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1. General introduction

A goal of present and future agriculture is to meet the food need for the growing global population. The

world’s population has doubled over the past five decades, from 3.7 billion people in 1970 to almost 7.8 billion 

in 2020 (Worldometer, 2020). Thus, the global demand for agricultural commodities has grown rapidly since the 

mid-20th century with a subsequent increase in crop production. To fulfil food needs, human activities have been 

the main drivers of ecosystem transformations through the transformation of natural landscapes into agricultural 

land (Chauchard et al., 2007). The conversion of rangeland into cropland is a local and global environmental 

issue (Foley et al., 2005), resulting in changes of soil properties including infiltration rates that eventually 

increase soil erosion through increased runoff (Li et al., 2007). These changes led to losses of soil nutrients and 

reduced long-term soil productivity that could rapidly deteriorate vast areas of land becoming a major threat to 

rural subsistence in many countries (Chauchard et al., 2007). Most of the past and recent research has pinpoint 

soil erosion as the main factor leading to soil degradation in most areas of the world. Nevertheless, despite 

almost a century of erosion research, the effect of this phenomenon continues to be the greatest threat to soil 

health, soil ecosystem services and subsequently, cropland productivity in many regions (Pennock, 2019). The 

impact and the effects of soil erosion on crop production have been estimated at a 0.4 per cent reduction in 

global crop yields.  

In the past century the industrialization of Europe and the ensuing policies applied (CAP), lead the expansion 

of certain management systems focused on more fertile and accessible land. Since the 1960s, these changes 

promoted the abandonment of marginal areas, generally situated in the mountains, where traditional land uses 

became progressively economically nonviable (Debussche et al., 1999). In Europe, the Southern Mediterranean 

region underwent substantial landscape changes as the ones affecting Pre-Pyrenean mountain areas (Lasanta et 

al., 2016; Navas et al., 2005; Quijano et al., 2016a). This is particularly noticeable in Mediterranean mountain 

agroecosystems where these changes have caused considerable weakening in traditional farming methods 

leading to abandonment of the countryside and the decline of the traditional land use system. The first stages of 

land abandonment led to large surfaces of bare soil areas prone to erosion produced by unfavourable climatic 

conditions characterised by irregular space-time distribution of convective rainfall events (Mariani and Parisi, 

2014).  

High-intensity rainfall has been identified as one of the main drivers increasing soil erosion rates (Martı́nez- 

Casasnovas et al., 2002). Very intense rainstorms after dry periods are relatively frequent in the Mediterranean 

region (Serrano-Notivoli et al., 2017). The importance of these exceptional rainstorms is emphasized as it has 

been found to be responsible for major geomorphological changes including piping, gully formation, landslides 

and important soil loss (Grodek et al., 2012; Nadal-Romero et al., 2013). Thus, fragile soils with low nutrient 

contents as the ones existing in Mediterranean mountain agroecosystems, along with the absence of dense 

vegetation cover due to deforestation in the past century, have created large areas prone to erosion (Navas et al., 

2017). Soils without plant cover are easily erodible during exceptional storm events such as the three-day long 

exceptional rainstorm event that occurred in 2012 in north-eastern Spain greatly affecting the central South 

Pyrenean agrosystems (Serrano-Muela et al., 2015). 

Exceptional rainfall events accelerate soil and bedrock erosion on hillslopes, which commonly results in 

higher sediment mobilisation and variations in sediment sources released to water courses. The exported fine 

sediment produces important indirect impacts such as the rapid siltation of downstream water bodies that reached 
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a maximum in the Mediterranean mountains due to land abandonment in the mid-1950s (Navas et al., 2009). 

Furthermore, the higher frequency of droughts and extreme storm events projected under climate change will 

likely produce critical scenarios in these fragile environments. To this respect, Palazón et al. (2016) simulated in 

a large South Pyrenean catchment a scenario with a temperature increase of 2 ºC recording different responses in 

specific sediment yields for different types of plant covers with large increases for scrubland. 

 The anthropogenic pressure on mountain soil systems through farming and grazing reached a maximum 

during the nineteen century also affecting the south Pyrenean region. To overcome the low crop production due 

to the absence of machinery, fertilisers and soil conservation techniques, the cropland areas were increased. As a 

consequence, the natural forest was progressively cleared and replaced by croplands (Alonso-Sarría et al., 2016). 

In the region, the natural vegetated areas have high biodiversity and rich organic soils with high contents of soil 

organic carbon and total nitrogen (Navas et al., 2008; Lizaga et al., 2019a). However, due to vegetation removal, 

these areas experienced higher runoff and the subsequent surface soil removal that depleted soil carbon and 

nitrogen contents (Navas et al., 2012; Quijano et al., 2016b; Gaspar et al., 2019a).  

Since land abandonment during the 1960s the natural vegetation regrowth and afforestation produced a large 

effect on reducing slope-channel coupling and runoff due to an increase in plant cover (Buendia et al., 2016; 

Cavalli et al., 2013; Heckmann et al., 2018; Lizaga et al., 2018a; Estrany et al., 2019; Llena et al., 2019). Thus, 

Mediterranean agricultural soils suffered significant modifications due to land use/land cover changes (Navas et 

al., 2008; Romanyà and Rovira, 2011). Among the most important effects of continuous conventional tillage 

practices and deforestation during past decades in the Mediterranean region are changes in the soil organic 

carbon content (Bruce et al., 1999; Martínez-Mena et al., 2002; Novara et al., 2016; Parras-Alcántara et al., 

2015; Boix-Fayos et al., 2017). Recent research hypothesised that changes in agricultural management from 

conventional to conservation tillage practices along with increases in vegetation due to natural revegetation after 

abandonment of cultivated land will reduce soil erosion leading to increase SOC stocks (Lizaga et al., 2019a). 

It is widely known that conventional tillage practices disturb and erode the soil surface and expose the less 

fertile deeper soil layers, which affects the physical, chemical and biological soil properties. The problems that 

these practices have created are particularly striking in mountainous areas and in regions where agricultural land 

is accompanied by adverse physiographic conditions, such as high elevations, steep slopes, shallow soils and dry 

climatic conditions with heavy rainfall events (MacDonald et al., 2000).  

The need for improved knowledge on soil redistribution rates and sediment related problems have necessarily 

directed attention to the development of new techniques for assessing erosion and deposition rates in the 

landscape. In this regard, nuclear techniques deliver empirical evidences of soil redistribution rates by the use of 

fallout radionuclides, including 
137

Cs, 
210

Pbex, and 
7
Be (Porto et al., 2014; Taylor et al., 2019). These techniques

provide an essentially unique means of assembling retrospective, spatially distributed information on soil 

redistribution rates within the landscape over different timescales, without the need for long-term monitoring. 

In Mediterranean mountain landscapes research aimed to quantify soil redistribution rates has been 

successfully carried out by applying 
137

Cs (Navas & Walling, 1992; Quine et al., 1994; Estrany et al., 2010) and 

later applied at catchment scales (Porto et al., 2003; Navas et al., 2005; Navas et al., 2013). However, few studies 

have investigated the impact of recent land use changes on soil erosion (Evrard et al., 2010; Gaspar and Navas, 

2013; Gharibreza et al., 2013). As a consequence of land use changes along with intensive agricultural use, 

cultivated Mediterranean fields show large variability in soil redistribution rates with averages between -30 and 
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15 Mg ha
−1

 yr
−1

, while in other land uses that offer protection to soil surface, such as scrubland or Mediterranean 

open forest, rates are more moderate, varying from -3 to 5 Mg ha
−1

 yr
−1

 (Navas et al., 2014; Lizaga et al., 2018b). 

From another point of view, remote sensing enables the comparison of landscape evolution such as recent 

land use changes on a multitemporal scale and has potential to assess geomorphological variations, allowing the 

calculation of ecological indices. This technology permits monitoring large areas within a short period of time. 

Satellite images providing information about soil properties, crop management, human activities and 

modifications of the vegetation cover are of value to relate the variations in sediment export rates with the 

susceptibility of specific areas to be eroded (Schillaci et al., 2017; Lizaga et al., 2019a; Useya and Chen, 2019; 

Wang et al., 2019). The most frequently used vegetation index is the normalised difference vegetation index 

(NDVI) as described by Rouse et al. (1974). Furthermore, satellite imagery is a convenient tool for studying land 

use changes, allowing users to conduct research over large and otherwise remote areas (König et al. 2001). 

Furthermore, the analysis of NDVI variations allows deriving information on the degree of soil development and 

the evolution of the vegetation (Johansen and Tømmervik 2014). Several studies have tried to predict different 

soil properties and soil quality using remote sensing and soil sampling data (Ben-Dor and Banin 1995; 

Winowiecki et al. 2016). Most of these studies have included large continental or Mediterranean agricultural 

areas, but few of them have considered mountain agroecosystems.  

Other important indirect impacts of land abandonment are the rapid siltation of water bodies at the first stages 

of land abandonment before the natural revegetation growth, which decreased reservoir storage capacities. The 

water storage capacity reduction of reservoirs has received increasing attention in Mediterranean regions due to 

the water scarcity projected scenario. Furthermore, rainfall decrease and air temperature increase can cause a 

reduction in crop yields of rainfed agriculture in Southern Mediterranean countries what will likely increase 

water demand (Saadi et al., 2015; Valverde et al., 2015). Previous investigations in sediment records 

accumulated during the last decades in reservoirs (Valero-Garcés et al., 1997; Navas et al., 2004) identified 

increases in sediment yields related to land abandonment followed by a decline since the 1980’s in Pyrenean 

reservoirs. The subsequent afforestation carried out in the 1960s and the 1980s reduced significantly runoff and 

sediment connectivity due to vegetation regrowth that protects soil from erosion (Buendia et al., 2016; Lizaga et 

al., 2018a). However, worldwide soil erosion is an estimated 10–40 times greater than soil formation rates 

(Pimentel, 2006; Verheijen et al., 2009). Besides, high erosion rates and soil losses are associated with the export 

of agricultural pollutants (Liu et al., 2018). The relevance of the problem of sediment export is due to the 

associated pollutants delivery to streams such as excess of nutrients (i.e., phosphorus) degrading freshwater and 

marine systems worldwide (Carpenter et al., 1998; Kruk et al., 2020). 

The large increase in fine grain sediment mobilised during exceptional storm events has been demonstrated 

to be one of the most widespread contaminants in aquatic ecosystems, compromising water quality and causing 

reservoir siltation (Navas et al., 2004). However, erosion processes are mostly influenced by a variety of driving 

forces such as slope, land management, altitude, vegetation cover, land use, soil type and changing weather 

patterns and extremes under current climate (Gómez et al., 2009; Renard et al., 2011; Lana-Renault et al., 2013; 

Lecce, 2013; Buendia et al., 2016; Nadal-Romero et al., 2019; Shang et al., 2019). For this reason, various 

approaches have been suggested for sediment yield monitoring (Favis‐Mortlock et al., 2008; Walling and 

Collins, 2008; Dutta, 2016; Wynants et al., 2018) and a general consensus on the need to control soil erosion has 

been achieved. To this aim, it is important to evaluate what areas, soils or land uses exposed to erosion together 

CH 1

4



with agricultural practices and land management, are causing land degradation as these processes lead to the loss 

of soil quality. 

To prevent future loss of fertile topsoil and the subsequent export of agricultural pollutants, it is crucial to 

understand the recent history of the sediment dynamics. However, there is still limited knowledge about the 

specific sources of sediments and associated pollutants and their variations in the last decades. Therefore, 

defining the sources of eroded fine-grained sediment is a fundamental requirement for catchment management as 

well as for understanding the evolution of landscapes and delineating the most sensitive areas to soil loss.  

Tracking the sources of sediment and its associated contaminants is a vital step towards mitigation (Walling 

and Collins, 2008; Quesada et al., 2014). It is necessary to identify the areas most vulnerable to soil erosion in 

order to preserve soil nutrients and land as vital resources (Quijano et al., 2016c; Lloyd et al., 2019; Gaspar et 

al., 2019a). However, determining the sediment provenance in catchments using conventional monitoring 

techniques is often challenging and expensive. To evaluate this problem, several tools have been developed to 

quantify the effects of different erosion mechanisms, such as connectivity (Lizaga et al., 2018a; Llena et al., 

2019), the spatiotemporal dynamics of erosion (Owens et al., 2011; Rovira et al., 2012; Wynants et al., 2020) 

and wind erosion (Schmidt et al., 2017; Zhang et al., 2018). Thus, some preliminary work carried out in the early 

1980s showed fingerprinting techniques as key for addressing the sediment delivery from sources to sink 

(Klages and Hsieh, 1975). The procedure identifies sediment provenance and estimates the relative contribution 

of each potential sediment source, using a variety of selected tracer properties. 

Initial fingerprinting studies were performed based on a single tracer (Walling et al., 1979). However, the 

inclusion of quantitative mixing models enabled to discriminate more than two sources with the subsequent 

increase in the number of tracers (Walling et al., 1993; Zhang and Liu, 2016). To date, sediment fingerprinting is 

becoming a widely used tool to tackle erosion problems, allowing identifying the sources of sediments and 

contaminants in catchments (Klages and Hsieh, 1975; Walling et al., 1979; Yu and Oldfield, 1989; Collins et al., 

1996; Evrard et al., 2013; Schuller et al., 2013; Palazón et al., 2015a; Henry et al., 2016; Owens et al., 2016; 

Meusburger et al., 2018; Upadhayay et al., 2018) and, evaluating the effect of extreme flood events (Gaspar et 

al., 2019; Lizaga et al., 2019).  

Nowadays, several studies use fingerprinting techniques to examine specific management problems in 

catchments (Schuller et al., 2013; Palazón et al., 2015b), and contamination in rivers and coastal waters 

(McCarthy et al., 2017; Evrard et al., 2019a). Research has been conducted to involve different sets of tracers 

such as geochemistry, magnetic properties and radiotracers as fingerprints to identify the primary source of 

sediments by applying unmixing models (Martínez-Carreras et al., 2010; Evrard et al., 2013; Laceby and Olley, 

2015; Pulley et al., 2015; Meusburger et al., 2018; Gaspar et al., 2019a; Evrard et al., 2019). In this context, 

recent studies have proposed plant-specific organic molecules that exist in sediment as a new effective isotopic 

fingerprinting approach for land-use-specific sediment source identification (Gibbs, 2008; Gibbs, 2013). Thus, 

the use of compound-specific stable isotope (CSSI) techniques has emerged as a suitable alternative to 

previously analysed tracers (Reiffarth et al., 2016, 2019). Recent research has used CSSI signatures of soil 

organic biomarkers such as natural fatty acids to obtain the sediment export apportionments from various land 

uses (Blake et al., 2012; Alewell et al., 2016; Upadhayay et al., 2017; Mabit et al., 2018; Bravo-Linares et al., 

2018; Lavrieux et al., 2019;). 

5



The growing interest in recent years on sediment fingerprinting has led to different implementation 

approaches. The differences of the proposals mainly focus on three aspects: (a) different fingerprinting models 

(e.g. SourceTracker, IsoSource, SIFT, MixSIAR, FingerPro); (b) the use of correction factors (Koiter et al., 

2018); and (c) tracer selection methodologies (Haddadchi et al., 2013; Smith and Blake, 2014; Owens et al., 

2016; Collins et al., 2017).  

The concern about tracer selection methodologies, including different statistical methods, has been discussed 

by several authors (Palazón et al., 2015b; Pulley et al., 2015). The tracer selection methods rely on the 

information of the sources to determine the tracer’s ability to differentiate sediment sources. The most 

widespread methodology consisted of an initial mass conservation test, usually termed as range test (RT), 

followed by the two-step statistical procedure proposed by Collins and Walling (2002) that uses the Kruskal–

Wallis (KW) and discriminant function analysis (DFA) tests. This procedure tests the ability of individual tracers 

to differentiate between sources and identifies the best combination of tracers that provides the maximum 

discrimination of the source classes. The main limitation of this widely used two-step statistical procedure is that 

it does not incorporate the information of the sediment mixtures in the analysis. Phillips and Gregg (2003) 

established that in a linear mixing model, the mixture sample must be within a polygon bounding the signatures 

of the sources as a requirement of conservativeness. More recently, following this hypothesis, Smith et al. (2013) 

created an R code to assess the geometry of the mixing space and to ensure that the mixture samples fit inside the 

sources. If a mixture sample is outside this polygon, then no physical solution exists for that mixture as one or 

more tracers are non-conservative. In this context, some researchers have implemented the biplot test that 

displays the mixture samples versus two tracers as a more restrictive condition than the traditional range test 

(Pulley et al., 2015).  

Overall, the fingerprinting approach and the application of unmixing models and tracer selection 

methodologies have been proved necessary to understand source-tracer relationships and are of value in 

identifying sediment sources to inform best management practices. Furthermore, its implementation in 

conjunction with topography-based indexes and soil redistribution rates estimates would contribute to a clear 

understanding of soil mobilisation for further development of soil redistribution models and predict the future 

evolution of catchments. 

 Sediment connectivity indexes could represent a reasonable estimate of the temporal connectivity variation 

in Mediterranean agricultural catchments. Despite the potential of the index, empirical measurements are needed 

to confirm and compare connectivity index results. To this purpose, 
137

Cs measurements to quantify and 

spatialize soil redistribution rates offer great potential to obtain ground truth data on soil mobilisation. The 
137

Cs 

derived estimates could allow identifying and discriminating the main erosion and deposition areas and its effect 

on soil physico-chemical properties. Both techniques refer to delineate the areas where soil or sediment is 

mobilised, however, they do not identify the sources of sediment delivery to streams and water bodies. For this 

reason, the implementation of a third technique is necessary to ascertain the main sediment provenance areas and 

to understand the processes leading to increased sediment load. 

During the last decades, changes in land use and land cover have influenced soil erosion and soil properties 

in Mediterranean mountain agroecosystems. Therefore there is an increasing need for reliable information in 

these landscapes to analyse the spatial redistribution of soil and sediments at catchment scale. The evaluation of 

the relations between the spatial distribution patterns of soil properties, soil redistribution processes and exported 
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sediment together with remote sensing information will allow a greater knowledge on the soil conservation 

status to tackle soil degradation and the export of sediment and pollutants to downstream water bodies. This 

knowledge is central to ensure the sustainability of fragile Mediterranean environments and in this context the 

Pre-Pyrenean agroecosystems are optimal to perform these types of studies. To this purpose, a representative 

catchment of the south Pyrenees has been selected to conduct this research and assess the impacts of recent land 

use and land cover changes. The study catchment has been subjected to centuries of rainfed agriculture, 

conventional tillage and posterior land abandonment followed by natural revegetation and afforestation that at 

present coexist with conservation agriculture. Such context of successive transformations is key to provide sound 

information to understand the dynamic of processes affecting Mediterranean agroforestry landscapes. 

1.1 Objectives 

This thesis aims to assess the impacts of land use and land covers changes (LU/LC), agricultural practices 

and climate factors such as extreme storm events on soil loss and export of sediment and associated elements in a 

mountain agroforestry catchment. As representative of Mediterranean mountain agroecosystems, the Barués 

catchment located in the central part of the Ebro basin was selected to assess the effects of human and 

environmental impacts in highly modified South Pyrenean landscapes. The area is affected by convective 

weather events, especially heavy rains, which are frequent during autumn with high soil erosion potential. At the 

start of the twentieth century, most of Barués catchment was agricultural land. In the 1960s, nearly 60% of its 

surface was cultivated. However, during the next decade, 75% of the agricultural land was abandoned. For this 

reason, the conditions of the study catchment represent a unique opportunity to track variations in soil and 

sediment dynamics associated with land use and land cover changes.  

Information on the influence of these changes in soil properties and on the soil and associated nutrients losses 

is required to concentrate future efforts in the most affected areas. The erodible areas may increase export rates 

during extreme storm events and release pollutants to water bodies. Besides, human impacts such as clearcutting 

or inappropriate agricultural practices could further amplify the erosive impact by modifying the protection 

capacity of the plant cover with subsequent increase of sediment export. Knowledge on the effect of extreme 

storm events, the agricultural cycle and human activities such as harvesting, fertilising and clearcutting is 

necessary to understand patterns of sediment sources contribution, and the functioning of processes supplying 

fine sediment and associated pollutants to water bodies. 

This crucial knowledge can be effectively achieved by the implementation of fingerprinting techniques with 

the combination of connectivity indexes, soil redistribution rates measurements and the use of remote sensing. 

Furthermore, developing open-source fingerprinting models and additional tools to strengthen the application of 

the fingerprinting technique are essential to tackle the detrimental impact of sediment supply to waters.   

In an attempt to achieve these main goals, the research carried out has been structured in three major outlines: 

Soil erosion and soil redistribution processes 

To gain knowledge on the main drivers affecting the vegetation cover, sediment connectivity and soil 

redistribution rates and their effect on the spatial distribution of soil properties and nutrients, the following 

objectives have been established: 
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- to assess the variation of connectivity produced by recent LU/LC changes.

- to model how connectivity varies in pine-afforested areas using total aerial biomass data (TAB) for

improving the understanding on the functioning of  the hydrological network in afforested areas.

- to estimate the variation in the percentage of vegetation cover during the successional stages of the natural

revegetation using the NDVI derived from remote sensed data.

- to compare the NDVI with the distribution of soil nutrients for assessing the impact of the revegetation

recovery after land abandonment.

- to identify the spatial patterns of main soil properties and the differences between land uses.

- to quantify soil redistribution rates by using fallout 
137

Cs and GIS and evaluate if the patterns of  soil

redistribution are influenced by the LU/LC changes in recent decades.

Software developing 

Methods in fingerprinting techniques are still under discussion with tracer selection at the centre of the debate. In 

order to efficiently implement the fingerprinting technique, further knowledge is required on different statistical 

methods needed to select an optimum set of tracers to introduce in models. To this aim and for refining the 

current techniques, a new development has been defined:  

- to further develop and improve an existing frequentist unmixing model.

- to create a complete package for facilitating the application of the sediment fingerprinting technique.

- to develop, test and verify a new methodology to identify non-conservative tracers and select those with a

conservative and coherent message. 

Sediment source fingerprinting 

In order to establish effective control practices to prevent the release of sediments and pollutants from 

agriculture, the loss of fertile soil and detect the areas prone to erosion, the following objectives have been 

proposed: 

- to evaluate how exceptional storm events can modify the properties of channel bed deposits and asses how

the contributions from sediment sources might change.

- to determine which is the primary source of sediment and associated pollutants and analyse the links of

sediment export with the agricultural cycle by using magnetic susceptibility, geochemistry and radiotracers at

seasonal scale during two hydrological years.

- to evaluate the capability of plant-specific biomarkers such as CSSI to be used as fingerprinting tracers in

areas affected by intense LU/LC changes.

- to implement δ
13

C-FAs fingerprints to increase the discrimination of fully and partially covered year-round

vegetated areas in Mediterranean agroecosystems.

1.2 Research contributions 

In this thesis, a detailed assessment of the impact of land use changes, the agricultural cycle and extreme 

storm events on soil redistribution and mobilisation of soil particles has been fulfilled through an exhaustive 

field work, a variety of soil and sediment analyses and interpretation of the results supported by sound computer 

programing, software development and modelling. 
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Paper I contributes to further knowledge on the implementation of sediment connectivity and its variation 

with the land use changes together with the completion of the total aerial biomass (TAB) estimate to introduce 

forest density variability in the connectivity model. 

Paper II evaluates the influences of recent LU/LC changes in 
137

Cs derived soil redistribution rates to 

identify which are the LU/LC with high erosion and deposition rates as indicative of the intensity of soil 

mobilisation. Besides, this research explores the spatial distribution of the main erosion and deposition areas and 

its effect on main soil properties and on the distribution of soil organic matter.  

Paper III compares changes in the main soil properties between areas that have remained unchanged vs 

abandoned ones, identifies different patterns of the spatial distribution of soil properties and pinpoint the land 

use as leading factor of such variations. The analysis of multitemporal satellite data was successful to estimate 

the natural live green vegetation during the successional stages of the natural revegetation after land 

abandonment. By combining ground truth data with remote sensing a positive correlation between soil nutrients, 

SOC and TN, with NDVI values is obtained, which can be extrapolated to other similar agroecosystems.  

FingerPro R package comprises a methodological development and the publication of an open-source tool to 

quantify the provenance of sediments published in the CRAN platform. FingerPro is a low time-consuming and 

open-source mixing model that provides the users with tools to: i) characterise different sediment sources, 

establish correlations between the tracers and assist the selection of optimum tracers; ii) graph the results, using 

the state of the art of R packages; and iii) unmix sediment samples to estimate apportionments of sediment 

sources. 

