moreover, EVs impose an additional strain on the uncertainty level, 457 

because of their variable demand, departure time and physical location. Nevertheless, high 458 

flexible loads, DG and ESS can mitigate these issues. Energy aggregators can help by 459 

optimizing the available resources and anticipating to the several uncertainties. 460 

This paper presented a new stochastic model with several uncertainty sources, including 461 

load demand variability, intermittency of wind and PV generation, EVs stochastic demand 462 

and location and market price in the same model. The results reveal that the stochastic 463 

programming can be used as an efficient approach to deal with the uncertainty in ERM. In 464 

the tested cases, the method appears to be more advantageous, compared to deterministic 465 



 

 

counterpart, particularly in situations with higher risks for the aggregator’s operation, such 466 

as limited flexibility, i.e. no DR. Indeed, the case study revealed that DR allowed to reduce 467 

the impact of uncertainties, namely achieving reductions of 4% in operation costs, 90% in 468 

VSS and 65% in EVPI indicators considering market price uncertainty. The VSS and EVPI 469 

reductions observed in the presented cases and the sensitivity analysis suggests that the 470 

sources of uncertainty have less impact on the expected operation costs, when DR is present. 471 
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