Paper IV exploits the opportunity offered by the occurrence of an exceptional storm event to track the 

changes in sediment provenance and the variation of sediment properties in streambed sediments under a 100 

year return period storm event. In this research, we addressed the variations of sediment source contributions and 

the variation of sediment properties for three scenarios; ordinary water level, regular high discharge events and 

high discharge events produced by the extreme storm event.  

Paper V provides a new method to extract individual tracer information that takes into account the mixture 

and aims to find a solution for the tracer selection in fingerprinting studies. We have devised an innovative 

methodology to identify non-conservative and dissenting tracers that enables to understand datasets and, 

likewise, the effect of each tracer. This new method represents a ground-breaking alternative that can fill the 

gaps of previous tracer selection methods. 

Paper VI successfully assesses the variations in transport of fine sediment and associated pollutants directly 

produced by agricultural practices. For the first time, the combination of remote sensing data and the 

fingerprinting technique is applied to estimate the impact of the agricultural cycle and especially the effect of 

bare agricultural soils in the exported sediment and its provenance. 

Paper VII implements for the first time in Mediterranean environments the use of plant-specific tracers such 

as CSSI for fingerprinting studies. In this research, it has been successfully tested the ability of CSSI based 

fingerprinting to efficiently discriminate LU/LC and identify the different sediment contributing sources in 

Mediterranean agroecosystems. Furthermore, the influence of informative priors is successfully assayed with 

information obtained from previous geochemical fingerprinting evaluation together with a geomorphological 

assessment pursued during field surveys. 
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2. Materials and methods

2.1 Study area 

The study catchment (23 km
2
) is located in Barués in the middle part of the Ebro Basin (Fig. 1). From the 

geological perspective, it lies in the distal part of the Pre-Pyrenean range with characteristically south – 

southwest low angle strata dipping between 5° and 8°. Rock outcrops in the catchment include two conformable 

Oligo - Miocene lithostratigraphic units of the Uncastillo Formation, mainly composed of sandstone (Tirapu and 

Arenas, 1996). The lower eastern part of the catchment is dominated by the presence of a Quaternary glacis. The 

upper part of the Quaternary glacis is dissected by the La Reina tributary, an ephemeral stream with documented 

exceptional discharges under heavy rainfalls. Valley floors are infilled by eroded sediment from the slopes and 

are deeply incised by streams, especially in the middle part of the catchment where the stream talus deep reach 

its maximum. The stream channel banks composed of loess type material have steep talus without vegetation 

cover. The channel banks are characterised by deep straight walls due to flow incision by high water energy 

during heavy rainfalls. Rangelands occupy the highest altitudes, and the revegetated abandoned fields are mostly 

located at intermediate altitudes where most of the old cultivated fields were located. Interspersed patches of 

highly degraded areas, including bare soil (subsoil), are dispersed all over the catchment, although they are more 

abundant in the middle part on south-facing slopes.  

 The climate is characterised by cold winters and hot and dry summers. The mean annual rainfall is about 500 

mm and rainfall periods concentrate in spring and autumn while the droughts take place between these two 

humid periods. The area is affected by very intense though localised storms and is drained by an ephemeral 

stream tributary of the Arba River. The maximum and minimum annual temperatures are 30°C and -6°C, 

respectively. The main soil types, classified (IUSS Working Group WRB, 2015) and mapped in 2016 by Machín 

(EEAD-CSIC, personal communication) are Calcisols and Cambisols.  

At the start of the twentieth century, most of the catchment was agricultural land. In the 1960s, nearly 60% of 

the catchment was croplands. However, during the next 10 yr, 75% of the agricultural land was abandoned. 

Currently, ~16% of the catchment is still cultivated while open forest and pine occupy the remaining 83.5 % 

(Lizaga et al., 2017). Since the mid-1950s a decrease in agricultural land and a transition to naturally revegetated 

cover and pine afforestation has been documented (Fig. 1). There has also been a decrease in the number of 

individual cultivated fields, along with an increase in their size, in an attempt by farmers to increase the 

efficiency of production and cost recovery. The main land use/land covers are agricultural, open forest, 

scrubland and pine afforestation, occupying 16%, 50% and 19% of the catchment area, respectively. In addition, 

most of the agricultural land is located on the Quaternary glacis and on the fluvial terraces with gentle slopes 

occupying the valley floors. The main crops are winter cereals (Triticum aestivum L. and Hordeum vulgare L.). 

The pine forest mainly composed of Pinus halepensis Mill. has a mean tree cover density of 70%. The natural 

forest (Quercux ilex L., Quercus coccifera L., and Juniperus communis L.) and the scrubland (Rosmarinus 

officinalis L., Thymus vulgaris L., Santolina chamaecyparissus L., Genista scorpium (L.) DC., Macrochloa 

tenacissima (L.) Kunth / Stipa tenacissima L., and Lygeum spartum (L.) Kunth are typically Mediterranean and 

in many areas are intermixed. The scrubland is the early phase of the successional stages of natural revegetation, 

in the transition to Mediterranean forest.  
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Fig. 1. a) Location of the Barués catchment in the central part of the Ebro Basin (NE Spain). b) Percentage of the different land uses in 1957 

and 2010. c) 3D image of Barués catchment created with a DEM and an orthophoto (National Plan of Aerial Orthophotography, IGN). The 

numbers represent the main land uses shown in the photographs. d) 3D Map of soil types in the catchment (IUSS Working Group WRB, 

2015). The number in the legend represents the average depth of each soil type. 

2.2 Multi-temporal analysis of sediment connectivity 

The assessment of the sediment connectivity was carried out by applying a topography-based index in two 

different scenarios using two land use maps for 1957 and 2010. The first map was created by orthorectification 

of the 1957 American army aerial photographs using a supervised classification in ERDAS after photographic 

enhancement. The actual map was digitised over 2010 PNOA (National Plan of Aerial Orthophotography) 

orthophotography and fieldwork maps. Nowadays, the most popular connectivity index from Borselli et al. 

(2008), the modified version by Cavalli et al. (2013) as well as geomorphological studies related to slopes or 

erosion (Kawabata & Bandibas, 2009; Gutiérrez & Lizaga, 2016; Masselink et al., 2016) are based on DEMs. 

Because accuracy of model results is fully dependent on DEM quality and resolution it is needed to apply and 

develop a correct topography-based index such as IC. Therefore, developing a model based on LIDAR data was 

necessary to refine the existing LIDAR points to create a high-resolution DEM (1 x 1 m). Accordingly, we used 

IGN (Spanish National Geographic Institute) raw LIDAR data points following Montealegre et al. (2013) 

methodology. First, we removed the noise of the data, deleting LIDAR points classified as noise using ArcGIS. 

Secondly, we proceeded to filter our LIDAR data in order to generate a bare ground 1 x 1 m raster DEM using 

MCC-LIDAR, a command-line tool for processing discrete-return LIDAR points in forested environments based

on the Multiscale Curvature Classification algorithm developed by Evans & Hudak (2007). The root mean 

square error (RMSE) was calculated for both DEMs using a cross-validation method. 
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LIDAR data represent a tool that supports the calculation of forest inventories and allows the vegetation to be 

measured in three dimensions (Ruiz, 2012; Reyes & Delia, 2014). Total aerial biomass (TAB) was calculated for 

the afforestation forests using Equation (1) developed by Domingo et al., (2016) and the software FUSION. This 

equation was created and optimised in a nearby afforested area with Pinus halepensis Mill that had similar forest 

dendrometry characteristics as the pine afforestation in the study catchment. Equation (1) is a good complement 

to understand the change produced by the pine afforestation.  

       (1) 

where e refers to the Euler's number, A2m is the percentage of the first LIDAR laser return above 2 m ground 

height, produced by the reflectance of the treetop canopy, and P40 is the 40
th

 percentile of LIDAR data. A 25 m 

x 25 m/pixel size was selected to create a raster image comparable to the study plots accomplished by Domingo 

et al. (2016) to obtain such an equation. 

To analyse the variation of connectivity between the two stages, the sediment connectivity was estimated 

using a geomorphometric approach to simulate how connectivity changes due to different land covers. Hence, it 

is very important to determine how the system connectivity responds to human-induced cover changes (Harvey, 

2002). For this reason, we applied the connectivity index (1) proposed by Borselli et al. (2008) using the C-

factor from RUSLE (Revised Universal Soil Loss Equation) as a weight factor (W) in the index. 

𝐼𝐶 = 𝑙𝑜𝑔10  
𝐷𝑢𝑝

𝐷𝑑𝑛
   (2) 

where 𝐷𝑢𝑝 and 𝐷𝑑𝑛 are the upslope and downslope components, defined by:

𝐷𝑢𝑝 = 𝑊𝑆√𝐴                     (3)

where W is the average weighting factor of the upslope contributing area, S is the average slope gradient of 

the upslope contributing area (m/m) and A is the upslope contributing area (m
2
). 

𝐷𝑑𝑛 =  ∑
𝑑𝑖

𝑊𝑖𝑆𝑖
𝑖    (4) 

where 𝑑𝑖 is the length of the flow path along each i cell according to the steepest downslope direction (m),

and 𝑊𝑖 and 𝑆𝑖 are the weighting factor and the slope gradient of the i cell, respectively.

Borselli et al. (2008) proposed S= sin α + 0.005 including 0.005 as the minimum slope value to avoid 

infinite values in Equation (4). Thus, we preserved the original values of our 1 x 1 m DEM to obtain more 

realistic results after checking the absence of 0 slope values. Besides calculating the contributing area, we used 

the procedure of multiple flow D-infinity approach (Tarboton, 1997) instead of the single flow direction 

algorithm (O’Callaghan & Mark, 1984) used in the hydrology ArcGIS toolbox as proposed in Cavalli et al. 

(2013). Using D-Infinity allows calculating the flow accumulation of converging and diverging flow directions 

to create a more realistic topographic index. 

In addition, the connectivity index was improved by using a terrain roughness index as a weight factor. 

Cavalli and Marchi (2008) and Cavalli et al. (2013) developed and later implemented a roughness index (RI) in 

the connectivity index. RI was calculated as the standard deviation of the residual topography using the mean of 

the 25 neighbourhood cells values as a 5 x 5 moving window. However, for our index, we created a new 

roughness index (SdRI; Equation 5) calculated as the standard deviation of the slope as recommended by 

TAB (
kg

ha
) = 𝑒(0,0158∗𝐴2𝑚) ∗ 𝑒(0,0713∗𝑃40)
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Grohmann et al. (2011). SdRI was also applied using a 3 x 3 moving window to accentuate steep slope terrace 

characteristics of the low strata bedding preserved and modified by agricultural practices in our study catchment.  

𝜎 = √
∑ (𝑥𝑖−𝑥𝑚)29

𝑖=1

9
   (5) 

Where 𝑥𝑖 is the pixel value and 𝑥𝑚 is the average of the 3 x 3 moving window.

Furthermore, in Equations (2) and (3), we also used our two land use maps (C-factor) as weighting factor to 

show the differences between both land uses (1957 and 2010) and how the connectivity index changed over 

time. The C-factor values assigned to our land uses are 0.0011, 0.0010, 0.06, 0.2 and 0.26 for pine afforestation, 

Mediterranean forest, abandoned land, cultivated land and trails respectively extracted from Panagos et al. 

(2015). Combining both approximations, a weighting factor was applied as the link between the C-Factor and 

SdRI index, trying to develop a better adjustment to reality. The model was tested in the entire catchment to 

facilitate visualisation at a more detailed scale in an area where the four land uses occur.  We selected the same 

area as the red square of Fig. 1 to show how connectivity changed over 50 years due to land use and cover 

variations. 

To introduce the probable variations of forest density in our model, the TAB layer created in the previous 

section was implemented inside the C-factor layer using it as the inverse of TAB to produce lower C-Factor in 

the areas with higher densities, and higher C-Factor in the areas with lower densities. Even with a 1 m resolution 

DEM, it was impossible to implement the same methodology for the other land covers: it was only used on 

afforested areas by creating a mask layer. 

   𝑊 = (𝐶 ∗
1

𝑇𝐴𝐵
) ∗ 𝑆𝑑𝑅𝐼               (6) 

where W is the weighting factor, C is the C-factor of the different land covers, TAB is the variance of the total 

aerial biomass (only used over pine afforestation) and SdRI is the roughness index. The data are normalised by 

scaling them between 0 and 1. The normalisation is needed because the weight factor is a dimensionless factor 

and should range from 0 to 1 to be weighted equally to slope in the index. For this reason, the W factor was 

normalised using unity-based normalisation Equation (7): 

𝑧𝑖 =
𝑥𝑖−min (𝑥𝑖)

max(𝑥𝑖)−min (𝑥𝑖)
   (7) 

Where xi is the pixel value and min/max xi are the minimum and maximum values, respectively, of the moving 

window. 

2.3 Remote sensing and GIS 

Satellite imagery data were analysed with digital image processing methods and spatial analysis techniques 

to detect spatial and temporal changes in vegetation and land use. A multitemporal Landsat satellite dataset 

formed the basis for the change detection procedure. A series of twenty four Landsat images were acquired by 

the different multispectral sensors on board Landsat satellites. Image series were selected with different temporal 

resolutions to analyse the forest and scrubland variability or to assess the bare soil agriculture surface during the 

agricultural cycle. The digital image processing procedure, which included pre-processing of satellite 

multispectral images to ensure temporal comparability between scenes, was carried out by the Earth Resources 

Observation and Science Center (EROS) (USGS) for the Landsat 8-OLI and Landsat 5-TM sensors. 

Furthermore, following the methodology proposed by Fan and Liu (2016), a total of 220 vegetation spectra were 

downloaded from the USGS spectral library (Kokaly et al., 2017). Comparing these spectra, a linear 
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interpolation was pursued to determine reflectance values at given wavelengths for both Landsat 5 TM and 

Landsat 8 OLI and quantify the spectral band adjustment factor (Fan and Liu, 2017). In addition, the Landsat 8 

values were corrected to ensure temporal comparability between images from different sensors. To calculate the 

bare soil areas an unsupervised classification was pursued together with the visual mapping. NDVI layers were 

created for the selected Landsat images. These transformations can provide information about the current state of 

the vegetation represented in a pixel and can be used to determine if the study area changes from one date to 

another and to follow its evolution.  

The NDVI (Rousse et al. 1974) is formulated as: 

𝑁𝐷𝑉𝐼 =
(𝜌𝑁𝐼𝑅−𝜌𝑅𝐸𝐷)

(𝜌𝑁𝐼𝑅+𝜌𝑅𝐸𝐷)
   (8) 

Where ρNIR is the reflectance of the near infrared spectral band and ρRED is the reflectance of the red 

spectral band. The NDVI images for each date were then compared with the previous temporal image to assess 

the evolution of the NDVI for each time interval. The NDVI values for these areas were extracted and the 

percentage variation in the vegetation index was calculated to evaluate the evolution of the vegetation recovery. 

2.4 Soil and sediment sampling 

The sample collection comprises three different samplings protocols: i) bulk soil samples collected with a 

motorised percussion corer to characterise the soils, and calculate the soil redistribution rates and its effect on the 

main soil properties; ii) For the appropriate characterisation of the sediment eroded by exceptional rainfall 

events, 5cm depth source sediment samples were collected on the basis that these events can produce deep rilling 

and remove up to 5cm of surface soil. Besides, two different sediment mixtures types have been sampled to 

address the effect of extreme storm events: 1) a set of channel bed sediment mixtures collected in the channel 

bed along the main streams from the headwaters to the outlet before and after the 2012 extreme storm event; 2) 

floodplain sediment mixtures. These different sampling methods were aimed to provide a close replication of 

sediments deposited before and after the exceptional discharge event and the sediment deposited in floodplains 

that corresponds to regular high discharge events. iii)  For time-integrated studies, 2cm depth source samples are 

assumed to represent the material mobilized by regular erosion processes and delivered to stream channels. To 

capture the spatiotemporal variation in sediment mixtures, suspended sediment mixtures (SSM) were collected 

every three months from three sampling stations located along the catchment streams to analyse the seasonal 

variability in the exported sediment and assess the effects of contemporary land use/ land cover changes and 

agricultural practices. 

2.5 Soil and sediment sample analysis 

2.5.1 Soil properties and soil redistribution rates estimates 

All the samples were air-dried, grinded, homogenised and sieved to <2mm. The bulk samples were analysed 

to obtain: Particle size, soil organic matter (SOM), soil organic carbon (SOC), TN, pH, CaCO3, electrical 

conductivity (EC), wilting point, field capacity, magnetic properties (low-frequency magnetic susceptibility (LF) 

and frequency dependence (FD)) and 
137

Cs specific massic activity.  

The following methodologies were applied as follows: 

CH 2
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To analyse the soil redistribution rates, the fraction > 2 mm was weighed to account for the stone content. 

Particle size, soil organic matter (SOM) and 
137

Cs were analysed in the ≤ 2 mm fraction for 98 bulk soil samples. 

A Beckman Coulter LS 13320 laser diffraction particle size analyser was used for grain size analysis. Prior to 

particle size measurements, the organic fraction was removed by H2O2 (10%) heated to 80 
o
C. Samples were

then chemically dispersed with 2 mL of sodium hexametaphosphate (40%), stirred for 2 h and sonicated for a 

few minutes to facilitate dispersion.  

The methodology for 
137

Cs analysis is widely described in the literature (Walling & Quine, 1991, Navas et 

al., 2005). The massic activity of 
137

Cs was measured at the gamma lab of the EEAD-CSIC using a high 

resolution, low energy background, coaxial high-purity germanium (HPGe) gamma-ray detector coupled to an 

amplifier and multichannel analyser. The detector had an efficiency of 50% and a 1.9 keV resolution at 1.33 

MeV (60Co) (shielded to reduce background) and was calibrated using standard soil samples placed in 

containers of the same geometry as the measured samples. Gamma emission of 
137

Cs was measured at the 661.6 

keV photopeak and counted for 86400s. The analytical precision of the measurements was approximately ± 3-

5% at the 95% level of confidence, with a detection limit of 0.3 Bq kg
-1

. The content of 
137

Cs was expressed as a 

concentration or massic activity (Bq kg
-1

) and as activity per unit area or inventory (Bq m
-2

). The inventory was 

calculated using the mass of the fine fraction and the cross section of the core sampler. The values of the 
137

Cs 

inventory associated with the 98 individual sampling points were converted into estimates of soil redistribution 

rates (Mg ha
−1

 yr
−1

) by using Soto & Navas (2004) and Soto & Navas (2008) conversion models for uncultivated 

and cultivated soils, respectively. The models compare the measured inventory with the local reference inventory 

and determine the erosion or deposition rate required to account for the depletion or increase of the measured 

inventory, relative to the reference inventory. 

In addition to the previously described analyses, the soil salinity was measured in a conductivity cell (Orion 

013605MD) and expressed as the electrical conductivity of a 1:5 soil:water extract (EC 1:5) at 25 
o
C in dS m

-1
. 

Soil pH was measured in a 1:2.5 soil:water extract with a pH electrode (Orion 9157BNMD). Total carbonate 

content (%) was analysed using a calcimeter (CSIC, 1976). SOC and TN were analysed by the dry combustion 

method using a LECO RC-612 multiphase carbon analyser and a LECO CN TruSpec carbon and nitrogen 

analyser, respectively. SOM was estimated by multiplying SOC content by the Van Bemmelen conversion factor 

(1.724), assuming that organic matter contains 58 % organic carbon. Mass specific magnetic susceptibility was 

measured in 10 ml topsoil and bulk soil samples at both low (0.47 kHz; χlf) and high (4.7 kHz; χhf) frequencies, 

using a Bartington Instruments dual-frequency MS2B sensor that operates with an alternating current and 

produces an alternating magnetic field at 80 A m
−1

 (Bartington Instruments Ltd. 2000). Mass specific magnetic 

susceptibility measurements at low and high frequency were expressed in units of 10
−8

 m
3
 kg

−1
. The results are 

the mean values of three measurements for each sample. Both allow determining absolute mass specific dual 

frequency-dependent susceptibility (χfd), defined as the difference between the measure at low and high 

frequencies (χfd = χlf – χhf). Alternatively, this parameter is commonly expressed as a percentage, that is the 

percentage frequency-dependent susceptibility (χfd%) using the following equation: 

         χfd% = [(χlf − χhf )/χlf ) × 100] (9)
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2.5.2 Sediment source fingerprinting 

Sediment source and mixture samples used for fingerprinting were sieved to <0.063mm to isolate a 

comparable grain size fraction between source and sediment materials and related to the predominant silt texture 

of soils in the catchment. The implementation of the technique requires n tracers to determine the contributions 

of n + 1 sources to the mixture. Due to the inherent complexity of the catchment characteristics, with large 

variations in climate, Geology, land use, vegetation, soil, and management practices, commonly, no unique 

tracer can discriminate between multiple sediment sources. Furthermore, from the analysed tracers, only those 

with conservative behaviour can be used for implementing the technique. Thus, additional analyses were 

implemented to obtain the necessary number of tracers to fulfil the basics of the technique. The analyses 

implemented for fingerprinting studies comprise: i) Magnetic properties; ii) stable elements; iii) radionuclides 

and iv) δ
13

C-FAs.  

Two different methodologies were used for the analysis of stable elements: X- Ray Fluorescence performed 

at the Consolidated Radio-isotope Facility (CORIF, University of Plymouth) using a Thermo Fisher Scientific 

Niton XL3T 950 He GOLDD+ XRF analyser, equipped with different excitation filters (main, low and high 

range) that optimize the analyser's sensitivity for various elements. Helium was used to allow measurement of 

light elements. All sources and mixtures (n=19) were packed into XRF sample cups with a 38.2-mm exposure 

diameter in which the laser pulse (3-mm diameter) strikes the surface of the sample. During analysis, sample 

cups were moved ten times to change the position of the laser, thereby obtaining ten different measures per 

sample to produce a dataset of 190 measurements. To assess the accuracy of the analysis and the XRF analyser 

drift three repetitions were obtained for each measurement, recording a very low drift of <1%. A total of 18 

elements returned measurements above the limit of detection: Ba, Nb, Zr, Sr, Rb, Pb, Zn, Fe, Mn, Cr, Ti, Ca, K, 

Al, P, Si, Mg and V. 

On the other hand, the total elemental composition was analysed by ICP-OES after total acid digestion 

pursued in two cycles with HF (48 %), HNO3 and H2O2 and a second cycle with HNO3, HCL, and Milli-Q water

in a microwave oven (Navas and Machín, 2002). In this second procedure the following 28 elements were 

analysed: Al, As, Be, Bi, B, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, P, Rb, Sb, Se, S, Sr, Ti, Tl, V, 

Zn. The resulting concentration was expressed in milligrams per kilogram (mg kg
-1

).  

Gamma emissions of 
137

Cs, 
210

Pb, 
226

Ra,
 238

U, 
232

Th and 
40

K were analysed at the gamma lab of the 

Experimental station of Aula-Dei (EEAD-CSIC, Spain) described in the “Soil properties and soil redistribution 

estimates” section. The radionuclide activities are expressed as massic activity in Bq kg
−1

 dry soil and counted 

for 43,200 s and 86000 s for the 5cm depth source and channel bed and flood plain mixture samples and for the 

2cm depth source and suspended sediment mixture samples, respectively. Considering the appropriate 

corrections for laboratory background, 
137

Cs activity was determined from the 661.6‐keV photopeak; 
210

Pb was 

measured at 46.5 keV. 
226

Ra was determined from the 351.9‐keV line of 
214

Pb, a short‐lived daughter of 
226

Ra, 

after equilibrium was reached. 
238

U was determined from the 63‐keV line of 
234

Th; 
232

Th was estimated using the 

911‐keV photopeak of 
228

Ac, and 
40

K was determined from the 1461‐keV photopeak.  

Compound specific stable isotopes (CSSI) analyses were carried out at the Isotope Bioscience Laboratory 

(ISOFYS, University of Ghent). Lipids were extracted from the soil (source) and sediment (sink mixture) 

samples using accelerated solvent extraction (Dionex ASE 350, Thermo Scientific, Bremen Germany) with 

dichloromethane (DCM): MeOH (9:1 v/v) at 100ºC and 13 MPa for three cycles of 5 min (30 mL cells, 60% 

CH 2
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flush volume). For this c.a. 3 g of dried  (x °C, y h) and 0.063 mm sieved sample was weighed in 22 mL stainless 

steel cells to which a recovery standard was added (12.5 ng C17:0FA, dissolved in 50 µL ethyl acetate). The 

lipid extract was dried using rotary evaporation (CentriVap, Labconco, Kansas City, USA) at 60ºC and 20 mbar. 

Lipid fraction was re-dissolved in DCM/Isopropanol (2:1 v/v) before being separated in neutral and acid fraction 

using aminopropyl solid-phase extraction columns (Bond Elute, 500mg, 6mL, Agilent Technologies) according 

to Blake et al. (2012). Neutral fraction was removed with DCM/Isopropanol after which the acid fraction was 

eluted using 2 % acetic acid in diethyl ether (Russell and Werne, 2007). After taking the acid fraction to dryness 

by rotary evaporation, the Fatty acids were methylated using Methanolic BF3 (14%, 20min at 60°C).   

The obtained fatty acid methyl esters (FAME) were quantified, after addition of an internal standard (C19:0 

FAME), using capillary gas chromatography (GC Trace Ultra, Thermo scientific) with flame ionisation detection 

(FID) equipped with a 5% Phenyl Polysilphenylene-siloxane column (BPX5, 30 m x 0.25 mm x 0.25 µm, 

Trajan). After adapting the solvent volume for optimal concentration for compound-specific stable isotope 

(CSSI) analysis, the 
13

C abundance of the individual FAME was determined using GC-isotope ratio mass 

spectroscopy (GC-IRMS). The GC-IRMS system used consisted out of a Trace 1310 GC equipped with the same 

GC column as for GC-FID connected to an ISOLINK II through a CongFlo IV to a Delta-V advantage IRMS 

detector (All Thermo scientific). Normalisation of the 
13

C signal on the Vienna Pee Dee belemnite (VPDB) scale 

was performed by injecting a mixture of C14:0, C16:0, C18:0 C20:0 and C30 FAME, and C14:0, C16:0, C18:0 

C20:0 Fatty acid ethyl ester provided by Arndt Schimmelmann (Indiana University), calibrated using NBS 19, 

and L-SVEC defined as exactly +1.95 and -46.6 ‰, on the VPDB scale, respectively, every five samples. 

Additionally, mixtures of Fatty acids (C16, C17, C19 and C20) were methylated together with the samples to 

correct for the contribution of the methyl group of the FAME in order to obtain the δ
13

C of the FA.  

Following the methodology described in the previous section, particle size analyses were implemented for 

the fingerprinting studies to assess the grain size differences between sediment source and sediment mixture 

samples. Besides, to analyse the impact of extreme storm events in particle size and SOC exports, particle size 

analyses and SOC fractions (active carbon fraction (ACF) and stable carbon fraction (SCF)) were analysed. The 

decomposition of the most thermally labile components of SOC, the active carbon fraction (ACF) is released at 

approximately 300–350 ºC whereas decomposition of more refractory and stable carbon (SCF) occurs at higher 

temperatures (420–550 ºC) (López-Capel et al., 2008). The characterisation of active carbon and stable carbon 

fractions was carried out using LECO, RC-612 multiphase carbon analyser (Quijano et al., 2014a). The 

temperature of the furnace was stepped at 350 ºC and 550 ºC to oxidize the ACF and SCF, respectively. 

2.6 Fingerprinting technique, models and tracer selection techniques 

2.6.1 FingerPro model: A step by step fingerprinting procedure 

We developed a new tool to quantify the provenance of sediments in agroforestry catchments. For the first 

time, the procedure for selection of the best combination of sediment tracers was included in the tool package 

together with an unmixing model algorithm in order to estimate the contribution of each possible source. 

Application of the functions in the package allows to: i) characterise the different tracer properties and select the 

relevant variables; ii) unmix the sediment samples and quantify the different source apportionment; iii) assess the 

effect of the source variability; and iv) visualise and export the results. One of the advantages of the FingerPro 

package is that it allows analysing and comparing different tracer properties, using the state of the art of R 
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packages. Thus, different graphs through the use of different functions are included in the package: a) box and 

whisker plots; b) correlation matrix; c) Principal Component Analysis (PCA) and d) Linear Discriminant 

Analysis (LDA). 

The tracer selection methods implemented in the package are: i) Range test; ii) Kruskal-Wallis H test and iii) 

Discriminant Function Analysis.  

The relative contribution of each potential sediment source is determined using a standard linear multivariate 

mixing model: 

∑ 𝑎𝑖,𝑗 ∙ 𝜔𝑗

𝑚

𝑗=1

= 𝑏𝑖   (10) 

which satisfies: 

∑ 𝜔𝑗

𝑚

𝑗=1

= 1                (11) 

0 ≤ 𝜔𝑗 ≤ 1

where 𝑏𝑖 is the tracer property i (i =1 to n) of the sediment mixture, 𝑎𝑖,𝑗 represents the tracer property i in the

source type j (j =1 to m), 𝜔𝑗 is the unknown relative contribution of the source type j, m represents the number of

potential sediment sources and n is the number of tracer properties selected. 

This system of equations is mathematically determined if the number of tracers is greater than or equal to the 

number of potential sources minus one (𝑛 ≥ 𝑚 − 1). The procedure tries to find the source proportions that 

conserve the mass balance for all tracers. All possible combinations of each source contribution (0-100%) are 

examined in small increments, using Latin hypercube sampling (LHS) (McKay et al., 1979). The quality of each 

candidate is measured using the following function or goodness of fit (GOF), based on the sum of squares of the 

relative error: 

 𝐺𝑂𝐹 = 1 −
1

𝑛
× (∑

|𝑏𝑖 − ∑ 𝜔𝑗𝑎𝑖,𝑗
𝑚
𝑗=1 |

∆𝑖

𝑛

𝑖=1

)   (12) 

where Δi is the range of the tracer property i, used as a normalisation factor. The combinations that reproduce the 

observed sediment mixture with the maximum GOF is selected as the solution.  

Variability analysis is assessed following classical frequentist inference by means of a Monte-Carlo method 

(Helton, 1994). A succession of deterministic calculations is executed, each with different input values sampled 

from their respective distributions, to obtain probability distributions of the targeted outcomes.  

The heterogeneity of each source is considered as a t-distribution for each property. The fingerprinting 

analysis of each sediment mixture is repeated by randomly sampling the source probability distributions. For the 

first iteration, the central value of the source distributions is used as a reference result. The corresponding output 

values are gathered to infer the probability distribution of the potential source contributions. Several samples 

must be collected for characterising each source in order to compute the mean and standard deviation of the 

analysed tracer properties. 

CH 2

19



2.6.2 Consensus Ranking method 

In order to investigate and select the best tracers for each fingerprinting study, a novel ensemble technique is 

developed. The novel routine, termed as consensus method combines the predictions of single-tracer models to 

identify non-conservative and dissenting tracers. Based on these results, a conservativeness index (CI) is 

presented along with a clustering method to identify groups of tracers with similar information and to analyse 

their correlations. Besides, a scoring function based on several random debates between tracers, in which the 

tracer that prevents consensus is discarded, is implemented as a decision support ranking (CR).  

Thus, to quantify the predictions of each individual tracer, we propose to use the determined mass balance 

equations and fabricate the remaining required tracers using two different procedures. The first procedure 

consists in designing random virtual tracers (RVT). In the second one, the required tracers are randomly chosen 

(RCT) from the remaining ones. The set of solutions obtained in this case is a subset of that obtained with RVT, 

resulting in all the possible predictions of each tracer in the context defined by the experimental dataset. The 

propagation of errors in this framework is assessed using a simple Monte Carlo iterative technique (Sherriff et 

al., 2015) to quantify the effect of the dispersion of the sources and the mixture on the predictions of each 

individual tracer. The results from the single-tracer model can be used to define a conservativeness index (CI). 

The set of possible predictions from each tracer is sorted according to the Euclidian distance to the perfectly 

balanced mix where all contributions are equal: 

𝑑𝑖 = √∑ (𝑤𝑖,𝑗 −
1

3
)

23

𝑗=1

 (13)

A percentile of the sorted solutions is chosen to compute the CI as the root mean square error (RMSE) of the 

non-conservative part (nc) of the apportionments from the selected solution: 

𝐶𝐼 = −√∑ (𝑛𝑐(𝑤𝑖,𝑗))
2

3

𝑗=1

, 𝑛𝑐(𝑥) = {
−𝑥, if 𝑥 < 0

0, if 0 ≤ 𝑥 ≤ 1
𝑥 − 1, if 𝑥 > 1

  (14)

Consensus ranking (CR) is implemented combining the predictions of single-tracer models in several random 

debates. In each debate, a random subset of the tracers is selected. Its number corresponds to the minimum 

number of equations to overdetermine the system plus one. For example, with three potential sources four 

random tracers are needed. In each debate, several rounds are held excluding one tracer at a time. The consensus 

of each round is measured through the mathematical compatibility of the resulting system of equations. The 

tracer whose exclusion produces a higher consensus is marked as dissenting. Repeating this process through 

several debates, each tracer obtains a number of participations and a number of lost debates. The consensus is 

simply defined as the ratio of these two numbers with possible outcomes between 0 and 100. A low consensus 

indicates that a tracer is often in conflict with the opinion of other groups, while a high consensus represents a 

frequent agreement with the group. 

20





ENHANCING CONNECTIVITY INDEX TO ASSESS THE EFFECTS OF LAND USE
CHANGES IN A MEDITERRANEAN CATCHMENT

Ivan Lizaga1*, Laura Quijano1, Leticia Palazón1, Leticia Gaspar2, Ana Navas1

1Soil and Water Department, Experimental Station of Aula Dei, CSIC, Avenida Montañana 1005, 50059 Zaragoza, Spain
2National Museum of Natural Sciences, CSIC, José Gutiérrez-Abascal 2, 28006 Madrid, Spain

Received 9 August 2016; Revised 27 November 2016; Accepted 27 November 2016

ABSTRACT

In the Mediterranean region, the long history of cultivation is associated with significant changes in the original landscape. Agricultural
intensification and subsequent land abandonment and reforestation have significantly affected the hydrological behaviour and connectivity
patterns of hydrological systems. Thus, information on the spatial distribution of land use/cover is essential for monitoring the runoff
response to interpret catchment hydrology. A medium-sized catchment of the central part of the Ebro Basin (NE Spain), representative of
Mediterranean mountain agroecosystems, was selected to assess the effect of land use/cover changes during the last few decades on the
hydrological network of the catchment. To this end, a topography-based index, the ‘index of connectivity’, was applied to assess the effects
of land use changes from 1957 to 2010. The sediment connectivity was estimated by using a geomorphometric approach to simulate how
connectivity changes due to the different land covers. To improve this index, we used a combination of C-factor, rugosity index and the novel
application of a total aerial biomass equation over pine-reforested areas as a weighting factor. A high-resolution (1 × 1 m) digital elevation
model was created by filtering and applying a multiscale curvature classification algorithm. The connectivity values show a decrease directly
related to ~71% decrease of agricultural land. Understanding landscape patterns, changes and interactions of human activities is essential for
land management in Mediterranean agroecosystems. Copyright © 2016 John Wiley & Sons, Ltd.

key words: land abandonment; natural revegetation; connectivity; digital techniques; Mediterranean agroecosystems

INTRODUCTION

Sediment connectivity is the connected transfer of sediment
from a source to a sink in a system via sediment detachment
and sediment transport, controlled by how the sediment
moves between all geomorphic zones in a landscape
(Bracken et al., 2015). Sediment connectivity has an impor-
tant effect on the development of morphological landform
features, being one of the greatest conditioning factors on
the development of hydrological networks. Sediment con-
nectivity has a major influence on how sediment is moved
and relocated, modifying the current landscape and deter-
mining the spatial distribution of sources and sinks of water
(Puigdefabregas et al., 1999).
Highly linked to hydrological and sediment connectivity

are the terms geomorphic or landscape sensitivity and
coupling, introduced by Brunsden & Thornes (1979) and re-
cently recovered by Fryirs (2016). Geomorphic or landscape
sensitivity refers to how geomorphic systems respond to en-
vironmental change, that is, the ability of the system faced
with external interference to withstand the change. This term
is suitable to categorise how agricultural activities disturb
the system and how it reacts over subsequent decades.
Furthermore, coupling is used within the context of the

effectiveness of the transfer of sediment between the compo-
nents of a fluvial system (Harvey, 2001) at a relatively small
scale (Faulkner, 2008).
Studies have devoted increasing attention to the connec-

tion between areas with different hydrological behaviour
and land use, with particular focus on the connection be-
tween hillslopes and channels (Borselli et al., 2008; Vigiak
et al., 2012) and modelling the different processes of hill-
slope instability (Heckmann & Schwanghart, 2013). In addi-
tion, an interpretation of sediment transport by runoff and
the associated soil erosion processes requires a background
knowledge and the determination of water pathways to de-
termine the location of the most probable sources and
targets/sinks in the catchment.
Since the 1950s, agriculture in European Mediterranean

agroecosystems was commercialised through technological
developments and the European Union common agricultural
policy. There is a main environmental issue behind these
policies, which favours the rapid expansion of certain
management systems; crops have increased productivity,
and the agricultural activity has become more focused on
more fertile and accessible land.
This resulted in a transformation of traditional agricultural

practices towards intensive farming. In many areas, this
produced a major decline in traditional labour intensive
practices, becoming mountain agriculture catchments in
marginal agricultural land (Lasanta et al., 2016). The prob-
lems that these trends have created are particularly marked
in mountainous areas and in regions where agricultural land
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is generally found under unfavourable environmental condi-
tions, such as high elevations, steep slopes, shallow soils and
dry climatic conditions (MacDonald et al., 2000). In Spain,
land abandonment has notably increased since the 1960s
as a consequence of complex socioeconomic and environ-
mental changes, leading to depopulation of rural areas and
the impossibility of mechanisation in steep terrain (Quijano
et al., 2016). In addition, subsequent reforestation during
the 1970s and 1980s not only caused a large impact on run-
off and connectivity reduction due to vegetation growth
(Buendia et al., 2016) but also increased forest fires (Royo
et al., 2015). At present, the loss of steep slope agriculture
and the search for more propitious agricultural lands are
not only reducing runoff in mountain catchments but also
leading to abandonment of rural communities.
Over the last few centuries, steep slope areas in the

Mediterranean region have been gradually transformed into
terraced arable lands with an intensive impact both on the
original soil and landscape. As a consequence of these
changes, agricultural soils have been modified: At present,
they have different soil properties compared with their previ-
ous and original conditions (Romanyà & Rovira, 2011).
Soil erosion and hydrological connectivity are greatly re-

sponsive to land use (García-Ruiz, 2010; Mohammad &
Adam, 2010; Nunes et al., 2011; Mohawesh et al., 2015;
Keesstra et al., 2016). Mankind, rather than natural forces,
is the source of most contemporary changes in land cover
(Meyer & Turner, 1994). Agricultural deforestation and
most land use changes have generally been considered as a
local environmental issue, but at present, they are becoming
an important global problem (Foley et al., 2005). Soil ero-
sion is directly related to the loss of soil nutrients in the top-
soil resulting in soil degradation, which in turn leads to
reduced soil productivity and increased soil erodibility
(Novara et al., 2016; Quijano et al., 2016). Moreover, deple-
tion of soil depth in agroecosystems can be a serious threat
to agricultural sustainability (Fornes et al., 2005).
Steep slope agriculture has changed connectivity and ero-

sion rates during the last few centuries in Mediterranean
landscapes. Both coupling and sediment connectivity have
to be viewed with regard to the temporal scale, ranging from
the event timescale for hillslopes and channel coupling to
geological timescales for morphological changes in large ba-
sins (Heckmann & Schwanghart, 2013). Together with land
abandonment, the subsequent continuous expansion of natu-
ral forest and revegetated areas is clearly affecting runoff
amount and streamflow yield (López-Moreno et al., 2011).
It has also been suggested that during vegetation develop-
ment, soil heterogeneity increases, thus playing an important
role in infiltration processes (Cammeraat et al., 2010). Fur-
thermore, changes in water yield are associated with an in-
crease in continuous temperature due to global warming
and the subsequent increase in evapotranspiration rates from
natural vegetation (Martínez-Fernández et al., 2013).
A temporal approximation is essential to quantify the veg-

etation increase induced by the abandonment of agricultural
lands, the introduction of reforestation with pines and the

loss of extensive farming over the hillsides. Our objective
is to assess the variation of connectivity produced by land
cover changes during the last 50 years over a Mediterranean
catchment representative of mountain agroecosystems that
have experienced intensive land abandonment and reforesta-
tion during the past century. The innovative characteristic of
this investigation is quantifying the connectivity changes
over time, as Foerster et al. (2014) tested with remotely
sensed data, and adapting a connectivity index (IC) in the
study area. This adjustment could be extrapolated to most
steep slope agriculture areas. Moreover, we also try to model
how connectivity varies in pine-reforested areas by using to-
tal aerial biomass data (TAB) for a better understanding of
the hydrological network functioning within reforested
areas. A clear understanding of connectivity is essential for
further development of soil redistribution models and to pre-
dict the future evolution of catchments.

MATERIALS AND METHODS

Study Area

The study area is included in the Arba river drainage catch-
ment. The Barués catchment (23 km2) is an ephemeral
stream catchment located in the central part of the Ebro
Basin in northeast Spain (Figure 1). From a geological point
of view, it is situated on the distal part of the pre-Pyrenean
range with characteristically S–SW low bedding between 5
and 8°. The rock outcrops include two concordant
Oligomiocene lithostratigraphic units of the Uncastillo For-
mation composed of sandstones, claystones and siltstones
(Sole et al., 1972; Teixel et al., 1992; Pardo & Arenas,
1996). The geomorphological setting is clearly conditioned
by the low bedding of the strata. This sets up the path of
the streams following the strata dip.
The climate is continental Mediterranean, characterised

by cold winters and hot and dry summers. Rainfall events
mainly occur in spring (April and May) and autumn
(September and October) and a summer drought between
the two humid periods. The mean annual temperature is
13·4 °C, and the mean annual rainfall is about 500 mm.
Most abundant soils were classified during field surveys as
Calcisols and Cambisols (FAO, 2014). The soils developed
on Quaternary deposits are mainly formed by alluvial de-
posits and have basic pH, low soil organic carbon contents
(between 0·13 and 5·65%) and the secondary accumulation
of carbonates.

Multitemporal Analysis

The assessment of sediment connectivity was carried out by
applying a topography-based index in two different scenar-
ios by using two land use maps for 1957 and 2010. The first
map was created by orthorectification of the 1957 American
army aerial photographs by using a supervised classification
in ERDAS after photographic enhancement. The actual map
was digitised over 2010 National Plan of Aerial
Orthophotography and fieldwork maps.
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The streams with higher connectivity ratios were
digitised over 2010 orthophotography, and the IC was cre-
ated with the 2010 digital elevation model (DEM) and
compared with the 1957 aerial photography drainage net
to visualise whether a remarkable displacement or modifi-
cation in the slopes occurred between both periods
(Figure 2).
Stream displacement and topographic changes between

the periods can only be measured for what it is visible in
the multitemporal aerial photography due to the absence of
the 1957 DEM. Figure 2 shows the near absence of displace-
ment or modification of the secondary slope streams in a

highly degraded area of the catchment. Most visible differ-
ences between both streams in Figure 2 are produced for
the aerial stereoscopic photography deformation. These
low grades of displacement in the secondary streams imply
that most changes in the topography are below the detection
limit of our DEM.
However, the main channel has variations in its morphol-

ogy, being higher in the medium and lower parts where sec-
tions are deeper and surrounded by crop fields, and nearly
insignificant in the upper parts of the catchment. Due to
the impossibility of obtaining a 1957 DEM and after
checking the absence of substantial modifications to the

Figure 1. (A) Location of the study catchment in the central part of the Ebro Basin (NE Spain). (B) Detailed orthophotography of Barués catchment. Red
square delimits visualisation of Figures 5 and 8. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 2. Comparison of stream variations between the aerial photography 1957 (A) and 2010 National Plan of Aerial Orthophotography (B) to compare the
variation ratio. [Colour figure can be viewed at wileyonlinelibrary.com]

EFFECTS OF LAND USE CHANGES IN A MEDITERRANEAN CATCHMENT

Copyright © 2016 John Wiley & Sons, Ltd. LAND DEGRADATION & DEVELOPMENT, (2017)

CH 3 

24

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


topography between 1957 and 2010, it was decided to use a
2010 DEM with a low grade of uncertainty.

Digital Elevation Model Refinement

Nowadays, the most popular IC from Borselli et al. (2008),
the modified version by Cavalli et al. (2013) and geomor-
phological studies related to slopes or erosion (Kawabata
& Bandibas, 2009; Gutiérrez & Lizaga, 2016; Masselink
et al., 2016) are based on DEMs. Thus, the accuracy of
model results is fully dependent on DEM quality and resolu-
tion: It is needed to apply and develop a topography-based
index such as IC correctly. Therefore, developing a model
based on LIDAR data was necessary to refine the existing
LIDAR points to create a high-resolution DEM (1 × 1 m). Ac-
cordingly, we used Spanish National Geographic Institute
(IGN) raw LIDAR data points following Montealegre et al.
(2013) methodology. First, we deleted the noise of the data,
deleting LIDAR points classified as noise by using ArcGIS.
Second, we proceeded to filter our LIDAR data in order to
generate a bare ground 1 × 1 m raster DEM by using
MCC–LIDAR, a command-line tool for processing discrete-
return LIDAR points in forested environments based on the
multiscale curvature classification algorithm developed by
Evans & Hudak (2007). The root mean square error (RMSE)
was calculated for both DEMs by using a cross-validation
method (Table I).

Total Aerial Biomass

LIDAR data represent a tool that supports the calculation of
forest inventories and allows the vegetation to be measured
in three dimensions (Ruiz, 2012; Reyes & Delia, 2014).
TAB was calculated for the reforestation forests (Rfs) by
using Equation 1, developed by Domingo et al. (2016),
and the software FUSION. This equation was created and
optimised in a nearby reforested area with Pinus halepensis
Mill that had similar forest dasymetric characteristics as the
pine reforestation in the study catchment. Equation 1 is a
good complement to understand the change produced by
pine reforestation.

TAB
kg
ha

� �
¼ e 0·0158*A2mð Þ*e 0·0713*P40ð Þ (1)

Where: e refers to the Euler’s number, A2m is the percent-
age of the first LIDAR laser return above 2 m ground height,
produced by the reflectance of the treetop canopy, and P40

is the 40th percentile of LIDAR data. A 25 × 25 m per pixel
size was selected to create a raster image comparable with
the study plots accomplished by Domingo et al. (2016) to
obtain such an equation.

Connectivity Index and Adaptation to Steep Slope
Agriculture

In headwater fluvial catchments, the more relevant aspect of
coupling is the connection between hillslope and channel,
that is, hillslope–channel coupling (Harvey, 2002).
Sediment connectivity was estimated by using a
geomorphometric approach to simulate how connectivity
changes due to different land covers. Hence, it is very im-
portant to determine how the system connectivity responds
to human-induced cover changes (Harvey, 2002). For this
reason, we applied the IC (Equation 1) proposed by Borselli
et al. (2008) by using the C-factor from Revised Universal
Soil Loss Equation as a weighting factor (W) in the index.

IC ¼ log10
Dup

Ddn
(2)

Where: Dup and Ddn are the upslope and downslope com-
ponents, defined by:

Dup ¼ W̄S
ffiffiffi
A

p
(3)

Where: W is the average weighting factor of the upslope
contributing area, S is the average slope gradient of the up-
slope contributing area (m/m), and A is the upslope contrib-
uting area (m2).

Ddn ¼
X

i

di
W iSi

(4)

Where: di is the length of the flow path along each i cell
according to the steepest downslope direction (m) and Wi

and Si are the weighting factor and the slope gradient of
the i cell respectively.
Borselli et al. (2008) proposed S= sinα+0 · 005 includ-

ing 0·005 as the minimum slope value to avoid infinite
values in Equation 4. Thus, we preserved the original
values of our 1 × 1 m DEM to obtain more realistic results
after checking the absence of 0 slope values. Besides cal-
culating the contributing area, we used the procedure of
multiple flow D-infinity approach (Tarboton, 1997) instead
of the single flow direction algorithm (O’Callaghan &
Mark, 1984) used in the hydrology ArcGIS toolbox as

Table I. Root mean square error (RMSE) calculated for both digital elevation models (DEMs) over the entire study area and over the differ-
ent land uses: MCC (calculated using MCC algorithm) and no MCC (regular filtered algorithm)

Agricultural Forest Pine All catchment

MCC No MCC MCC No MCC MCC No MCC MCC No MCC

Mean 0·062 0·177 0·151 0·390 0·235 0·424 0·132 0·312
Max 0·643 1·210 0·860 1·572 0·350 1·630 0·671 1·439
Min 0·002 0·001 0·005 0·001 0·012 0·022 0·005 0·005
SD 0·100 0·130 0·218 0·137 0·325 0·681 0·192 0·243
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proposed in Cavalli et al. (2013). Using D-infinity allows
us to calculate the flow accumulation of converging and
diverging flow directions to create a more realistic topo-
graphic index.
In addition, the IC was improved by using a terrain rough-

ness index (RI) as a W. Cavalli & Marchi (2008) and Cavalli
et al. (2013) developed and later implemented in the IC. RI
was calculated as the standard deviation of the residual to-
pography by using the mean of the 25 neighbourhood cells
values as a 5 × 5 moving window. However, for our index,
we created a new roughness index (SdRI; Equation 5) calcu-
lated as the standard deviation of the slope as recommended
by Grohmann et al. (2011). SdRI was also applied by using
a 3 × 3 moving window to accentuate steep slope terrace
characteristics of the low strata bedding preserved and
modified by agricultural practices in our study catchment.

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP9

i¼1 xi � xmð Þ2
9

s
(5)

Where: xi is the pixel value and xm is the average of the
3 × 3 moving window.
Figure 4 shows the good adjustment of the SdRI to the

steep slope terraces compared with the RI, which also shows
a good fit but appears to be better for larger terraces than
those present in our study area.
Furthermore, in Equations 2 and 3, we also used our two

land use maps (C-factor) as weighting factor to show the dif-
ferences between both land uses (1957 and 2010) and how
the IC changed over time. The C-factor values assigned to
our land uses are 0·0011, 0·0010, 0·06, 0·2 and 0·26 for re-
forestation forest, Mediterranean forest, abandoned land,
cultivated land and trails respectively extracted from
Panagos et al. (2015). Combining both approximations, a
weighting factor was applied as the link between the C-
Factor and SdRI index, trying to develop a better adjustment
to reality. The model was tested in the entire catchment to
facilitate visualisation at a more detailed scale in an area
where the four land uses occur. We selected the same area
as the red square of Figure 1 to show how connectivity
changed over 50 years due to land use and cover variations.
To introduce the probable variations of forest density in

our model, the TAB layer created in the previous section
was implemented inside the C-factor layer by using it as
the inverse of TAB to produce lower C-Factor in the areas
with higher densities and higher C-Factor in the areas with
lower densities. Even with a 1-m resolution DEM, it was im-
possible to implement the same methodology for the other
land covers: It was only used on reforested areas by creating
a mask layer.

W ¼ C� 1
TAB

� �
*SdRI (6)

Where: W is the weighting factor, C is the C-factor of the
different land covers, TAB is the variance of the total aerial
biomass (only used over pine reforestation), and SdRI is the
roughness index. These data are normalised by scaling them

between 0 and 1. This normalisation is needed because the
W is a dimensionless factor and should range from 0 to 1
to be weighted equally to slope in the index. For this reason,
the W factor was normalised by using unity-based normal-
isation (Equation 7):

zi ¼ xi � min xið Þ
max xið Þ � min xið Þ (7)

Where: xi is the pixel value and min/max xi are the mini-
mum and maximum values respectively, of the moving
window.

RESULTS AND DISCUSSION

Digital Elevation Model

Increasing DEM quality allowed a significant improvement
in the accuracy of the connectivity model. Without a good
enhancement and a high-resolution digital terrain model,
the possibilities of terrain error or the lack of reality adjust-
ment increase exponentially (Li & Wong, 2010; Vaze
et al., 2010), therefore increasing the error of the IC. Thus,
enhanced LIDAR data over regular IGN filtered LIDAR data
allowed us to create a more accurate 1 × 1 m high-resolution
DEM instead of the 5 × 5 m resolution IGN DEM. Figure 3
compares the hillshade created by using IGN and
MCC-filtered data, both compared after increasing resolution
to 1 × 1 m. Table I shows the RMSE reduction in MCC DEM
and also how RMSE increases with higher vegetation can-
opy density and height.
Even increasing the resolution of the IGN DEM with their

filtered data, there was a high adjustment error regarding the
vegetation, but this error was greater in scrubland and ripar-
ian vegetation than in forests. In the Figure 3 LIDAR profiles,
it is clearly visible how the MCC filter DEM (Figure 3B) suc-
cessfully removed the scrubland points situated in the upper
part and in the middle part of the profile, unlike the IGN
DEM (Figure 3A), which is clearly visible in the hillshade
image. For this reason, the DEM optimised with MCC-filtered
data was selected (Figure 4).

Land Use Distribution Maps

Numerous studies in a variety of environments have demon-
strated the significant effects of the vegetation cover increase
on the reduction of runoff connectivity and water erosion
(Elwell & Stocking, 1976; Zuazo & Pleguezuelo, 2008;
Mohammad & Adam, 2010; Sandercock & Hooke, 2011;
Fox et al., 2012). The importance of land cover can be
summarised in two main effects: the direct physical protec-
tion of the soil surface by the canopy and leaf cover
preventing rainfall impact and soil detachment particles
and the indirect improvement of the soil resistance and
quality (García-Ruiz et al., 1995; Boix-Fayos et al., 1998;
Dunjó et al., 2004; Navas et al., 2008).
The high variation in total runoff and consequently in

transported sediment reflects the major importance of total
land cover and land use type on runoff generation and soil
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loss; these have significant implications on soil erosion
(Kosmas et al., 1997). The results obtained for the 1957
and 2010 land cover maps reveal the major variation that
took place during the last five decades in the study area.
Our results showed that Mediterranean forest and grass-

land have been the main land uses in the catchment over
the years, together accounting for more than 50% of the total
catchment surface area. A decrease in cultivated land was

observed between 1957 and present, when the area dedi-
cated to agriculture decreased from 13·4 to 3·8 km2 (corre-
sponding to a decrease of ~71%; Table II). On the other
hand, forested areas increased from 9·2 km2 in 1957 to
15·8 km2 at present. Vegetation and land use are important
factors on the catchment hydrology, as indicated by Bryan
& Campbell (1986); both are key controls on the intensity
and frequency of runoff and surface sheet erosion.

Figure 3. Hillshades created based on Spanish National Geographic Institute (IGN) LIDAR filter points with a LIDAR point profile extracted from the black
rectangle situated in the SW. (A) No MCC filtering. (B) IGN LIDAR points filtered by MCC software. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 4. Comparison between Cavalli roughness index normalised (A), standard deviation roughness index normalised (B), weighting factor used in the con-
nectivity index (C) and the orthophotography (D) to facilitate comparison and the location.
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Figure 5A shows a classic example of steep slope agricul-
ture with almost 70% of the slopes and stream terraces
cultivated. Conversely, Figure 5B shows an important
modification caused by natural revegetation and reforesta-
tion over steep slopes. It has been shown in a nearby large
mountain catchment that badlands and severely eroded areas
have higher connectivity values than agricultural, forest and
scrubland land uses/covers (Palazón & Navas, 2014).

Steep slope terraces are common in Mediterranean moun-
tain agroecosystems for rudimentary agriculture. The near
absence of tectonics in the Barués catchment determined
the low-dip strata, resulting in an easily farmable terrain.
Steep slope agriculture not only increases erosion and runoff
ratios on the hillslopes but also produces slope instability,
fostering the probability of mass movements due to the ab-
sence of vegetation cover that protects the soil from erosion

Table II. 1957 and present land use/land cover measures and their representative percentages of the total catchment area

1957 land use map 2010 land use map

Land use/land cover Square kilometres % of the total area Square kilometres % of the total area

Cultivated 13·42 58·2 3·81 16·5
Mediterranean forest 9·23 40·0 11·49 49·8
Reforestation forest – – 4·36 18·9
Abandonment agriculture – – 2·93 12·7
Riverbank vegetation 0·40 1·8 0·46 2·0

Figure 5. (A) 1957 aerial photograph. (B) 2010 orthophotography. (C) Land cover map developed using a supervised classification of (A). (D) 2010 land cover
map. Cultivated land (C), Mediterranean forest (Mf), reforestation forest (Rf) and abandoned agriculture (Aa). [Colour figure can be viewed at

wileyonlinelibrary.com]
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and prevents its displacement. This can be seen in Figure 6,
which shows a typical rotational stream-bank failure move-
ment. These types of landslide are usually developed during
storm events on poorly cohesive materials favoured by the
absence of vegetation cover, high slope and dryland crops
situated on the top of the hills of the catchment. These small
slide movements are developed on stream walls induced by
erosion at the toe of the stream bank walls.
Quantification of riparian vegetation over time was diffi-

cult due to image resolution, but a minimum 10% increment
was detected. The presence of riparian forest and the rein-
forcement of bank soils by herbaceous riparian vegetation
significantly reduce the likelihood of erosion by mass fail-
ure, in agreement with the observations of Hubble et al.
(2010). Moreover, riparian vegetation increases the apparent
cohesion through root reinforcement of bank soils reducing
bank migration rates, increasing bank strength and reducing
bank failure frequency (Micheli & Kirchner, 2002).

Total Aerial Biomass

The Barués catchment TAB was divided into three major
groups with distinctive ranges of TAB values (Figure 7).
These three groups coincided with the three different refores-
tation forests periods (MOP-CHE, 1976; Ortigosa et al.,
1990) that conditioned the greater or lesser development of
trees and forest. The three groups reported distinctive ranges
of TAB values; thus, higher values were found on north faces
and lower ones appeared on south-facing slopes (Figure 7).
Nevertheless, younger reforestation was too minor as to test
this assumption with TAB values. Table III shows major dif-
ferences among the three different pine forests (Rf 1, Rf 2
and Rf 3). The oldest (Rf 1) nearly doubled the mean value

of the TAB, while Rf 2 doubled the youngest one (Rf 3).
The TAB mean values of the north-sloping faces (WNW–
ENE, 292·5–67·5°) in contrast to the mean values of the
south-sloping faces (WSW–ESE, 112·5–247·5°) calculated
for each pine reforestation showed substantial differences.
The solar angular ranges, being higher on the south-facing
slopes, increasing temperature and reducing the accumula-
tion of moisture, regulate this effect. Hence, the less de-
veloped soil biological activity and the lower organic
matter content probably affect tree growth (Cerdà, 1998).
The TAB equation is a good complement in the model to

understand the change produced by pine reforestation, not
only related to coupling and connectivity but also to the in-
crement of the vegetation volume. This increment probably
reduced greenhouse environmental effects, as Fang et al.
(2001) observed in China, suggesting that carbon sequestra-
tion through forest management practices could help offset
carbon dioxide emissions.

Connectivity Index

With the modification in land cover, mostly in reforested
areas, the decrease of runoff might interfere, reducing sedi-
ment displacement and probably concentrating highest con-
nectivity and erosion areas in streams that remain coupled,
as can be seen in the yellow–green streams within the
reforested areas in Figure 8.
The IC with different land covers as a W gives an approx-

imation of the effect of human activity over the study area.
In Figure 8, the decrease in water and sediment fluxes can
easily be recognised due to new covers such as natural re-
vegetation, abandoned fields and the great variation induced
by reforestation (Table IV).

Figure 6. Slide movements located in the Barués downstream area surrounded by cultivated fields. Every stream without riverbank vegetation in the study area
has this type of landslide, caused by the loss of sediment at the toe of stream walls. [Colour figure can be viewed at wileyonlinelibrary.com]
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The decrease of IC values could be related to the increase
in trees and vegetation cover, which minimises the kinetic
energy of the raindrops preventing soil detachment (Llorens,
1997; De Luna et al., 2000). Hence, vegetation cover prob-
ably improves soil quality by favouring infiltration and
preventing runoff. On the contrary, high erosion rates and
low slope resistance could easily produce topless and land-
slides as the most frequent mass movements (Figure 6).
These feed large volumes of sediment into the stream sys-
tem, as topless and bank failures are found in most stream
banks along the principal streams in the catchment.
Implementation of SdRI gives greater relevance to the

steep slope terrain adapting IC model to Mediterranean
mountain agroecosystems. This is clearly visible on the top
hills and also produces little decentralisation of the hydro-
logical network caused by the alternating flat-steep slopes
produced by the combination of ancient agriculture terraces
and the strata (Figure 8). In addition, the TAB layer provides
a real variation inside the pine reforestation, showing the

difference between biomass and also proving that vegetated
soils situated on the north-facing slopes had greater biomass.
Higher proportions of biomass surely result in more devel-
oped soils and probably lower sediment yield, runoff and
erosion, while bare soils on the south-facing slopes might
have higher runoff rates.
The implementation of different land uses (C-factor) in the

model shows the relevance of reforestation areas to the devel-
opment of hydrological connectivity. Reforestation seems to
be homogenous but has variations in above-ground biomass
density inside reforested areas due to different factors such as
topography, solar radiation and organic matter among others.
Figure 4C shows the variation produced for the inclusion of
the C-factor and TAB layer in theW factor over the roughness
index, including the variation of the vegetation cover.
Figure 9 shows the zoomed biomass variation introduced

into the IC with the TAB layer. The connectivity decline is
clearly visible on the north faces in relation to the other
orientations. This is probably due to the distribution of soil

Table III. Reforestation forest (Rf) 1, 2 and 3 show Min, Max and Mean values of tons per hectare, total total aerial biomass (TAB) and area
of three different forest ages

Pixel (25 × 25 m) value tons/ha Mean pixel values Total area

Min Max Mean N, NW and NE faces S, SW and SE faces BT value ha

Rf 1 35·1 182·9 109·4 110·7 94·5 104,151·8 70
Rf 2 13·7 121·5 52·0 56·6 49·1 287,201·5 358
Rf 3 9·7 33·6 21·9 36·6 26·7 1,434·7 5

392,788 433

Figure 7. Total aerial biomass calculated over reforestation forest, where its variation inside the forest is clearly visible. Reforestation forest (Rf) 1 is the oldest
reforestated forest; Rf 3 the youngest. [Colour figure can be viewed at wileyonlinelibrary.com]
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moisture not only in the reforested areas but also in other
areas because of the patchy vegetation structure
(Marchamalo et al., 2015).
Comparing both IC output maps, land cover maps

(Figures 5 and 8) and IC values (Table IV), the importance
of land cover for preventing runoff and the benefits of land-
scape restoration can be seen. Strong changes in reforesta-
tion cover, land abandonment, natural revegetation and

especially the reversal to Mediterranean forest probably
have major effects on the loss of coupling and, as a conse-
quence, on the decrease of discharge, as Navas et al.
(2011) observed in the Yesa reservoir and probably also
the streamflow reduction, as observed by many authors
across the Iberian Peninsula (Morán-Tejeda et al., 2010;
Lorenzo-Lacruz et al., 2012). Other authors have also re-
ported runoff reduction as a consequence of the increase of

Figure 8. Connectivity index for 1957 and 2010 with only C-Factor (A and B) and adding standard deviation roughness index and total aerial biomass (C and
D). These figures correspond to the red square on Figure 1 to improve visualisation of a representative part of the catchment affected by changes in land cover.

[Colour figure can be viewed at wileyonlinelibrary.com]

Table IV. Connectivity values over land uses in 2010

2010 Land use Agricultural Forest Pine Abandonment Global

1957
Min �9·6 �9·6 �9·5 �9·59 �9·578
Max 2·31 2·25 1·95 2·29 2·254
Mean 0·2 0·11 0·16 0·11 0·1

2010
Min �10·6 �10·4 �11 �10·1 �10·496
Max 1·8 1·9 1·6 1·76 2·08
Mean �0·17 �0·35 �0·96 �0·26 �0·322
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infiltration, interception and evapotranspiration rates. Fur-
thermore, Table IV confirms that the highest connectivity
changes are produced between the actual pine forest and
the same area in 1957; this also occurs, though to a lesser ex-
tent, over the natural revegetated forest.

CONCLUSIONS

Land use/cover changes by human intervention during the
1960s, mostly due to tillage, have increased connectivity,
thus intensifying natural geomorphological processes such
as landsliding, gullying, incised streams and severe soil
erosion.
The revegetated abandoned lands and reforested areas

have been shown to be very efficient in reducing connectiv-
ity. Naturally revegetated areas have decreased the connec-
tivity, thus probably limiting soil erosion. Pine
reforestation has produced a clear increase over aerial bio-
mass, probably enriching soil organic matter in the
reforested areas of the catchment. The increase in biomass
could be extrapolated to the other land covers in the catch-
ment. Despite other naturally revegetated areas being likely
to experience similar gain in biomass than reforested areas,
it has not been possible to estimate it by using LIDAR tech-
niques, because at present, the equation has still not yet been
developed for such vegetation covers.
Soil maps with a high level of accuracy are a good ap-

proximation; yet, even improving DEM quality to 1 × 1 m
and aerial photograph enhancement was not enough to show
changes in the riparian vegetation between study dates. In
future research, it will be necessary to estimate the channel
variation to assess at lower scales how this variation has af-
fected changes in connectivity. The implementation of SdRI
and TAB improved both topography and vegetation cover
features, increasing the quality and adjustment of the IC.
Model enhancement with a 1 × 1 m high-resolution DEM,
D-infinity, SdRI and TAB is important to understand the hy-
drological behaviour of agricultural mountain catchments.

The IC developed here is probably a good approximation
to the reality in this area, emphasising that anthropogenic ac-
tivities are nowadays the greatest landscape modifiers.
Moreover, this index represents a good approximation to
the temporal connectivity variation in Mediterranean agri-
cultural catchments and has the potential to be used for eco-
logical purposes, future soil management and for field
survey studies.
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Abstract
In Mediterranean mountainous environments, the removal of natural vegetation for developing

agriculture increased the surface areas prone to erosion in the past centuries. In Southern Pre‐

Pyrenees, the process was inverted during the middle of the 20th century. This work aims to

assess how land use changes after widespread land abandonment affect soil redistribution. For

this purpose, 137Cs was used in a 23 km2 catchment that was mostly cultivated at the beginning

of the past century. After land abandonment, 16.5% of croplands persisted but afforestation and

natural revegetation occupy 83.5% of the catchment area. 137Cs massic activity and related soil

properties—stoniness, grain size, and organic matter contents—were analysed in 98 bulk core

samples. Physiographic characteristics—slope, altitude, and solar radiation—at the sampling points

were determined by using Geographic Information Systems. Soil erosion and deposition rates

were derived from 137Cs measurements after applying conversion models and were spatially

interpolated to estimate the amount of net soil loss. In cropland soils, mean erosion

(62.6 Mg ha−1 yr−1) and deposition rates (55.2 Mg ha−1 yr−1) were significantly higher than in

the other land uses. The lowest mean erosion rates (2.4 Mg ha−1 yr−1) were found in natural for-

ests and the lowest mean deposition (2.6 Mg ha−1 yr−1) in pine afforestation evidencing the soil

stabilization achieved in the last decades due to revegetation. A sediment budget with the inter-

polated rates, result in a specific sediment yield of 4.15 Mg ha−1 yr−1. These results outline the

impact of land use changes on soil redistribution in fragile mountain agroecosystems.

KEYWORDS

137Cs measurements, catchment scale, erosion and deposition rates, land use changes, soil and

physiographic properties

1 | INTRODUCTION

Over the past centuries human activities have been the main drivers of

transformations in ecosystems by converting natural landscapes into

agriculture lands (Chauchard, Carcaillet, & Guibal, 2007; Ellis et al.,

2013; Ellis, Klein Goldewijk, Siebert, Lightman, & Ramankutty, 2010).

The steep Mediterranean hillslopes provide a good example of such

gradual transformation into terraced arable lands. Agricultural

deforestation is a local and global environmental issue (Foley et al.,

2005). These problems are exacerbated in fragile environments, such

as the Mediterranean mountainous regions. These types of sensitive

agroecosystems are prone to erosion due not only to climatic

conditions but also because of the strong anthropogenic pressure

exerted in these areas during the past centuries and their conversion

to agriculture land (Bruun, Elberling, de Neergaard, & Magid, 2015;

Colazo & Buschiazzo, 2015; Romanyà & Rovira, 2011).

The anthropogenic pressure on the soil system through farming

and grazing has existed for several centuries in the central mountains

of the Spanish Pyrenees. As a consequence, the natural forest was

progressively cleared and replaced by croplands (Alonso‐Sarría,

Martínez‐Hernández, Romero‐Díaz, Cánovas‐García, & Gomariz‐

Castillo, 2016). The problems that these practices have created are

particularly striking in mountainous areas and in regions where

agricultural land is found accompanying adverse environmental
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conditions, such as high elevations, steep slopes, shallow soils and dry

climatic conditions with heavy rainfall events (MacDonald et al.,

2000). Conventional tillage practices disturb and erode the soil sur-

face and expose the less fertile subsoil, which affects physical, chem-

ical and biological soil properties. These changes can then induce loss

of soil nutrients that may, over the long term, decrease the soil

productivity. Furthermore, the Mediterranean climate is characterized

by irregular spatial and temporal distribution of rainfall events along

the year of short duration with the occurrence of very intense rainfall

followed by long dry periods (Mariani & Parisi, 2014). These high

intensity rainfalls have been identified as one of the main drivers

causing soil loss (Martinez‐Casasnovas, Ramos, & Ribes‐Dasi, 2002)

and increasing the erosion rates relative to tillage erosion (Quijano

et al., 2017). Higher frequency of droughts and extreme storm events

projected under climate change will likely produce a critical scenario in

these fragile environments. Palazón and Navas (2016) simulated a sce-

nario in a South Pyrenean catchment with a temperature increase of 2

°C. The simulations showed different responses for the different types

of vegetation covers with increases in specific sediment yields for

scrubland.

In the past century, the industrialization of Europe and the Common

Agricultural Policy (CAP) applied, triggered socio‐economic changes such

as a rural exodus, the decline of traditional small‐scale agriculture and

pastoralism. Since the 1960s, these changes were characterised by an

abandonment of marginal areas, generally situated in the mountains,

where traditional land uses became progressively economically nonvia-

ble (Debussche, Lepart, & Dervieux, 1999) that leads to substantial land-

scape changes in the Pre‐Pyrenean mountain areas (Lasanta, Nadal‐

Romero, Errea, & Arnáez, 2016; Quijano, Gaspar, & Navas, 2016; Navas

et al., 2017). Other important indirect impacts of land abandonment are

the rapid siltation of water bodies at the first stages of the abandonment

before the natural revegetation growth, which decreased reservoir stor-

age capacities. Previous investigations dealing with this issue, Valero‐

Garces, Navas, Machin, and de Estacion E (1997) and Navas, Valero‐

Garcés, Gaspar, and Machín (2009) identified increases in sediment

yields and changes in erosion rates in sediment records accumulated

during the last decades in the Pyrenean Barasona and Yesa reservoirs,

in NE Spain. The subsequent reforestation that occurred in the 1970s

and the 1980s has caused a strong reduction of run‐off and sediment

connectivity due to vegetation growth that protect soil from erosion

(Buendia, Batalla, Sabater, Palau, & Marcé, 2016; Lizaga, Quijano,

Palazón, Gaspar, & Navas, 2017).

Studies using the 137Cs technique have confirmed its potential

over the medium term (∼50 years) for estimating soil redistribution

rates (Alewell, Meusburger, Juretzko, Mabit, & Ketterer, 2014; Gaspar,

Navas, Walling, Machín, & Gómez Arozamena, 2013; Mabit, Bernard,

Makhlouf, & Laverdière, 2008; Navas & Walling, 1992; Sadiki, Faleh,

Navas, & Bouhlassa, 2007) and for validating spatially distributed

catchment erosion and sediment yield models (Collins, Walling,

Sichingabula, & Leeks, 2001; Du & Walling, 2011; Mabit, Bernard, &

Laverdiere, 2002; Mesrar et al., 2017; Quijano, Beguería, Gaspar, &

Navas, 2016a).

Erosion rates need to be quantified to assess how relatively recent

land use changes impacted on soil loss in Mediterranean

agroecosystems. To date, there are only few studies using 137Cs to

quantify soil redistribution rates at catchment scale (Mabit & Bernard,

2007; Navas, López‐Vicente, Gaspar, & Machín, 2013; Porto, Walling,

Ferro, & di Stefano, 2003). Furthermore, fewer studies investigated

the impact of recent land use changes on soil erosion (Evrard et al.,

2010; Gaspar & Navas, 2013; Gharibreza et al., 2013; Navas, López‐

Vicente, Gaspar, Palazón, & Quijano, 2014). Accordingly, we quantify

soil redistribution rates using fallout 137Cs measurements and Geo-

graphic Information Systems to investigate changes in spatial variabil-

ity of soil redistribution patterns resulting from land use change

associated with vegetation cover in the recent decades. This research

would contribute to a better understanding of soil redistribution

dynamics in agricultural mountain landscapes and its effect on some

of the main soil properties.

2 | MATERIALS AND METHODS

2.1 | The study catchment

The Barués study area (23 km2) is an ephemeral stream catchment

included in the Arba catchment located in the central part of the

Ebro Basin (NE Spain; Figure 1). Rock outcrops in the catchment

include two conformable Oligo–Miocene lithostratigraphic units of

the Uncastillo Formation dominated by sandstones (Tirapu & Arenas,

1996). The geomorphological setting is clearly conditioned by the

low angle dip of the bedding setting up the path of the streams

following the strike of the beds. The climate is Continental–

Mediterranean characterized by cold winters and hot and dry

summers. Rainfall events mainly occur in spring (April and May)

and autumn (September and October) and summer droughts occur

between these two humid periods. The area is subject to very

intense, though sometimes localized storms. The mean annual

temperature is 13.4 °C and the mean annual rainfall is about

500 mm (recorded since 1929 in Yesa reservoir; Agencia Estatal de

Meteorología). The most abundant soils in the catchment were

classified by Machín (Estación Experimental de Aula Dei‐Consejo

Superior de Investigaciones Científicas) from field surveys (personal

communication) as Calcisols and Cambisols (FAO, 2015). The soils

developed on Quaternary deposits mainly composed by alluvial

deposits that have basic pH, low soil organic carbon contents

(1.5%), and secondary accumulation of carbonates.

The largest part of the Barués catchment was cultivated at the

start of the 20th century. In the 1960s, 58% of the area was farmland.

Of the total 13.5 km2 that was cultivated, as much as 10.2 km2 (75%)

of the agricultural land had been abandoned for more than 50 years

at the time of sampling. At present, only 16.5% of the catchment is still

cultivated whereas afforestation and natural revegetation areas

occupy the remaining 83.5% (Lizaga et al., 2017). The main land uses

are agricultural (16%), pine afforestation (19%), natural forest, and

scrubland (50%). The main crops are winter cereals (Triticum aestivum

L.

and Hordeum vulgare L.). The pine afforestation is mainly composed

of Pinus halepensis Mill. with a mean tree cover density of 70%

(Copernicus Land Monitoring Services). The natural forest and

the scrubland are typical Mediterranean and are intermixed in

many areas. They are mainly composed of Quercux ilex L.,
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Quercus coccifera L., Rosmarinus officinalis L., Genista scorpium (L.)

DC. and Juniperus communis L. The scrubland is in the successional

stages of natural revegetation and in the transition for becoming a

Mediterranean forest.

Since 1957, a decrease in agricultural land and a transition to

natural and revegetated cover have been documented (Figure 1).

There has been a decrease in the number of individual cultivated fields

but a trend for those fields to increase in size (Figure 2). The change in

FIGURE 1 (a) Location of the study catchment in the central part of the Ebro Basin (NE Spain). (b) Percentage of the different land uses in 1957
and 2016. (c) Pictures of the main land uses in the study catchment. (d) 3D picture of Barués catchment created with a DEM and an orthophoto
(National Plan of Aerial Orthophotography, Instituto Geográfico Nacional) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Comparison of the variations in size of the cultivated fields (delineated) between 2012 (left picture, Instituto Geográfico Nacional
orthophoto) and 1957 (right picture, American aerial photograph) of an area located at the central part of the catchment [Colour figure can be
viewed at wileyonlinelibrary.com]
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size and number of fields may be a farmer's attempt to increase the

efficiency of production through a decrease in the cost and the

quantity of inputs utilized.

2.2 | Soil sampling

In 2013, 98 bulk core soil samples were collected. A motorized

percussion corer equipped with a steel core‐tube with 40.7‐cm2

surface area was used to collect two replicates of bulk soil samples

at each sampling point from the surface until a depth varying from

20 to 54 cm depending on the local soil thickness.

The sampling points were distributed proportionally across the

catchment surface using a previous 500 × 500 m grid created in

Geographic Information Systems software to proportionally represent

the percentage of surface occupied by the different land uses with a

sampling density of 0.23 km2 per sample. The grid location was

preserved as much as possible although the cores were also taken in

representative locations to characterize the condition and properties

of the surrounding soil within that land use avoiding recently highly

disturbed areas. For each sampling point data on land use, slope angle,

altitude and solar radiation were recorded.

2.3 | Sample analysis and soil redistribution
estimates

The two soil cores from each sampling site were mixed in the field and

air‐dried, grinded, homogenised, and sieved to ≤2 mm. The fraction

>2 mmwas weighed to account for the stone content. Particle size, soil

organic matter (SOM), and 137Cs were analysed in the ≤2‐mm fraction

for the 98 soil samples. The Beckman Coulter LS 13320 laser

diffraction particle size analyser was used for grain size analysis. Prior

to particle size measurements, the samples were mixed with H2O2

(10%) and heated (80 °C) to remove the organic fraction. Samples were

then chemically dispersed with 2 ml of sodium hexametaphosphate

(40%), stirred for 2 hr, and sonication was applied for a few minutes

to facilitate dispersion.

SOM was estimated by multiplying SOC content by the Van

Bemmelen conversion factor (1.724), assuming that organic matter

contains 58% organic carbon. SOC was analysed by the dry combus-

tion method using a LECO RC‐612 multiphase carbon analyser. The

methodology followed for 137Cs analysis is widely described in the

literature (Walling & Quine, 1991). The massic activity of 137Cs was

measured at the gamma lab of the Experimental Station of Aula‐Dei

(EEAD‐CSIC, Spain) using a high resolution, low energy background,

and coaxial high‐purity germanium gamma‐ray detector coupled to

an amplifier and multichannel analyser. The detector had an efficiency

of 50% and a 1.9‐keV resolution at 1.33 MeV (60Co; shielded to reduce

background) and was calibrated using standard soil samples placed in

containers of the same geometry as the measured samples. Gamma

emission of 137Cs was measured at the 661.6‐keV photopeak and

counted for 86,400 s. The analytical precision of the measurements

was approximately ±3–5% at the 95% level of confidence, with a

detection limit of 0.3 Bq kg−1. The content of 137Cs was expressed

as a concentration or massic activity (Bq kg−1) and as activity per unit

area or inventory (Bq m−2). The inventory was calculated using the

mass of the fine fraction and the cross section of the core sampler

(Navas, Machín, & Soto, 2005).

The values of 137Cs inventory or areal activity density associated

with the 98 individual sampling points were converted into estimates

of soil redistribution rates (Mg ha−1 yr−1) by using Soto and Navas

(2004) and Soto and Navas (2008) conversion models for uncultivated

and cultivated soils, respectively. The models compare the measured

inventory with the local reference inventory and determine the erosion

or deposition rate required to account for the depletion or increase of

the measured inventory, relative to the reference inventory.

For uncultivated soils, the model is compartmental and divides the

soil into horizontal layers of 1‐cm thickness with homogeneous 137Cs

distribution in each compartment. A 137Cs linear transference between

each pair of successive compartments is supposed, whereby the

isotope flux is proportional to the difference in concentration between

the two compartments, the proportionality constant being a specific

coefficient “k” extracted from reference profiles. In addition to the

downward movement, the model also takes into account the 137Cs

deposition on the surface. The increases or decreases in concentration

level due to 137Cs fluxes are corrected by a factor accounting for the

volume of the layers. This volume is taken as the working volume for
137Cs adsorption, which is considered to be the same as that occupied

by the soil fraction less than 2 mm.

For ploughed soils, the model has just one compartment that

extends from the soil surface to a given cultivation depth (20–25 cm

in the study area) and assumes a temporal evolution of the 137Cs

concentration in the compartment. The 137Cs activity deposited is

homogeneously distributed in the compartment within its effective

volume.

In order to establish the local reference inventory for the study

catchment, two areas were identified as reference sites in flat

undisturbed locations under stable soil conditions, where neither

erosion nor deposition was expected to have occurred. At these

reference sites, 21 soil samples were collected with depths ranging

from 25 cm up to 40 cm until the parent material was reached

(sandstone strata). Sampling was done using a 40.7‐cm2 surface

area automatic steel core driller, and five profiles were sectioned

in 5‐cm increments in order to study the vertical distribution of 137Cs.

These soil profiles have been reported in Quijano et al. (2016b). The

reference sites were selected to cover both the upper and lower

parts of the catchment in order to account for catchment‐scale

variability in the reference inventory (Navas et al., 2007; Porto, Walling,

& Callegari, 2011).

The statistics of results were analysed using R. Pearson's correla-

tion coefficients analyses were used to assess the relationships

between SOM, grain size, 137Cs activity and inventory, and topographic

factors. A discriminant function analysis (DFA) was implemented with R

software to identify the variables that better discriminate between the

land use groups. A one‐way analysis of variance was performed to

assess if erosion and deposition rates were different in function of

the land uses. An ordinary kriging with constant trend was selected to

model the spatial distribution of the soil redistribution rates at the

catchment scale and to spatially represent the erosion and deposition

areas (Table 4). The kriging analysis was implemented for the two

more homogenous land use distributions separately: the central area
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(18.2%) with a predominant agricultural use (95%) and the rest of the

catchment (81.8%) covered by scrubland and forests. To implement

the kriging method, we removed eight points in an area located in the

NE part of the catchment that had low variability (Table 4). This

approach was justified by the different soil redistribution variances

between both areas.

3 | RESULTS

3.1 | Soil and physiographic characteristics of the
catchment

Most agricultural fields are located in the middle part of the catchment

at the lowest altitudes. The scrubland and forest had similar slopes and

altitudes although the pine afforestation areas occupy the highest

altitudes with steep slopes.

Soils were alkaline, nonsaline, and calcareous. The coarse fraction

content varied from 0% to 36% whereas the SOM contents were low

ranging from 0.37 in agricultural land up to 5.93% in scrubland. Most

soil samples (64%) had a silt‐loam texture with proportions of silt

varying between 47% and 60%. Twenty‐one percent of the soil

samples had a loam texture, 14% had a sandy‐loam texture, and the

remaining 1% with a 78% of sand had loamy sand texture. More than

75% of the 137Cs massic activity values ranged between 1 and

7 Bq kg−1, and 75% of the 137Cs inventory data varied from 1,000 to

3,000 Bq m−2 (Table 1).

Only a small number of the investigated properties were signifi-

cantly correlated (Table 2). 137Cs was directly correlated with the

coarse fraction (p ≤ .01) and most strongly (p ≤ .001) with the organic

matter. The SOM was also significantly and directly correlated

(p ≤ .05) with the topographic properties, including altitude and slope

although negative correlations were found with solar radiation

(p ≤ .05).

The mean values of altitude, slope, SOM, and 137Cs activity in the

agricultural land significantly differed from those under the other land

uses (p ≤ .01; Table 3). In croplands, the 137Cs activity and SOM were

lower and significantly different from those under the other land uses

for both erosion and deposition points, with the largest differences in

deposition points (Table 5). Forest and scrubland had mean altitude

and slope significantly different (p ≤ .001) from agricultural that

occupied the gentle lowlands and pine afforestation located at higher

altitudes with steeper slopes. Although no significant differences

were found in the mean clay, silt, and sand contents among the

different land uses, the agricultural soils were characterised by

significantly different (p ≤ .05) smaller means in the coarse fraction at

erosion points.

At erosion sites, the means of 137Cs massic activity under pine and

scrubland were significantly lower (p ≤ .05) than in natural forest. In

scrubland and natural forest, the mean of SOM was significantly lower

(p ≤ .05) from that in deposition sites of pine afforestation.

The DFA including stoniness, clay, SOM, altitude, slope, and solar

radiation as selected variables showed better results for erosion (62%)

and deposition (83%) samples, when tested separately. In contrast, for

TABLE 1 Basic statistics of the different properties found in soils of Barués catchment

Altitude (m) Slope (°)
Solar radiation
(WH m−2) Stoniness (%) Clay (%) Silt (%) Sand (%) SOM (%)

137Cs activity
(Bq kg−1)

137Cs inventory
(Bq m−2)

Median 764.68 12.80 6,059.90 7.70 8.60 53.40 38.50 2.57 3.70 1,314.80

Mean 756.51 14.83 5,952.71 9.27 8.93 53.39 37.68 2.50 3.90 1,355.10

SD 98.57 9.03 3,41.17 8.49 2.42 9.69 11.51 1.25 2.40 722.7

Max 932.74 43.37 6,393.00 36.45 17.50 81.70 78.00 5.93 9.6 4,230.91

Min 554.90 1.27 4,724.50 0.00 3.80 18.20 5.90 0.37 0.00 0.00

CV 0.13 0.61 0.06 0.92 0.27 0.18 0.31 0.50 0.61 0.55

Note. CV =coefficient of variation; SD = standard deviation; SOM = soil organic matter.

TABLE 2 Pearson correlation coefficients between soil and physiographic properties at the sampling points

n = 98 Altitude (m) Slope (°)
Solar radiation
(WH m−2) Stoniness (%) Clay (%) Silt (%) Sand (%) SOM (%)

137Cs activity
(Bq kg−1)

Altitude

Slope 0.0442

Solar radiation 0.2642 −0.7449

Stoniness 0.4484 0.1297 0.0694

Clay −0.0042 −0.2171 0.1208 −0.3686

Silt −0.0462 −0.1 0.028 −0.4539 0.6951

Sand 0.0396 0.1298 −0.049 0.4598 −0.796 −0.9885

SOM 0.252 0.241 −0.2095 0.2942 −0.1061 −0.1527 0.1507
137Cs activity 0.2434 0.2757 −0.2178 0.3248 −0.1157 −0.1356 0.1385 0.6068
137Cs inventory 0.0424 0.0798 −0.0768 0.0712 −0.0053 −0.0468 0.0405 0.2881 0.7825

Bold numbers indicate statistical significance at p ≤ .05 level. Bold and underlined numbers indicate statistical significance at p ≤ .01. Bold, underlined, and
italicized numbers indicate statistical significance at p ≤ .001. SOM = soil organic matter.
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the whole sample dataset, only 55% of the samples were correctly

classified. When 137Cs activity was included in the classification

method, the percentages of correctly classified samples increased to

61% over the whole dataset, 72% for the eroding sites alone, and

91% for the deposition sites (Figure 3).

3.2 | Spatial patterns of soil redistribution

The 137Cs reference inventory for the study area was 1,507 ± 92 Bq m−5

estimated based on 21 bulk and sectioned reference profiles

(Quijano et al., 2016b). The allowable error was 6.1% at the 95%

confidence level (Mabit et al., 2012). As much as 64% of the

observations had 137Cs inventories values ranging from 0 to

1,505 Bq m−2 that were lower than the local reference inventory.

The remaining 36% observations were enriched in 137Cs (range:

1,533 to 4,230 Bq m−2).

The estimated mean soil redistribution rates for Barués catch-

ment were 23.5 and 16.5 Mg ha−1 yr−1 for erosional and depositional

sites, respectively. Figure 4 represents the magnitude and the spatial

TABLE 3 Basic statistics of the soil properties and physiographic characteristics of the sampling points under the different land uses in the study
catchment

n
Altitude
(m)

Slope
(°)

Solar radiation
(WH/m2)

Stoniness
(%)

Clay
(%)

Silt
(%)

Sand
(%)

SOM
(%)

137Cs activity
(Bq kg−1)

137Cs inventory
(Bq m−2)

Agricultural Median 20 671.84 5.85 6113.40 3.91 8.75 54.85 35.85 1.17 1.98 1427.47
Mean 690.30 7.51 6129.94 5.32 9.12 53.38 37.51 1.37 2.20 1558.72
SD 93.31 4.19 84.09 6.17 2.94 9.93 12.12 0.64 1.60 943.66
Max 847.32 20.24 6333.60 23.03 17.50 65.50 78.00 3.62 7.98 4230.91
Min 554.90 2.20 6015.20 0.00 3.80 18.20 23.00 0.66 0.00 0.00
CV 0.14 0.56 0.01 1.16 0.32 0.19 0.32 0.47 0.73 0.61

Forest Median 15 768.62 20.21 5901.90 9.28 9.20 52.30 39.40 2.98 5.68 1696.19
Mean 750.65 17.75 5843.61 10.79 9.24 51.87 38.88 3.06 5.86 1718.91
SD 93.21 7.07 228.11 7.41 2.06 8.42 9.38 0.83 2.03 591.30
Max 863.36 25.67 6237.60 23.60 14.50 71.60 54.20 4.29 9.50 2970.45
Min 557.04 2.65 5384.20 2.62 6.20 38.90 17.50 1.55 2.35 821.29
CV 0.12 0.40 0.04 0.69 0.22 0.16 0.24 0.27 0.35 0.34

Pine Median 15 826.64 19.43 6066.10 11.06 8.00 47.40 44.10 3.43 5.25 1446.03
Mean 828.53 20.25 6012.70 12.45 7.93 50.23 41.84 3.15 4.33 1212.15
SD 61.71 9.49 286.60 9.48 2.17 11.12 13.05 1.28 2.94 799.52
Max 932.74 35.71 6350.40 35.84 13.30 71.80 65.30 4.90 9.55 2669.63
Min 706.39 6.82 5419.70 1.65 3.90 30.80 14.90 0.67 0.00 0.00
CV 0.07 0.47 0.05 0.76 0.27 0.22 0.31 0.41 0.68 0.66

Scrubland Median 40 757.04 13.98 6049.65 7.86 8.65 53.65 37.90 2.73 3.94 1211.81
Mean 763.41 15.27 5894.21 9.44 9.07 54.85 36.08 2.60 3.86 1172.96
SD 96.07 9.19 419.03 8.93 2.36 9.49 11.34 1.26 2.12 592.39
Max 926.37 43.37 6393.00 36.45 16.60 81.70 58.60 5.93 9.19 2545.57
Min 583.05 1.27 4724.50 0.00 5.70 34.60 5.90 0.37 0.00 0.00
CV 0.13 0.60 0.07 0.95 0.26 0.17 0.31 0.48 0.55 0.51

Note. CV =coefficient of variation; SD = standard deviation; SOM = soil organic matter.

TABLE 5 Main kriging properties for both agricultural and scrubland
and forest areas

Range Nugget Partial sill Area (km2) n

Agricultural 4,994 207 0 4.2 18

Scrubland and forests 8,464 0.5 0.04 18.9 72

TABLE 4 Mean values of soil properties and physiographic characteristics at erosion/deposition points under the different land uses

n
Altitude
(m)

Slope
(°)

Solar radiation
(WH m−2)

Stoniness
(%)

Clay
(%)

Silt
(%)

Sand
(%)

SOM
(%)

137Cs activity
(Bq kg−1)

137Cs inventory
(Bq m−2)

Erosion

Agricultural 11 689.37 5.38 6,110 4.21 8.75 52.46 38.80 1.19 1.42 986.54

Forest 7 734.60 16.39 5,781 11.40 9.57 51.07 39.36 3.21 4.35 1,223.49

Pine 8 847.13 15.76 5,982 13.16 8.10 51.31 40.59 2.74 2.78 717.27

Scrubland 36 759.71 17.06 5,828 9.30 9.14 54.81 36.05 2.53 3.00 936.22

Deposition

Agricultural 9 691.45 6.53 6,154 5.68 9.58 54.50 35.92 1.58 3.15 2,258.04

Forest 8 764.70 12.67 5,897 10.26 8.95 52.58 38.46 2.92 7.18 2,152.40

Pine 6 800.63 12.60 6,044 11.38 7.68 48.60 43.72 3.76 6.67 1,954.47

Scrubland 12 774.52 15.99 6,090 9.85 8.85 54.98 36.17 2.82 6.44 2,070.29

Note. SOM = soil organic matter.
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variability of the erosion and deposition rates estimated for the

individual sampling points over the different land uses. Both erosion

and deposition rates were higher in the central axis of the

catchment and in the north at the headwaters whereas a lower soil

redistribution rate was found in the eastern part of the catchment

despite its steeper slopes.

The highest mean erosion and deposition rates were found in

agricultural land whereas the lowest were estimated in natural forest.

Soil redistribution ranged between 171.4 to 130.45 Mg ha−1 yr−1 in

erosion and deposition agricultural sites. In forest, erosion and deposi-

tion rates ranged between 6.79 to 8.1 Mg ha−1 yr−1, respectively.

An analysis of variance showed the occurrence of significant

differences between the mean erosion/deposition rates (p ≤ .001)

under cropland versus the other land uses (Figure 5). A significant

difference (p ≤ .05) was also found between the naturally

revegetated forest and the pine afforestation, although no signifi-

cant differences were found between them and the scrubland in

the deposition rates.

The kriging analysis identified that the catchment had up to 76%

of its surface area affected by erosion whereas deposition occurred

in the remaining 24% (Figure 6).

Estimates using the mean soil redistribution values over the

isolevel areas extracted from the kriging for the whole catchment

amounted to a net soil loss of 9,583 Mg yr−1 and specific sediment

yield of 4.15 Mg ha−1 yr−1. The central area with a predominant

agricultural use had a net soil loss more than three‐times higher than

that under scrubland and forest areas (Table 6).

4 | DISCUSSION

4.1 | Soil and physiographic characteristics in the
different land uses

The results have shown significant differences in all soil properties but

not in grain size under cropland compared to the other land uses,

indicating that this land use is one of the main factors contributing to

soil erosion after five decades of land abandonment (Figure 1). The

gentler slopes predominating in croplands correspond to a selection

of flat terrains not only to facilitate tillage practices, sowing, and

harvest but also to limit erosion as much as possible. For this

reason, the values of altitude, slope, solar radiation, stoniness, SOM,

and 137Cs activity in the agricultural land differ from the other three

land uses.

The absence of significant correlations between 137Cs and the clay

fraction is probably due to the limited range of clay contents (80% of

the samples had clay content between 5% and 10%). This result is in

agreement with those found in other Pre‐Pyrenean catchments by

Gaspar and Navas (2013) and by Quijano et al. (2016) in a 1.6‐ha

cultivated field located in this catchment.

The mobility of 137Cs in soils is primarily controlled by highly

selective sorption onto clay mineral surfaces that mostly occurs at

the broken edges of the illitic‐type clay minerals (Kim et al., 2006;

Sawhney, 1970; Staunton, Dumat, & Zsolnay, 2002). However,

SOM is also important in the adsorption of 137Cs, which is supposed

to produce a non‐specific but a highly efficient mechanism for fixing

the radionuclide (Rigol, Vidal, & Rauret, 2002). Moreover, the higher

concentration of 137Cs in the fine fraction of stony soils leads to

good correlation between both, stoniness and the radionuclide con-

centration (Gaspar & Navas, 2013; Zhang, Long, Yu, & An, 2014).

Higher stone volume and consequently lower clay volume results

in a higher radionuclide concentration. Likewise, the distribution of

the land uses across the catchment may also play a role in the high

correlation between 137Cs activity and stoniness. For example, agri-

cultural lands occupy the lowest altitudes and have lower percent-

ages of stoniness, SOM, and 137Cs activity. This pattern is

generally reported in different environments where zones with

higher percentages of vegetation cover are related to high 137Cs

FIGURE 3 Discriminant function analysis for all study points and for
erosion and deposition points in the catchment [Colour figure can be
viewed at wileyonlinelibrary.com]
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activities (Fukuyama, Onda, Takenaka, & Walling, 2008; Navas,

Gaspar, López‐Vicente, & Machín, 2011; Schoorl, Boix Fayos,

de Meijer, van der Graaf, & Veldkamp, 2004) and lower soil

redistribution rates (Navas et al., 2014). In addition to the accumula-

tion of fine particles at the bottom of hillslopes where most culti-

vated fields are located, tillage practices contribute to the

breakdown of soil aggregates. Moreover, the manual clearing of

stones to improve the conditions of the cultivated fields also con-

tributes to the reduction of stoniness. Accordingly, higher stoniness

is found at higher elevations where the natural and afforested areas

dominate.

The higher SOM content in pine afforested and natural forest

areas are due to the higher density of the vegetation cover and greater

size of the trees resulting in larger aerial biomass. The lower SOM

content in scrubland are likely because of the less mature plants. In

general, scrub areas were abandoned more recently than natural

forest areas, although poorer soil conditions at the time of abandon-

ment cannot be totally excluded. Both 137Cs and SOM were the

lowest under cropland, which could both be related to the higher

erosion rates that lead to the preferential export of fine particles

enriched in 137Cs and organic matter (Navas et al., 2014). Our spatial

analysis indicated a similar distribution of 137Cs and SOM suggesting

both are influenced by similar redistribution processes. A similar result

was found by Navas et al. (2011) and Quijano et al. (2016b) in similar

environments.

The positive correlation of SOM with slope and altitude and the

negative correlation with the solar radiation have also been observed

by several authors in other mountainous areas (Dorji, Odeh, & Field,

2014; Ohtsuka et al., 2008). Altitude and slope correlate with SOM

because of the past and present spatial distribution of the cultivated

fields. The lands that were first abandoned were located in highest

and steepest areas that are the farthest and the less accessible from

the village. The early abandonment of these higher areas as cultivated

fields and their subsequent revegetation likely contributed to their

higher organic matter increment (Navas, Gaspar, Quijano, López‐

Vicente, Machín, 2012).

FIGURE 4 Soil redistribution rates at the sampling points of the Barués catchment under the different land uses. Rates are estimated from 137Cs
activities (a) and inventories (b) after applying conversion models [Colour figure can be viewed at wileyonlinelibrary.com]
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The inverse correlation of SOM with solar radiation is probably

explained by the fact that in the less radiated areas, the temperature is

lower and leads to higher levels of moisture and available water, and

thus aids the increment of the aerial biomass (Lizaga et al., 2017). The

correlation of stoniness with altitude and the inverse correlation of the

slope with clay content were dependent on the land use distribution.

However, higher erosion rates occurring on steeper slope areas also

facilitate the movement of the fine grain particles.

The DFA analysis showed the usefulness of using 137Cs to

discriminate between different land uses. The lower discrimination

percentage between forest and scrubland is probably explained by

the fact that natural forest in many areas is intermixed with scrubland

and its characteristics are not so different with woodlands in this

intermediate successional status of the vegetation cover. Other tracers

as compound‐specific stable isotopes may offer potential to further

discriminate among vegetation covers. This technique has been

successfully tested in recent research to discriminate land uses as

sediment sources (Alewell, Birkholz, Meusburger, Schindler Wildhaber,

& Mabit, 2016; Blake, Ficken, Taylor, Russell, & Walling, 2012;

Upadhayay et al., 2017) in different parts of the world.

4.2 | Soil redistribution rates

The principal factor affecting the soil redistribution rates is the

change of land use that occurred in the last decades. This leads the

significant differences in the means of soil redistribution (p ≤ .01)

between cropland and the other land uses found in both deposition

and erosion areas (Table 3). In agreement with these findings, Navas

et al. (2013) also found the highest rates of soil redistribution under

cropland, whereas the lowest rates were found on forests and scrub-

land in nearby catchments. The key role of agriculture as the main

driver of soil erosion is recognized in a variety of environments (Mabit

et al., 2002; Navas et al., 2014; Navas & Walling, 1992; Quine, Navas,

Walling, & Machin, 1994). In addition, the significant higher erosion

FIGURE 6 Spatial distribution of the erosion (a) and deposition (b) rates and the corresponding isocurves in the study catchment [Colour figure can
be viewed at wileyonlinelibrary.com]

FIGURE 5 Boxplots of the soil redistribution rates under the different land uses over erosion and deposition areas in Barués catchment [Colour
figure can be viewed at wileyonlinelibrary.com]
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rates of pine afforestation than in natural forest and scrubland sug-

gest that these natural covers in some areas could better protect

the slopes from erosion processes.

Although erosion rates in our catchment are not significant

different (p > .05) between forest and scrubland, this is not the case

in other more humid environments. In contrast with our findings,

Navas et al. (2005) report in an abandoned Pyrenean catchment
137Cs estimates that discriminate highly eroded scrubland in compar-

ison with the naturally revegetated forest. Navas, Machín, Beguería,

López‐Vicente, and Gaspar (2008) concluded that this relationship

was due to the much poorer soil conditions in the scrubland along

with the steepest slopes and the higher solar radiation.

The introduction of additional tracers should be tested in future

research to assess the possibility of discriminating differences in soil

redistribution rates at different temporal scales. The 210Pbex could

offer such potential (Gaspar, Webster, & Navas, 2017; Mabit et al.,

2014; Porto, Walling, Cogliandro, & Callegari, 2016) in correspondence

with the time of the vegetation recovery in the succession status of

the revegetation from scrubland to forest in relatively recently aban-

doned areas.

More mature vegetation is located at the upper parts of the catch-

ment as the result of the early abandonment of the agricultural land. This

fact is associated with lower soil erosion and deposition rates in this

upper part compared to the central part of the catchment. The introduc-

tion of pine afforestation has also reduced soil redistribution rates.

The effect of soil redistribution processes on SOM dynamics is

demonstrated by the differences between SOM contents found in

the eroded and depositional sites as the higher the erosion rates the

lower SOM contents. However, in the natural forest sites, this relation

is not observed. This is probably due to high stability under forest as

identified by the lower redistribution rates that only vary between

−2.43 to 3.93 Mg ha−1 yr−1; therefore, soil movement is not as high

as to produce a marked contrast in SOM contents.

The results of the sediment budget for the study catchment

evidence that higher soil redistribution rates are concentrated in

the relatively small central agricultural area and do not occur over

most of the catchment. The specific sediment yield in our catchment

is comparable with values of 7.56 Mg ha−1 yr−1 obtained in nearby

small endorheic catchment (Navas et al., 2014). A similar specific sedi-

ment yield of 4.7 Mg ha−1 yr−1 was computed in the Barasona reser-

voir catchment (Palazón & Navas, 2016). However, Porto, Walling,

and Capra (2014) estimated higher mean annual soil loss of

26.39 Mg ha−1 yr−1 in a small‐cultivated catchment (0.86 ha) in Sicily.

The kriging approach divided the catchment in headwater areas

mainly composed of woodlands and scrubland and the central part

of the catchment composed of croplands and is presented as an

alternative for the areal representation of soil redistribution rates

over the different land uses. The study area has quite homogeneous

lithology and landforms; however, a large variety of land uses may

represent a constraint in the use of this methodology such as where

the area has a complex land use mosaic. In our case, this approach

has some benefits as it allows the differentiation between croplands

that concentrate in the lower part of the catchment and scrubland

and forests located at the highest altitudes.

TABLE 6 Ranges of the isolevels curves of soil redistribution rates in erosion and deposition areas used to estimate the net soil loss and gain in the
catchment

Soil redistribution rates Area Areal value

Maximum Minimum Mean ha Mg yr−1 Mg ha−1 yr−1

Agricultural Erosion areas 170.0 152.9 161.4 1.5 240.0
152.9 88.6 120.7 9.8 1,182.8
88.6 50.5 69.6 16.8 1,169.3
50.5 27.7 39.1 47.8 1,867.7
27.7 14.2 21.0 101.5 2,131.7
14.2 6.2 10.2 67.0 685.4
6.2 1.4 3.8 40.8 155.8

Total soil loss 7,192.7 25.4
Deposition areas −0.4 7.6 2.6 40.4 104.3

6.6 20.1 13.4 64.6 862.1
20.1 42.8 31.5 26.6 837.9
42.8 130.8 61.9 6.3 389.7

Total soil deposition 2,194.0 17.0
Net soil loss 4,844.5

Specific sediment yield 8.3

Scrubland and forest Erosion areas 22.9 11.2 17.0 89.1 1,516.6
11.2 5.8 8.5 240.2 2,032.5
5.8 3.3 4.5 270.1 1,224.8
3.3 2.2 2.7 232.7 635.8
2.2 1.6 1.9 111.6 212.7
1.6 1.4 1.5 73.5 112.3
1.4 0.9 1.1 134.1 153.9
0.9 0.0 0.4 282.4 90.9

Total soil loss 5,979.6 5.2

Deposition areas 0.2 2.7 1.5 312.9 463.0
2.7 8.1 5.4 143.8 778.0

Total soil deposition 1,241.0 2.7
Net soil loss 4,738.6

Specific sediment yield 2.5
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5 | CONCLUSIONS

This study demonstrated the potential of 137Cs measurements to

quantify and spatialize information on soil redistribution rates in the

context of the land use changes in the last decades. The application

of the 137Cs method to calculate soil redistribution enabled us to

identify and discriminate the main erosion and deposition areas in

the catchment under the different land uses. Some of the main factors

triggering erosion are related to tillage or farming practices in general,

whereas the reduction in erosion rates is related with the increase in

the vegetated covers and its maturity.

The results from this study case demonstrate relationships

between SOM and soil redistribution rates in cropland, scrubland,

and pine afforestation areas. The absence of such relationships in

forest is likely linked to greater stability and lower soil redistribution

rates. The tillage practices and the fact that soil is left bare during part

of the year of the predominant agricultural land use in the lowlands

led to the higher soil redistribution rates. The lower rates of soil

erosion were found under the land uses with more abundant vegeta-

tion on higher altitudes and slopes. Therefore, in this environment,

land use was found to be the main controlling factor of soil redistribu-

tion rates.

Natural revegetation and reforestation in recent decades after

land abandonment produced substantial changes that prevent the

erosion and the soil loss. Natural Mediterranean open forests and pine

afforestation occupying the highlands, intermixed with scrublands on

high to moderate slopes efficiently protect the soil surface from

erosion.

Although the 137Cs method generates precise spatial distribution

data, the extrapolation at catchment scale is complex but allows to

gain a better understanding of the spatial extent, the severity of soil

loss over a catchment, and the benefits of the natural revegetated

areas.

The tentative sediment budget calculated for the Barués catch-

ment could provide valuable information for implementing soil erosion

control programmes in Mediterranean mountains agroecosystems. The

present study improves the current knowledge on the relationships

between the land use change and the spatial variability of soil redistri-

bution, which may help to mitigate soil degradation, reservoir siltation

and implement erosion control practices.
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A B S T R A C T

Several decades of intensive rainfed farming in Mediterranean mountains and later land abandonment has led to
rapid land use and land cover changes. During recent centuries, the conversion of rangelands into croplands has
increased the surfaces prone to erosion. In the southern Pre-Pyrenees, the process was reversed during the
middle of the twentieth century, allowing the recovery of vegetation and subsequent variation in land cover.
This work aims to assess how land use changes after generalised land abandonment affect some major soil
properties related to soil quality. For this purpose, 98 replicate bulk soil samples were collected in a 23 km2

catchment that was mostly cultivated at the beginning of the last century. Soil samples were distributed over
areas representing the main land uses (agricultural land, natural forest, pine afforestation and scrubland). Bulk
density, stoniness, grain size, pH, carbonates, electrical conductivity, soil organic carbon (SOC), total nitrogen
(TN), water retention capacity and magnetic properties (low frequency magnetic susceptibility (LF) and fre-
quency dependence (FD)) were analysed in the samples from different land use areas. A past scenario was
recreated using estimated data from the SPEROS-C model in order to evaluate changes in SOC over time.
Furthermore, a multitemporal analysis of the Normalised Difference Vegetation Index of Landsat images was
performed between 1972 and the present in order to assess the dynamics of revegetation. After land aban-
donment, 16.5% of the area remained as croplands, but afforestation and natural revegetation occupied 83.5% of
the catchment. The highest mean value for SOC was found in the pine afforested area and the highest TN mean
value was found in the natural forest. The lowest mean values for SOC and TN were recorded on the agricultural
land. These results show the impact of soil changes produced by land use changes in fragile Mediterranean
mountain agroecosystems.

1. Introduction

Changes in land use due to human activities are a widespread
problem that often lead to land degradation, and are of considerable
concern worldwide in the context of environmental degradation and
global climate change (Celik, 2005). Over recent centuries, human ac-
tivities have been the main drivers of ecosystem transformations
through the conversion of natural landscapes into agricultural lands
(Chauchard et al., 2007). The conversion of rangeland into cropland
due to agricultural deforestation is a local and global environmental
issue (Foley et al., 2005), resulting in changing soil properties and soil
infiltration rates, and modifying soil physical characteristics that
eventually increase soil erosion (Li et al., 2007). Poor soil management
can rapidly deteriorate vast areas of land, and is becoming a major

threat to rural subsistence in many countries (Chauchard et al., 2007).
The problems that these practices have created are particularly re-

markable in mountainous areas and in regions with adverse environ-
mental conditions (MacDonald et al., 2000), such as in Mediterranean
mountains where the natural forest has been progressively cleared and
replaced by croplands (Alonso-Sarría et al., 2016). These changes lead
to losses of soil nutrients and reduced long-term soil productivity.

Mediterranean mountains are sensitive agroecosystems prone to
land degradation, due to their climatic conditions characterised by ir-
regular space-time distribution of high intensity rainfall events, fol-
lowed by long dry periods (Mariani and Parisi, 2014). There has also
been strong anthropogenic pressure during the past centuries (Romanyà
and Rovira, 2011; Bruun et al., 2015). In the twentieth century, fol-
lowing socioeconomic changes, land abandonment notably increased
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from the mid-1950s onwards, leading to depopulation of rural areas
and substantial landscape changes (Lasanta et al., 2016; Quijano et al.,
2016a, 2016b; Navas et al., 2017).

Remote sensing enables the comparison of landscape evolution such
as the recent land use changes on a multitemporal scale and has the
potential to allow calculation of ecological indices. It has thus received
increasing attention in the last decade for the purpose of deriving
ecological measures that correlate with surface biophysical properties
(Myneni et al., 1995). Such studies have confirmed the potential of
remote sensing techniques for the estimation of different vegetation
parameters that are directly related to plant vigour, density, and growth
conditions and can be used to detect environmental conditions, human
activities and modifications of the vegetation cover produced by land
use changes (Melendez-Pastor et al., 2016). The most frequently used
vegetation index is the Normalised Difference Vegetation Index (NDVI)
as described by Rouse et al. (1974). It is also used as vegetation status
data source in many environmental modelling approaches and ecolo-
gical studies (Li et al., 2004; Pettorelli et al., 2005; Krishnaswamy et al.,
2009). Several studies have tried to predict different soil properties and
soil quality by combining remote sensing and soil sampling data (Ben-
Dor and Banin, 1995; Vågen et al., 2013, 2016; Winowiecki et al.,
2016). Most of these studies have included large agricultural areas, but
few of them have considered mountain agroecosystems.

Tillage practices expose the less fertile subsoil, affecting the physical,
biochemical and magnetic properties of the soil (Rahimi et al., 2013; Gao
et al., 2017). Among the most important effects of continuous conven-
tional tillage practices during recent centuries are changes in the soil or-
ganic carbon content (Bruce et al., 1999; Novara et al., 2015; Parras-
Alcántara et al., 2015; Boix-Fayos et al., 2017). As a consequence of recent
land use changes, estimates of SOC stocks and their variations over time
are essential in order to understand carbon dynamics and identify the most
efficient management practices that may contribute to increasing carbon

in soils (Álvaro-Fuentes and Paustian, 2011). Due to a general lack of soil
samples from past decades, SOC dynamic models have been developed to
understand the short and long-term impact of land management on SOC
stocks. This is the case for the SPEROS-C model (Van Oost et al., 2005)
that combines the soil erosion SPEROS model (Van Oost et al., 2003) and
the SOC dynamics Introductory Carbon Balance Model (Andrén and
Kätterer, 1997), which was implemented in our study catchment by
Quijano et al. (2017).

A major issue in Mediterranean agroecosystems is the effect of the
abandonment of agricultural land in recent decades and its subsequent
natural revegetation, as well as afforestation practices, on the variations
of soil properties. There have been very few studies that asses these
variations at the catchment scale (Navas et al., 2008; Nadal-Romero
et al., 2016). One of the properties most sensitive to land use change is
the soil organic carbon content that may increase or decrease de-
pending on the previous land uses. We hypothesise that changes in
agricultural management from conventional to conservation tillage
practices, and increases in vegetation due to natural revegetation after
abandonment of cultivated land lead to increases in SOC stocks. To
date, only a few studies have focussed on this issue in Mediterranean
agroecosystems (Francaviglia et al., 2012; Muñoz-Rojas et al., 2017).

The novelty of this study arises from two main aspects, combining
NDVI from remote sensing data with soil nutrients as a tool for assessing
temporal changes along with modelling and reconstructing the past
SOC stocks at catchment scale. Furthermore, to our knowledge there are
no published studies that use remote sensing data to discriminate and
analyse different land uses and their changes over time, comparing
satellite with soil sampling data.

With the aim of filling this gap we selected a representative
Mediterranean mountain catchment that was mostly cultivated in the
first half of the twentieth century and then abandoned in the mid-
1950s. In this catchment we: i) estimate the variation in the percentage

Fig. 1. Location of the study catchment in the central part of the Ebro Basin (NE Spain) (a). (b) Percentage of the different land uses in 1957 and 2016. (c) 3D picture
of Barués catchment created with a DEM and an orthophoto (National Plan of Aerial Orthophotography, IGN). The numbers represent the pictures of the main land
uses situated at the bottom of the figure. (d) 3D Map of soil types in the catchment (IUSS Working Group WRB, 2015). The number in the legend represents the
average depth of each soil type.
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vegetation cover during the successional changes of natural revegeta-
tion using the NDVI derived from remote sensed data; ii) identify the
spatial patterns of major soil properties and the differences between
land uses; iii) compare the NDVI with the distribution of soil nutrients
to assess the impact of revegetation recovery in different land use areas;
iv) test the previous hypotheses on the variations of SOC stocks due to
land uses changes by applying a spatial distributed model, the SPEROS-
C model (Van Oost et al., 2005). Therefore our multi-approach is aimed
to determine how soil properties have changed in the last decades after
land abandonment and subsequent natural revegetation and afforesta-
tion. The conditions of the study catchment represent a unique oppor-
tunity to track variations in soil properties associated with vegetation
cover changes using satellite images from 1972 to present.

2. Materials and methods

2.1. The study catchment

The Barués area is an ephemeral stream catchment (23 km2) of the
Arba River located in the central part of the Ebro Basin (NE Spain) (Fig. 1).
From a geological point of view, it lies in the distal part of the Pre-Pyr-
enean range with characteristically south – southwest low angle strata
dipping between 5 and 8°. Rock outcrops in the catchment include two
conformable Oligo - Miocene lithostratigraphic units of the Uncastillo
Formation, mainly composed of sandstone (Tirapu and Arenas, 1996). The
geomorphological setting is clearly conditioned by the low bedding strata,
setting up the path of the streams following the strata direction. The cli-
mate is continental Mediterranean, characterised by cold winters and hot
and dry summers. Rainfall events mainly occur in the spring (April and
May) and autumn (September and October) and summer droughts occur
between the two humid periods. The area is subject to very intense,
though sometimes localised storms. The mean annual temperature is
13.4 °C and the mean annual rainfall is about 500mm (recorded since
1929 at the Yesa reservoir; AEMET). The soil types in the catchment were
classified and mapped in 2014 by Machín (EEAD-CSIC, personal com-
munication) from field surveys, with Calcisols and Cambisols (IUSS
Working Group WRB, 2015) being the most abundant soil types. The soils,
developed on Quaternary deposits mainly formed by colluvial and alluvial
deposits, are alkaline and have low soil organic carbon contents and sec-
ondary accumulation of carbonates.

Most of the Barués catchment was cultivated at the beginning of the
20th century. In the mid-1950s 58% of the area was farmland. Of the
total 13.5 km2 that was cultivated, as much as 10.2 km2 had been
abandoned for> 50 years at the time of sampling. At present only
16.5% of croplands remain, but pine afforestation and natural re-
vegetation occupy 83.5% of the catchment (Lizaga et al., 2017). The
main land uses in the catchment are agricultural land and rangeland
(natural forest, pine afforestation and scrubland). The main crops are
winter cereals (Triticum aestivum L. and Hordeum vulgare L.). The pine
forest is mainly composed of Pinus halepensis Mill. with a mean tree
cover density of 70%. The natural forest (Quercux ilex L., Quercus coc-
cifera L., and Juniperus communis L.) and the scrubland (Rosmarinus
officinalis L., Thymus vulgaris L., Santolina chamaecyparissus L., Genista
scorpium (L.) DC., Macrochloa tenacissima (L.) Kunth/Stipa tenacissima
L., and Lygeum spartum (L.) Kunth) are typically Mediterranean and in
many areas are intermixed. The scrubland is the early phase of the
successional stages of natural revegetation, in the transition to Medi-
terranean forest. Most agricultural fields are located in the middle part
of the catchment at the lowest altitudes, on a Quaternary glacis with
gentle slopes. The pine afforestation occupies the highest altitudes with
steep slopes, and the natural forest and scrubland are located at inter-
mediate altitudes.

Since the mid-1950s a decrease in agricultural land use and a
transition to naturally revegetated cover and pine afforestation has
been documented (Fig. 1). There has also been a decrease in the number
of individual cultivated fields, along with an increase in their size, in an

attempt by farmers to increase the efficiency of production and cost
recovery.

Monthly rainfall and temperature data were extracted from the
Castiliscar weather station, located 4 km downstream of the catchment.
Due to the unavailability of data prior to 1980 and between 2010 and
2016, data from the Sádaba weather station (15 km downstream of the
catchment) were also used.

2.2. Soil sampling and analysis

The sampling sites were distributed proportionally using a pre-
viously constructed 500×500m grid created in GIS software that
proportionally represents the percentages of the surface occupied by the
different land uses in the catchment. The grid location was preserved as
much as possible when collecting the samples in representative areas, in
order to characterise the properties of the surrounding soil surface
within that type of land, while avoiding recently highly disturbed areas.
A motorised percussion corer equipped with a steel core tube with a
surface area of 40.7 cm2 was used to collect two replicate bulk soil
samples at the 98 sampling sites. The soil was taken from the surface up
to a depth that varied from 20 to 54 cm depending on the soil thickness.

The two soil cores from each sampling site were mixed, air dried,
ground, homogenised and sieved to ≤2mm. The>2mm fraction was
weighed in order to account for the stone content. Particle size, soil
organic carbon (SOC), TN, pH, CaCO3, electrical conductivity (EC),
wilting point, field capacity and magnetic properties (low frequency
magnetic susceptibility (LF) and frequency dependence (FD)) were
analysed in the ≤2mm fraction for the 98 composite soil samples.

A Beckman Coulter LS 13320 laser diffraction particle size analyser
was used for grain size analysis. Prior to particle size measurements, the
organic fraction was removed by H2O2 (10%) heated to 80 °C. Samples
were then chemically dispersed with 2ml of sodium hexametapho-
sphate (40%), stirred for 2 h and sonicated for a few minutes to facil-
itate dispersion.

Soil salinity was measured in a conductivity cell (Orion 013605MD)
and expressed as the electrical conductivity of a 1:5 soil:water extract
(EC 1:5) at 25 °C in dSm−1. Soil pH was measured in a 1:2.5 soil:water
extract with a pH electrode (Orion 9157BNMD). Total carbonate con-
tent (%) was analysed using a calcimeter. SOC and TN were analysed by
the dry combustion method using a LECO RC-612 multiphase carbon
analyser and a LECO CN TruSpec carbon and nitrogen analyser, re-
spectively. Mass specific magnetic susceptibility was measured in 10ml
topsoil and bulk soil samples at both low (0.47 kHz; χlf) and high
(4.7 kHz; χhf) frequencies, using a Bartington Instruments dual-fre-
quency MS2B sensor that operates with an alternating current and
produces an alternating magnetic field at 80 Am−1 (Bartington
Instruments Ltd., 2000). Mass specific magnetic susceptibility mea-
surements at low and high frequency were expressed in units of
10−8 m3 kg−1. The results are the mean values of three measurements
for each sample. Both allow to determine absolute mass specific dual
frequency-dependent susceptibility (χfd), defined as the difference be-
tween the measure at low and high frequencies (χfd= χlf− χhf). Al-
ternatively, this parameter is commonly expressed as a percentage, that
is the percentage frequency-dependent susceptibility (χfd%) using the
following equation:

= − ×χ χ χ χfd% [(( lf hf)/ lf) 100] (1)

The results were statistically analysed using R. Pearson's correlation
coefficients to assess the relationships between the soil properties over
the different land uses. A non-parametric Kruskal–Wallis test was per-
formed to assess whether soil properties differed as a function of the
land use. An ordinary kriging with a constant trend was selected to
improve the visualization of the spatial distribution of the main soil
properties in the catchment. However, the kriging interpolation was not
pursued for predicting the values of soil properties but to facilitate the
visualization of their distribution patterns in the catchment. Thus, the
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maximum exploratory trend surface analysis was selected, to use just a
small subset of the data to generate a surface that keep much of the
local variation in the data values.

2.3. Remote sensing

Satellite imagery data were analysed with digital image processing
methods and spatial analysis techniques to detect spatial-temporal
changes in vegetation and land use. A multitemporal Landsat satellite
dataset formed the basis for the change detection procedure. A series of
twelve Landsat images were acquired by the different multispectral
sensors on board Landsat satellites. Image series were selected with
temporal resolutions ranging from six to twelve years, beginning from
the first Landsat image of the study area from 1972 and continuing up
to 2017. All of the selected images were acquired between the end of
July and the end of August, because these dates allow the detection of
variability in forests and scrubland in the summer, as irradiance or
temperature limit the photosynthetic capacity of plants (Valladares and
Pearcy, 1997). The dates when images were available without cloud
cover were 1972-08-20 (Landsat 1-MSS), 1975-07-09 (Landsat 2-MSS),
1984-07-10 (Landsat 5-MSS), 1984-08-20 (Landsat 5-TM), 1987-08-20
(Landsat 5-TM), 1990-07-27 (Landsat 5-TM), 2001-07-25 (Landsat 5-
TM), 2003-07-31 (Landsat 5-TM), 2007-08-11 (Landsat 5-TM), 2010-
07-18 (Landsat 5-TM), 2013-08-11 (Landsat 8-OLI), 2016-07-21
(Landsat 8-OLI) and 2017-08-22 (Landsat 8-OLI). The digital image
processing procedure, which included pre-processing of satellite mul-
tispectral images to ensure temporal comparability between scenes, was
carried out by the Earth Resources Observation and Science Center
(EROS) (USGS) for the Landsat 8-OLI and Landsat 5-TM sensors. Fur-
thermore, following the methodology proposed by Fan and Liu (2016) a
total of 220 vegetation spectra were downloaded from the USGS spec-
tral library (Kokaly et al., 2017). Comparing these spectra a linear in-
terpolation was pursued to determine reflectance values at given wa-
velengths for both Landsat 5 TM and Landsat 8 OLI and quantify the
spectral band adjustment factor (Fan and Liu, 2017). In addition, the
Landsat 8 values were corrected to ensure temporal comparability be-
tween images from different sensors.

Due to the unavailability of MSS corrected images, atmospheric
correction following the methodology proposed by Chavez, 1996 was
used, followed by the calculation of a vegetation index to assess tem-
poral changes in land cover. However, the NDVI calculated using
images from different sensors may still not be comparable, due to dif-
ferences in sensor bandwidths or illumination and sun-viewer geome-
tries. Thus, to avoid large differences among datasets obtained from
Landsat 8-OLI, Landsat 5-TM and the first Landsat MSS sensors, we split
the image dataset by using two coincident Landsat images from Ju-
ly–August of 1984 that were recorded by both Landsat 5-TM and
Landsat 5-MSS sensors. Thus, we use the 1984 Landsat 5-TM image for
comparisons from 1984 to 2017 and the 1984 Landsat 5-MSS to com-
pare time intervals between 1972 and 1984.

NDVI layers were created for the selected Landsat images. These
transformations can provide information about the current state of the
vegetation represented in a pixel, and can be used to determine if the
study area changes from one date to another and to follow its evolution.

The NDVI (Rouse et al., 1974) is formulated as:

=
−

+

NDVI
ρNIR ρRED
ρNIR ρRED

( )
( ) (2)

where ρNIR is the reflectance of the near infrared spectral band and
ρRED is the reflectance of the red spectral band. The NDVI images for
each date were then compared with the previous temporal image to
assess the evolution of the NDVI for each time interval.

To assess the recovery of natural vegetation, some former agri-
cultural areas were selected where cultivation has ceased in the last six
decades. The NDVI values for these areas were extracted and the per-
centage variation in the vegetation index was calculated to evaluate the

evolution of the vegetation recovery. Furthermore, two afforested areas
planted between 1984 and 1986 were selected to allow comparisons
with the vegetation evolution in afforested areas. The selected areas
were further classified as north and south facing areas in order to cal-
culate difference in the NDVI and temporal evolution under different
solar radiation conditions. The NDVI values from the 2013 image were
correlated with the soil nutrient contents.

2.4. The SPEROS-C model

Due to the absence of SOC data prior to land abandonment we ap-
plied the results of the SPEROS-C model obtained by Quijano et al.
(2017) on a 1.6 ha cultivated field located in the study catchment to
approximate the SOC stocks that existed in the 1950s, prior to recent
land use changes. This representative field has been cultivated with
cereals since at least 1860 using three different management practices:
traditional, conventional and conservation tillage. Traditional tillage
practices were implemented until the 1960s using a chisel with animal
traction. Conventional tillage was used from 1960 to 1995 using a
mouldboard plough pulled by a tractor, and minimum-tillage con-
servation practices were carried out in recent decades (1995 to present)
using a chisel with a tractor.

Analytical data obtained from 156 samples collected from a
10× 10m grid established in the 1.6 ha field were used as the input for
the SPEROS-C model. The model represents the effect of land man-
agement on SOC stocks, SOC fluxes and changes in their spatial dis-
tribution. For this purpose, a correction factor between the present SOC
(%) and the mid-1950s SOC (%) was extracted from the mean, max-
imum and minimum values of the SPEROS-C model results obtained
from the 156 sampling sites by Quijano et al. (2017) in the 1.6 ha field.

At present in the Barués catchment, a total of 20 sampling sites
remain as agricultural, land use at 41 sites has changed from being
cultivated in the 1950s to natural forest, pine afforestation or scrub-
land, while another 37 sampling sites remain as forest, as they were in
the 1950s. The correction factor extracted from the SPEROS-C model
was therefore implemented on the data from the 20 agricultural sites
where land use had not changed. To estimate the historical SOC stocks
at the sites that had changed from cropland to rangeland or had been
afforested, we applied the mean modelled value of the 20 agricultural
sites in 1957, assuming that in the 1950s, the 41 revegetated sites had
similar SOC as the other agricultural sampling sites. The 20 agricultural
sites have low SOC values with a mean of 0.78% ± 0.37.

The present SOC inventory (kg m2) was calculated for the 98 sam-
ples collected in the catchment using the following equation:

= ∗ ∗soil depthSOC inventory SOC
100

D (3)

where SOC is the percentage of SOC in each sample, D is the bulk
density (g cm−3) for each sample measured in<2mm fraction and soil
depth was estimated as the mean depth (cm) for each soil type extracted
from the field surveys (Fig. 1).

To extrapolate the present data to the 1950s we extract the cor-
rection factor from the data obtained by Quijano et al. (2017) in a
1.6 ha cultivated field as follows:

=
−

−

SPCF 1957 SPEROS C SOC (%)
2010 SPEROS C SOC (%) (4)

where 1957 SPEROS-C SOC (%) is the mean, median, min and max SOC
(%) simulated for 1957 and 2010 SPEROS-C SOC (%) is the mean,
median, min and max SOC (%) estimated by the model for 2010. Thus,
as a result of the equation we obtain the differences in SOC percentage
between 1957 and 2010. This correction factor (SPCF) is implemented
in the next equation to calculate the SOC inventories in the agricultural
land in the 1950s:
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= ∗ ∗

SPCF
soil depthSOC inventory in 1957 SOC/100 D (5)

where SPCF is the SPEROS-C model correction factor extracted from the
values of the results obtained for the 156 sites from the SPEROS-C
model by Quijano et al. (2017). Thus, the variation in the SOC in-
ventory is calculated by using the mean, median, min and max values of
the 20 unchanged agricultural sampling sites and extrapolating them to
the present 41 revegetated sites.

3. Results

3.1. Soil characteristics

Soils were alkaline, with pH values ranging between 7.38 and 8.59,
and had low salinity (with a mean value of 0.18 dSm−1) and a high
carbonate content (36%).> 64% of the soil samples had a silt loam
texture, with the predominance of silt ranging between 47% and 60%.
Twenty-one percent of the soil samples had loam texture, 14% sandy
loam and the remaining 1% had loamy sand texture with a sand content
higher than 78%. The soil content represented by the coarse fraction
(> 2mm) varied from 0% to 36%. The SOC and TN contents were low,
ranging from 0.22% to 3.44% and from 0.02% to 0.74%, respectively.
The mass magnetic susceptibility measured at low frequency (χLF) had
a mean value of 34.25 10−8 m3 kg−1, and the mean value of the fre-
quency dependent magnetic susceptibility (χFD) was 34. 5% (Table 1).

Only the saturation point, field capacity and permanent wilting
point were significantly correlated with the grain size (p≤ 0.05), being
positively correlated with clay and negatively with sand (Table 2). SOC
and TN were significantly and directly correlated (p≤ 0.05) with sto-
niness, CaCO3, EC and the magnetic properties.

The means of stoniness, SOC, CaCO3, EC and pH in the agricultural
soils significantly differed from those in other land use areas (p≤ 0.01)
(Table 3). On agricultural land, the SOC content was lower and sig-
nificantly different from the other land uses, with the highest values
being found in the natural forest and in pine afforested areas. In addi-
tion, when tested separately, the SOC and TN contents had lower pre-
sent day values at sampling sites that had changed from being agri-
cultural land compared with those that had remained as forest since the
1960s (Table 4).

Although no significant differences were found in the mean values
of clay, silt and sand contents among the different land uses, the agri-
cultural soils were characterised by significantly smaller means
(p≤ 0.05) in the coarse fraction (> 2mm).

The means of TN in agricultural land and pine afforested land were
lower than in the other land uses, but they were only significantly different
(p≤ 0.05) in the agricultural land, which had the lowest TN content.

The spatial distribution maps produced by an ordinary kriging of all
of the soil properties are shown in Fig. 2. There is a wide variation
across the catchment; however, higher values for SOC, TN, magnetic
properties (LF, FD) and EC were recorded in the northern half and the
south-eastern part of the catchment, whereas lower values were mea-
sured in the central, northeast and southwest parts. In contrast to this
pattern, the highest pH and CaCO3 values were found in the southern

half and the north-western part of the catchment. Relatively higher clay
contents were recorded in the central and eastern parts of the catch-
ment, while sand content showed no clear spatial distribution pattern.
In addition, stoniness gradually increases from the southwest to the
northeast. The field capacity and the wilting point do not show any
clear distribution pattern in the catchment.

3.2. Variation in vegetation

An increase in the NDVI value from the 1970s to the present day is
observed in most areas of the catchment (Figs. 3, 4). The highest in-
crement occurred between 1987 and 2001 at the headwaters, where a
second pine forest was planted between 1984 and 1988. A decrease in
the NDVI values between 1984 and 1987 is observed in many parts of
the catchment, except in the central part where the first afforestation
was already planted. Between 1990 and 2001 a progressive increase in
the NDVI values was observed all over the catchment. The same in-
crease in aerial biomass remains at present, except in the northern part
of the oldest pine afforestation where lower values of the NDVI were
observed.

Natural revegetated and afforested areas showed an increasing
trend in the study period, with higher values in north compared with
south facing slopes (Fig. 4). Naturally revegetated areas show an in-
creasing trend in NDVI values from the 1970s to the present day, with a
stronger trend in the first decades. However, the highest increment in
the NVDI in pine afforested areas was recorded between 1990 and
2001, six to sixteen years after planting. Both naturally revegetated and
forested areas reported a more rapid increase in their first stages but the
afforested areas quickly reached higher NDVI values. Since 1984, when
the forest was planted, the north facing slopes showed larger incre-
ments in the NDVI until 2001 when a first peak was reached.

However, the total increase since the time of abandonment was
greater in the naturally revegetated cover. A generalised increasing
trend in the NDVI values was observed across the catchment.
Nevertheless, there were some periods where the NDVI stabilised such
as 1984–1987 and 2003–2007, and even some periods where it de-
creased, such as 2001–2003 and 2013–2016–2017 (Figs. 3, 4).

3.3. The SPEROS-C model

The modelled SOC showed an increase in SOC stocks at all study
sites, with the highest increases in the areas where the land use changed
from croplands to natural forest and pine afforestation. The mean
present-day SOC inventory values for agricultural land was 3.94 kgm−2

which differed greatly from mean SOC inventory values of 6.21 kgm−2

in areas covered by forest and scrubs. The mean present-day agri-
cultural SOC stocks value was 3.7 times higher at present than the
modelled 1957 value (Table 5).

The lowest increases were found at sites that had remained under
agricultural use since 1957. Scrubland sites showed higher mean SOC
contents than agricultural land, but with high variability, scrubland
sites exhibiting both the highest and lowest values for SOC content. The
areas showing the highest increases were located at higher altitudes and
on steeper slopes.

Table 1
Basic statistics of the different study properties in the Barués catchment.

n= 98 Stoniness Clay Sand pH EC CaCO3 Field capacity Wilting point SOC χLF χFD TN C:N

% % % dS m−1 25 °C % % Vol % Vol % 10−8 m3 kg−1 % %

Mean 9.28 8.93 37.30 8.00 0.21 34.98 32.65 14.21 1.45 41.27 8.57 0.14 12.84
Median 7.70 8.60 38.50 8.03 0.18 36.29 33.12 13.72 1.49 34.45 9.05 0.13 12.15
SD 8.48 2.42 12.15 0.27 0.07 8.92 5.82 3.86 0.73 27.45 2.20 0.10 7.16
Min 0.00 3.80 0.00 7.38 0.10 3.53 18.17 5.35 0.22 7.50 2.98 0.02 0.98
Max 36.45 17.50 77.95 8.59 0.41 51.76 46.82 25.49 3.44 117.00 11.92 0.74 53.50
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The land used for agriculture in 1957 had a modelled mean SOC
inventory value of 1.04 kgm−2 over a surface area of 13.42 km2, while
the present-day value over the agricultural area has a mean value of
3.94 kgm−2 over just 3.81 km2. A total of 41% of the agricultural land
in 1957 has become covered by vegetation, wherein the present-day
SOC inventories are 7.66, 6.98 and 5.51 kgm−2 in natural forest, pine
afforestation and scrubland, respectively.

4. Discussion

4.1. Variation in soil characteristics with different land uses

The results showed that there were significant differences in all soil
properties except for grain size in croplands compared with the other
land uses, indicating that land use is one of the main factors affecting
the variation in soil properties after five decades of reversion of the
generalised cultivation in the catchment (Fig. 1).

The non-significant difference in grain size among the different land
uses could be explained by the homogeneity in texture across the
catchment due to the limited range of clay content (80% of the samples
had a clay content of 5–10%). These results are in agreement with re-
sults found in other Pre-Pyrenean environments (Gaspar and Navas,
2013) and by Quijano et al. (2016a, 2016b) in a cultivated field in the
catchment studied here. However, the significant difference in stoniness

in croplands is related to tillage practices that contribute to the
breakdown of rock fragments and soil aggregates. Manual clearing of
stones to improve the conditions of the cultivated fields also contributes
to the reduced stoniness. Thus, higher stoniness is found where natural
forests and revegetated land dominate. Likewise, the distribution of the
land uses across the catchment may also play a role in the direct cor-
relations between SOC, TN, EC and magnetic properties and the inverse
correlations with pH and carbonates. In particular, the inverse corre-
lation between carbonates and magnetic properties could be related to
the content of calcite, which has diamagnetic properties, and results in
negative values of magnetic susceptibility (Dearing, 1999). Thus, in-
creased carbonate content (CaCO3) may yield a decrease in magnetic
susceptibility, as we observed in our study catchment and in agreement
with Sarmast et al. (2017). In addition, the significant positive corre-
lations between SOC content and the magnetic soil parameters mea-
sured in this study likely evidence the close relationship between
magnetic properties and organic matter, as found by other authors
(Jordanova, 2017), confirming the potential of using magnetic soil
properties for tracking soil degradation in this environment (Quijano
et al., 2014).

The scarce variation in pH is due to the homogeneous distribution of
the lithology and the significant presence of carbonates in the under-
lying parent materials from which the different soil types are derived.
The absence of a clear distribution pattern of the field capacity or

Table 2
Correlation coefficient of the different properties.

n= 98 Stoniness Clay Sand pH CE CaCO3 SOC TN χLF χFD Field capacity

Clay −0.3626
Sand 0.4649 −0.7582
pH −0.2279 0.0162 −0.1247
CE 0.1541 −0.0131 0.1251 −0.7885
CaCO3 −0.2846 −0.2307 −0.0876 0.3757 −0.5136
SOC 0.2928 −0.1014 0.1763 −0.5233 0.5483 −0.4554
TN 0.2459 0.1011 0.0805 −0.1309 0.2461 −0.4886 0.3736
χLF 0.3637 0.02 0.251 −0.3427 0.4325 −0.6811 0.529 0.3916
χFD 0.0874 0.1146 0.0629 −0.4305 0.4357 −0.4736 0.4276 0.2424 0.6405
Field capacity −0.3753 0.3367 −0.3748 −0.1626 0.143 −0.1566 0.0702 −0.1335 0.062 0.0823
Wilting point −0.2454 0.439 −0.304 −0.1513 0.0767 0.086 0.0735 −0.2304 −0.0713 −0.0737 0.7517

Bold numbers indicate statistical significance at p≤ 0.05 level. Bold and italicized numbers indicate statistical significance at p≤ 0.01. Bold, italicized and un-
derlined numbers, indicate statistical significance at p≤ 0.001.

Table 3
Basic statistics of the soil properties and grain size of the sampling points under the different land uses in the study catchment.

Stoniness Clay Sand pH CE CaCO3 Field capacity Wilting point SOC χLF χFD TN C:N

% % % dSm−1 25 °C % % Vol % Vol % 10−8 m3 kg−1 % %

Agricultural Mean 5.39a 9.10a 35.63a 8.20a 0.16a 38.82a 32.22a 14.17 0.79a 33.45a 8.01a 0.09a 11.21a
Median 3.91 8.60 35.85 8.20 0.15 40.39 33.36 14.68 0.68 34.15 8.42 0.07 11.07
SD 6.12 2.94 14.87 0.17 0.03 7.07 7.11 4.29 0.37 16.81 2.03 0.07 5.07
Min 0.27 3.80 0.00 7.90 0.13 19.30 18.17 5.59 0.38 7.50 2.98 0.02 2.17
Max 23.03 17.50 77.95 8.59 0.23 51.76 46.75 20.74 2.10 70.70 10.68 0.30 25.50

Forest Mean 10.79b 9.24a 38.88a 7.91b 0.25b 28.79b 33.28a 13.82 1.77b 54.31b 9.32a 0.16b 12.61ab
Median 9.28 9.20 39.40 7.88 0.24 27.48 32.18 13.07 1.73 53.70 9.36 0.16 12.75
SD 7.41 2.06 9.38 0.24 0.09 10.68 3.92 2.96 0.48 27.29 1.29 0.09 4.43
Min 2.62 6.20 17.50 7.45 0.14 9.61 27.17 9.49 0.90 17.40 7.18 0.05 3.79
Max 23.60 14.50 54.20 8.36 0.41 42.20 40.89 20.17 2.49 117.00 11.62 0.43 24.33

Pine Mean 12.45b 7.93a 41.84a 7.88b 0.24bc 35.15a 29.92a 12.24 1.83b 46.14b 9.21a 0.13b 15.69b
Median 11.06 8.00 44.10 7.98 0.22 36.58 30.23 11.89 1.99 40.90 9.71 0.13 14.91
SD 9.48 2.17 13.05 0.27 0.08 7.23 6.51 4.14 0.74 26.62 1.67 0.06 6.34
Min 1.65 3.90 14.90 7.38 0.11 22.57 21.61 5.35 0.39 10.30 4.02 0.04 6.50
Max 35.84 13.30 65.30 8.17 0.41 50.29 44.09 22.96 2.84 89.80 10.81 0.23 33.50

Scrubland Mean 9.44b 9.07a 36.08a 7.97b 0.20c 35.27a 33.48a 14.96 1.51b 38.94ab 8.38a 0.16b 12.70ab
Median 7.86 8.65 37.90 8.01 0.19 35.93 34.00 13.95 1.58 27.45 9.08 0.13 11.96
SD 8.93 2.36 11.34 0.26 0.06 8.71 5.37 3.69 0.73 30.25 2.56 0.13 8.58
Min 0.00 5.70 5.90 7.43 0.10 3.53 20.57 7.94 0.22 7.90 3.18 0.02 0.98
Max 36.45 16.60 58.60 8.58 0.36 50.03 46.82 25.49 3.44 111.40 11.92 0.74 53.50

Letters a, b and c in the means column represents the groups that are significantly different from the others.
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wilting point is probably related to the generally homogenous texture in
the soils of the catchment. The coincident distribution of LF and FD
values with nutrients results from magnetic values being generally
positively correlated with SOC values (Quijano et al., 2014). The con-
trasting distribution of pH and CaCO3 compared with SOC and TN could
be related to the land use distribution in the catchment. Thus, the
highest values of pH and carbonates are found in agricultural land,
along with the lowest values of SOC and TN.

The spatial distribution of the soil properties shows good agreement
with the distribution of the different land uses. The agricultural lands
that occupy the lowest altitudes correspond to the selection of flat
terrains to facilitate tillage, sowing and harvest practices, affecting the
different soil properties. The lands that were abandoned first are lo-
cated in the highest and steepest areas that were more difficult to access
and were farther from the village, as found in other Pyrenean valleys
(Navas et al., 2017). The earlier abandonment of the areas with more
difficult access and their subsequent revegetation likely contributed to
their greater increases in organic matter, as found by Navas et al.
(2012).

The higher SOC contents in pine afforested areas and natural forest
are due to the higher density of the vegetation cover and the greater
size of the trees, resulting in larger aerial biomass, in agreement with
results found in other Mediterranean environments by Navas et al.
(2008) and Nadal-Romero et al. (2016). In comparison, the lower SOC
content in scrubland is because the less mature plants in general scrub
are younger in these abandoned lands than in natural forest, although
poorer soil conditions at the time of abandonment cannot be totally
excluded. Both TN and SOC were lower in the croplands, which could
be also related to the higher erosion rates that lead to losses of fine soil
components including organic matter, as found by Navas et al. (2014)
in nearby mountain agroecosystems. The higher percentage of SOC and
TN in rangelands is commonly reported in different environments
where higher percentages of vegetation cover are related to higher
contents of SOC and TN (Navas et al., 2011; Nadal-Romero et al., 2016;
Korkanç, 2014). The lower SOC and TN values found at sites that have
changed from agricultural land to rangeland or afforestation in the
recent decades could be related to poorer soil conditions at the time of
the abandonment compared with the areas that have remained as
rangeland since the 1960s. The similar values of SOC in pine afforested
areas that previously were croplands or rangeland suggest a higher
capacity to sequester carbon in the pine afforestation. However, in
natural rangelands SOC and TN values increase gradually from the time
of land abandonment because of the slower growth rate of the mixed
vegetation. On the other hand, the significantly higher contents of TN in
the natural forest and the higher values in scrubland compared with
pine afforestation suggest that rangeland has a greater capacity to fix
nitrogen. Thus, the vegetation succession in response to land aban-
donment positively influences soil quality, since SOC and TN are higher
in the abandoned areas, as also found by Van Hall et al. (2017) in a
humid Mediterranean landscape.

The SOC stocks have increased from the 1960s to the present day
mainly induced by the land use changes. Furthermore, the significant
differences between the cropland and the naturally revegetated or

afforested areas suggest that non-agricultural land uses such as open
forest, pine afforestation and scrubland produce more fertile soils.
Accordingly, the higher SOC and TN values found in the areas located
in the northern half and the south-eastern part of the catchment coin-
cide with greater abundance of rangeland and afforested areas. The
increased SOC stocks since the 1950s simulated with the SPEROS-C
model are likely produced by changes in agricultural practices. The
change from traditional tillage with animal traction to conventional
tillage after the introduction of the machinery increased crop pro-
ductivity. Conservation practices were introduced after 1995, reducing
losses of soil organic carbon. Increased SOC due to a change from
conventional tillage to conservation tillage has been reported by several
authors in the last decade (Balota et al., 2004; Jacobs et al., 2009;
Busari et al., 2015). However, the main SOC stock increase in this study
was due to land abandonment and the transition from agricultural land
to natural and afforested areas, as also reported by Celik (2005), Liu
et al. (2015), Selassie et al. (2015), and Lasanta et al. (2016) in different
environments. On the other hand, the vegetation expansion reduces
erosion rates at the catchment scale as found by Lizaga et al. (2018) in
this study catchment. This increase is also supported by the positive
correlation between the NDVI and SOC contents (Fig. 5). Relationships
between SOC and TN data and the NDVI suggest that natural cover
produces increases of nitrogen in the soil (Lizaga et al., 2019). How-
ever, the higher SOC values in the afforested areas are likely produced
due to the more rapid ascent in the NDVI. In addition, the lowest cor-
relation between NDVI and SOC/TN in scrubland is likely due to high
vegetation heterogeneity together with the largest variation of SOC and
TN in this land use. On the contrary, we observe high correlation be-
tween NDVI and SOC/TN in pine afforestation was linked to the uni-
form vegetation cover.

4.2. Temporal analysis of the evolution of the vegetation cover

From the images used to calculate the NDVI, the overall increase in
the value of the index from the 1970s to the present day indicates an
increase in vegetation cover and density. For most of the catchment this
was produced by the gradual abandonment of the agricultural land and
its progressive transition to natural revegetated cover, in parallel with
afforestation. The decrease in the NDVI values in the northern part of
the catchment to 1984 was produced by the clearance and regularisa-
tion of the slopes by terracing that was done prior to the introduction of
the pine afforestation, planted after 1984. The greatest rise in the NDVI
values was in the 1970s, caused by large increases in vegetation on
recently abandoned croplands and an increase in the aerial biomass of
the oldest reforested areas. Furthermore, in 2001 images, a second peak
in the NDVI values occurs because of the growth of pine trees planted in
the previous afforestation works and a progressive increase in vegeta-
tion cover on most of the abandoned croplands, along with higher
rainfall in the nineties (Fig. 4). Thus, it is likely that as the forest ma-
tures, the forest volume initially starts to grow at a slower rate until the
forest reaches a steady state. Then, the volume begins to grow rapidly
and reaches a maximum, beyond which the rate of volume growth
begins to decline (Ryan et al., 2015). A third peak was detected in 2013

Table 4
SOC percentage and inventory in 1957 calculated with the SPCF and the data from the 98 core samples collected.

n SOC % SOC stock (kgm−2)

Mean Median Max Min Mean Median Max Min

1957 Agricultural 20 0.21 0.21 0.23 0.19 1.04 1.02 2.15 0.50
2013 Agricultural 20 0.79a 0.68 2.10 0.38 3.94a 3.85 8.12 1.89

Forest 15 1.42b 1.43 2.04 0.90 7.66b 6.98 13.71 4.23
Pine 15 1.91c 1.99 2.79 0.89 6.98b 8.13 11.94 0.88
Scrubland 48 1.36b 1.37 2.82 0.38 5.51b 5.21 13.68 0.85

Letters a, b and c in the means column represents the groups that are significantly different from the others.
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due to an increase in all vegetation cover and a rising trend of vege-
tation growth after grazing in the catchment ceased. However, after
these three peaks, there are changes in the NDVI due to the onset of dry
periods with higher temperatures that inverted the increasing trend. In
addition, these dry periods in the summers from 1984 to 1987 and 2003
to 2005 led not only to a generalised decrease in the NDVI for these
periods but also to a stabilisation or reduction in the increasing trend in
the following periods (Fig. 4). Furthermore, after the dry periods, north

facing slopes showed a greater decrease in NDVI values, likely due to
the greater increase produced in the wet periods.

The inversion of the trend at present has clearly been triggered by
the dry period reported since 2016, with no precipitation experienced
in the summer. Moreover, maintenance works involving thinning that
removed part of the trees have also prompted a significant decrease in
the oldest pine afforestation.

The greater vegetation cover on north compared with south facing

Fig. 2. Spatial distribution of the assayed physical and chemical properties produced by an ordinary kriging and the corresponding isocurves in the study catchment.
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areas was also reported by Lizaga et al. (2017) in the Barués catchment,
expressed in total aerial biomass (TAB) inside the pine afforestation.
Furthermore, variation between areas with different solar radiation
showed different temporal evolution for natural cover and pine affor-
ested areas. The afforested areas showed no difference in NDVI at the
time when they were planted (1984); nevertheless, in 1987 they started
to differentiate, reaching a maximum NDVI in 2001 due to higher
precipitation in the nineties. However, natural cover already showed a

clear difference in 1972 between areas with higher and lower solar
radiation values. This indicates that in< 15 years after land abandon-
ment, natural vegetation had already covered the abandoned agri-
cultural areas.

5. Conclusions

After land abandonment, the soil physico-chemical properties vary

Fig. 3. Image comparison of the variations of the NDVI index between 1972 and 2017 in the Barués catchment. Stretch type method: Standard Deviation.
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significantly among different land uses in this mountain agroecosystem.
The SOC, TN, pH and CaCO3 values indicate that agricultural land has
less fertile soils. Due to afforestation and natural revegetation, soil

organic carbon stocks and total nitrogen have significantly increased,
supporting the key role of management of agricultural lands in soil
organic carbon and nitrogen dynamics.

Multitemporal satellite imagery is a fundamental tool for the
quantification of spatial and temporal vegetation changes and the ef-
fects of human intervention, which could not be attempted through
conventional mapping.

The results extracted from remote sensing analysis and soil nutrient
quantification suggest that in the short term, afforestation produces a
faster increase in SOC than natural cover, although an increase is not
observed in TN. After> 50 years since land abandonment, the soil
quality was similar under naturally revegetated and afforested cover.
Furthermore, the abandoned land became naturally revegetated with
native species 15 years after abandonment. The use of mixtures of na-
tive and fast-growing species such as pine promotes increases in SOC

Fig. 4. Comparison between the natural revegetated and the afforested areas and their north and south faces since 1972. a) Bar plot of the NDVI evolution in the
natural and afforested areas. b) Mean monthly precipitation plot since 1972 for July and August when the satellite images where recorded.

Table 5
SOC and TN percentages in rangeland (forest and scrubland) and pine affor-
estation points in areas that were rangeland in sixties and areas that have
change from agricultural land.

Rangeland in 1957 Agricultural in 1957

n SOC (%) TN (%) n SOC (%) TN (%)

Forest 9 2.00 0.19 6 1.42 0.13
Pine 5 1.96 0.15 10 1.91 0.12
Scrubland 21 1.68 0.16 27 1.36 0.14

Fig. 5. Correlation between the NDVI and the SOC % and TN % values of the 98 sampling points in the different land uses in the Barués catchment.
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and TN, and good soil recovery. It could therefore be a suitable alter-
native to cost intensive afforestation with pine monoculture.

The implementation of the SPEROS-C model and its extrapolation at
catchment scale can be used as an approximation to assess variations in
SOC stocks due to land use changes. It also underlines the importance of
preserving natural forests. The effects of recent land use changes on soil
properties should be considered in the design of future afforestations.
The results of this research could be useful to environmental planners in
decisions about best practices after land abandonment and future af-
forestation programmes.
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 ABSTRACT 

Soil loss by erosion processes is one of the largest challenges for food production and reservoir siltation 

around the world. Information on sediment, nutrients and pollutants is required for designing effective control 

strategies. The estimation of sediment sources are difficult to get using conventional techniques, but sediment 

fingerprinting is a potentially valuable tool. This procedure intends to develop methods that enable to identify 

the apportionment of sediment sources from sediment mixtures. 

We developed a new tool to quantify the provenance of sediments in an agroforest catchment. For the first 

time, the procedure for selection of the best combination of sediment tracers was included in the tool package. 

An unmixing model algorithm is applied to the sediment samples in order to estimate the contribution of each 

possible source. The operations are compiled in an R package named FingerPro, which unmix sediment 

samples after selecting the optimum set of tracers and providing the percentage contribution of each sediment 

source. An example from a well-studied Mediterranean catchment is included in the package to test the 

model. The sediment source apportionments are compared with results from a previous study of soil 

redistribution where 137Cs derived rates validate the unmixing results thus highlighting the potential of 

sediment fingerprinting for quantifying the main sediment provenance. Fingerprinting techniques will allow 

us to better comprehend catchment sediment transport to water ecosystems and reservoirs and its detrimental 

effect on the quality of the water and aquatic habitats.  

1. Introduction

Reliable information on sediment loads transported by a 

river or stream is crucial to evaluate the severity of reservoir 

siltation and river pollution. However, determining sediment 

provenance or sediment budgets in catchments using 

conventional monitoring techniques is often challenging. 

However, in most situations, it can be provided by applying 

tracing techniques. Fingerprinting techniques can be used to 

recognise sediment sources and to determine their relative 

contribution, thereby allowing the identification of areas or 

land uses prone to erosion processes (Schuller et al., 2013). 

Thus, soil erosion and the subsequent sediment transport are 

related to the loss of nutrients and their distribution in the 

catchment (Lizaga et al., 2019). To assess this issue, several 

software and indices have been developed to quantify the 

effects of different erosion mechanisms, such as connectivity 

(Lizaga et al., 2018; Shore et al., 2013), river bank (Ben et 

al., 2018), sheet and rill (Molnár and Julien, 1998), wind 

erosion (Schmidt et al.. 2017; Liu et al., 2019) and the 

subsequent effects on water quality (Quesada et al., 2014). 

However, sediment source fingerprinting has been developed 

in recent decades for catchment sediment and pollutants 

investigation as the most powerful tool to assess this problem. 
The procedure identifies sediment provenance and estimates

the relative contribution of each potential source, using the 

selected tracer properties. 

The first fingerprinting approach dates back to the 

seventies, based on mineralogical and grain size 

characterization (Klages and Hsieh, 1975). The earliest 

fingerprinting researches were fundamentally qualitative in 

their result, but the introduction of quantitative mixing 

models was a methodological advance which enabled 

researchers to obtain quantitative results of the relative 

contribution from different sediment sources (Collins et al., 

1997; Walling, 2005). Since these early works, sediment 

source fingerprinting applications have been greatly 

expanding with the development of new techniques (Owens 

et al., 2016).  

The traditional approach for applying source-tracing 

methods is to define the relevant tracer properties that 

provide a particular signature between all source samples and 

unequivocally discriminate the different sources (Collins and 

Walling, 2002). Due to the inherent complexity of catchment 

characteristics, with large variations in climate, geology, land 
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use, vegetation, soil, and management practices, commonly, 

no unique tracer can discriminate between multiple sediment 

sources. Consequently, different tracer properties need to be 

analysed, such as radionuclides (Wallbrink et al., 1998; 

Evrard et al., 2016), geochemistry (Martínez-Carreras et al., 

2010; Smith and Blake, 2014; Meusburger et al., 2016; 

Zupančič et al., 2018) and CSSI (Reiffarth et al., 2016).  

The fundamental theory that supports this technique is 

that the tracer properties of the sediment mixtures are directly 

comparable to the sediment of the sources. A common 

procedure, the so-called “range test”, checks if sediment 

tracers are conservative excluding the tracers of the mixture/s 

outside the minimum and maximum values in the potential 

sediment sources. This procedure prevents the inclusion in 

the optimum tracers of the fingerprint properties exhibiting 

non-conservative behaviour. However, the exclusion of a 

great number of fingerprint properties likely suggests that not 

all sources have been correctly identified or characterised. 

Thus, methodologies for tracer selection is an open question 

that is being discussed at present by several authors since 

different tracer selection methods could lead models to 

different results (Pulley et al., 2015; Owens et al., 2016; 

Gaspar et al., 2019). Following this assumption, the two-

stage statistical procedure previously proposed by Collins 

and Walling, 2002, is commonly used to assess this 

conservativeness. Thus, the Kruskal Wallis H test (KW) and 

discriminant function analysis (DFA) test the ability of 

individual tracers to discern between sediment sources and 

select the best combination of tracers. This procedure was 

used to select the smallest combination of tracers that 

provided the maximum discrimination of the identified 

source categories and it is implemented by several authors as 

a common procedure when using frequentist (Collins et al., 

2002; Evrard et al., 2013; Palazón et al., 2015; Lin et al., 

2015) and Bayesian (Koiter et al., 2013; Barthod et al., 2015) 

unmixing models. Subsequently, the relative contribution of 

each identified source is estimated using a linear multivariate 

unmixing model. Due to the growing use of fingerprinting 

methods, other unmixing models, such as SIFT (Pulley and 

Collins, 2018), MixSIR (Moore and Semmens, 2008) and 

IsoSource (Phillips and Gregg, 2003), appeared in the last 

years for pollution and ecological purposes.  

However, due to operational complexity and the need to 

use different statistical software not included in the packages 

the use of unmixing models is generally restricted to 

academics with a good knowledge of the procedure. Our new 

R approach combines for the first time the tools needed to 

unmix sediment samples and the previous statistical tests to 

select optimum tracers. This paper presents the FingerPro 

package, a user-friendly application and freely available 

software for users with limited or nor expertise in statistics. 

Thus, any user could implement the fingerprinting procedure 

with limited previous experience in the technique and with no 

need of another software for statistical analyses. Furthermore, 

unlike previous models, this new tool to identify sediment 

provenance has been successfully tested with artificial 

samples (Gaspar et al., 2019). Through an example, this 

paper exposes the utility of FingerPro for applying tools for 

pre-processing input data or combine sources without 

significant differences before or after running the unmixing 

model. Furthermore, a study catchment has been selected as 

representative of mountain headwaters (South Pyrenean 

region) that supply water to reservoirs as siltation and 

pollution is one of the main environmental issues worldwide 

(Valero-Garcés et al., 1999). Therefore, it is necessary to 

identify the sediment sources to establish management 

strategies for ensuring water supply to the lowlands while 

preserving water quality. Refinement of the sediment source 

fingerprinting techniques requires open source models such 

as FingerPro that help the user in tracer selection decision 

and optimize this time-consuming process for non-expert and 

academics with low programming and statistical skills by 

including the essential statistical functions and plots. Thus, 

the aim of this work is to provide an easy and straightforward 

way to apply the sediment fingerprinting technique aimed to 

beginners or non R users. The analyses described in this 

research are based on the reproducible “small” catchment 

example included in the package. To further describe the 

capability of the package, an example of an ongoing research 

in a medium size catchment is also described. 

2. Methods

Sediment fingerprinting requires a preliminary analysis to 

select a subset of conservative tracers that discriminate the 

potential sources. Then, the relative contribution of each 

source is estimated using a linear multivariate unmixing 

model. This procedure is iterated considering the variability 

of the sediment sources to obtain the statistical distribution of 

the source contribution. 

2.1 Statistical analysis for the selection of tracer properties 

Several statistical tests can be used to confirm source 

discrimination and select the optimal subset of conservative 

tracer properties, such as the procedure suggested by Collins 

and Walling (2002). However, the use of many tests could 

remove a considerable number of tracers and therefore 

restrict the discrimination between sediment sources. 

Consequently, none of the functions included in the 

FingerPro package are mandatory and the tracer exclusions 

can be based on ‘expert judgement’ after visualising boxplots 

and results from the statistical tests included. The tracer 

selection methods implemented in the package are 

i) Range test: the minimum and maximum values of the

tracer properties in the sediment sources are compared to 
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those of the mixtures. The tracers falling out of the range of 

the selected sources are removed from subsequent analyses. 

These properties may not be conservative or their exclusion 

supports the existence of an additional hidden source.  

ii) Kruskal-Wallis H test: this is a rank-based

nonparametric test used to determine if there are significant 

differences between the medians of selected groups or 

sources. This procedure removes tracers which do not show 

significant differences between at least two of the sediment 

sources. 

iii) Discriminant Function Analysis: identifies the

optimum set of tracers that maximises the discrimination 

between the sediment sources whilst minimising the number 

of tracers. This function executes a stepwise forward variable 

selection for classification using the Wilk's Lambda criterion. 

The function selects the tracers on the basis of how much 

they decrease Wilks' lambda. At each step, the function 

includes the variable that minimises the overall Wilks' 

lambda. 

Fig. 1. Location of the study area. 3D picture of the catchment 

created with a DEM and land cover map. 

2.2 Mixing model 

The relative contribution of each potential sediment 

source is determined using a standard linear multivariate 

mixing model: 

∑ 𝑎𝑖,𝑗 ∙ 𝜔𝑗

𝑚

𝑗=1

= 𝑏𝑖  

which satisfies: 

∑ 𝜔𝑗

𝑚

𝑗=1

= 1 

0 ≤ 𝜔𝑗 ≤ 1

where 𝑏𝑖 is the tracer property i (i =1 to n) of the sediment

mixture, 𝑎𝑖,𝑗 represents the tracer property i in the source type

j (j =1 to m), 𝜔𝑗 is the unknown relative contribution of the

source type j, m represents the number of potential sediment 

sources and n is the number of tracer properties selected. 

This system of equations is mathematically determined if 

the number of tracers is greater than or equal to the number 

of potential sources minus one (𝑛 ≥ 𝑚 − 1). The procedure 

tries to find the source proportions that conserve the mass 

balance for all tracers. All possible combinations of each 

source contribution (0-100%) are examined in small 

increments, using Latin hypercube sampling (LHS) (McKay 

et al., 1979). The quality of each candidate is measured using 

the following function or goodness of fit (GOF), based on the 

sum of squares of the relative error: 

𝐺𝑂𝐹 = 1 −
1

𝑛
× (∑

|𝑏𝑖 − ∑ 𝜔𝑗𝑎𝑖,𝑗
𝑚
𝑗=1 |

∆𝑖

𝑛

𝑖=1

) 

where Δi is the range of the tracer property i, used as a 

normalisation factor. The combinations that reproduce the 

observed sediment mixture with the maximum GOF is 

selected as the solution.  

2.3 Variability analysis of the sources 

In small to large size catchments, the heterogeneity of 

sediment tracers, defined by different land uses, geomorphic 

processes, soil types or human activity, is always present. For 

this reason, fingerprinting studies should correctly 

characterise source variability by means of collecting several 

samples of each source. Thus, evaluation of the variability in 

tracer data used to characterise sediment sources is important 

to correctly interpret the source apportionment results.  

Variability analysis is assessed following classical 

frequentist inference by means of a Monte-Carlo method 

(Helton, 1994). A succession of deterministic calculations are 

executed, each with different input values sampled from their 

respective distributions, to obtain probability distributions of 

the targeted outcomes.  

The heterogeneity of each source is considered as a t-

distribution for each property. The fingerprinting analysis of 

each sediment mixture is repeated by randomly sampling the 

source probability distributions. For the first iteration, the 

central value of the source distributions is used as a reference 

result. The corresponding output values are gathered to infer 

the probability distribution of the potential source 

contributions. Several samples must be collected for 

characterising each source in order to compute the mean and 

the SD of the analysed tracer properties. 
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3. The FingerPro package

Application of the functions in the package allows the

user to i) characterise the different tracer properties and select 

the relevant variables; ii) unmix the sediment samples and 

quantify the different source apportionment; iii) assess the 

effect of the source variability; and iv) visualise and export 

the results. Thus, FingerPro package proposes a step by step 

procedure divided into three main sections in order to help 

users in their decisions. 

3.1 The example dataset 

The package includes a soil dataset from a small 

Mediterranean catchment (4 km
2
) that contains high-quality 

radionuclides and geochemistry data to test the operation of 

the functions and help the user to understand the model 

(Fig.1). This study area was selected due to its heterogeneous 

land uses/land covers which are likely to exhibit large 

differences in sediment tracer contents. Furthermore, the 

study area is located in a well-studied catchment where 

several studies of soil redistribution 
137

Cs derived rates were 

pursued (Quijano et al., 2016; Lizaga et al., 2018). Thus, soil 

redistribution rates were used to evaluate FingerPro model as 

a suitable tool in the Prepyrenean region. The results obtained 

by Lizaga et al. (2018) found that net soil loss values were 4 

times higher in agricultural lands than in pine forest 

highlighting the importance of the vegetation cover and land 

management to prevent erosion processes and subsequent 

land degradation.  

The study area dataset is composed of 21 source sediment 

samples from 4 different sources and 1 mixture sample. The 

sources are divided in agricultural (AG), old pine forest (PI), 

recent pine forest (PI1) and degraded soil named subsoil (SS) 

which occupies 9%, 32%, 58% and 1% of the catchment area, 

respectively. The agricultural land use is mainly composed by 

winter cereals crops and the pine afforestation forest is 

predominantly Pinus halepensis Mill. The average 

temperature range from 5 °C to 18 °C and the mean annual 

rainfall is about 520mm (AEMET).  

3.2 Input data 

The input variables need to be stored as an R table object. 

The dataset must satisfy the following requirements: i) the 

first column represents the sample id; ii) the second column 

is the source classification, containing target samples in the 

last place.  

3.3 Characterising the sediment samples 

One of the advantages of the FingerPro package is that it 

allows the user to analyse and visually compare different 

tracer properties, using the state of the art of R packages: 

The boxPlot() function displays a boxplot of each tracer 

property to help the user in the decision by visualising the 

different concentration of each tracer versus the mixture 

sample. A parameter (tracers) with the number of tracer 

properties in the boxplots is provided. The number of 

columns (columns) refers to the number of plots per row in 

the display (Fig. 2). The boxPlot () function could be used for 

tracer selection by helping the user to visualise and select the 

tracers based on the boxplots and its expert knowledge. Thus, 

the user visualizes in the example dataset that most of the 
210

Pbex in the mixture sample likely comes from PI and PI1 

sources and that 
40

K is almost out of range (Fig. 3). 

Furthermore, by repeating this function after implementing 

each test for tracer selection, users can envisage how 

representative the remaining tracers are. 

The correlationPlot()function displays a correlation 

matrix of each tracer, divided by the different sources to help 

the user by testing the conservatism of tracers by visualising 

the relationships between the different tracers and sediment 

mixtures following the methodology proposed by Pulley et 

al. (2015). A parameter (n) with the number of tracer 

properties in the correlation matrix is provided, along with 

the possibility to include the sediment mixture (mixtures = T) 

in the matrix or to exclude it (by default). In addition, in the 

correlation plot, once the users have selected the optimum set 

of tracers, it is possible to visualise if the mixture samples fit 

inside the source distributions. If a mixture sample is outside 

the sources distribution, then no solution exists or the mixing 

model assumptions are not met. 

The PCAPlot() function performs a principal components 

analysis on the given data matrix and displays a biplot of the 

results, divided by the different sources, to help the user in 

the decision. A parameter (components) with the number of 

principal components to display is included.  

The LDAPlot() function performs a linear discriminant 

analysis and visualises the data in the relevant dimensions. A 

parameter (P3D) allows the user to display a 3D LDA graph 

(Fig. 4). 

This set of functions allows the user to visualise the 

principal components plot and the linear discriminant plot 

after the statistical selection procedure. Thus, the plots help 

the user to visually identify whether the excluded variables 

increase or decrease the discrimination capacity between 

sources. Furthermore, the LDAPlot function was used in the 

catchment example to visualize the number of sources that 

shows good discrimination with this set of tracers (Figure 3). 

The function shows a large overlap between PI and PI1 that 

would suggest merging both sources. Thus, after grouping PI 

and PI1 the discriminant plot shows better discrimination 

between selected sources (Fig. 4). 
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Fig. 2. Boxplot of the tracer properties included in the data example (catchment). In different colours, the tracers removed by each statistical 

test.

3.4 Statistical test for selecting the optimal set of tracers 

Selection of the optimal tracers is usually based on the 

two-step procedure proposed by Collins and Walling (2002), 

which includes some previous statistical procedures such as 

the “range test”, the KW and the DFA test. Thus, FingerPro 

has included these functions to support user decision. 

However, this procedure might remove too many tracers or 

include some inadequate properties and could, therefore, 

restrict the discrimination between sediment sources. Hence, 

the procedure is included as an individual and informative 

function to only use the steps needed and to prevent a 

reduction in the source discriminations. For this reason, the 
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tracer selection procedure cannot be only based on statistical 

tests but also in the expert knowledge of the 

geomorphological and hydrological processes of the 

catchment (Blake et al., 2018). Thus, boxplot chart, LDA 

plots and correlation plot included in the FingerPro package 

were implemented to help the users in the decision. 

The rangeTest()function excludes the tracer properties of 

the mixture/s outside the lowest and highest values in the 

sediment sources. 

The KW()function excludes tracers from the original 

dataset which do not show a significant difference between 

sources.  This function performs a Kruskal-Wallis rank sum 

test using the kruskal.test () function from the R package 

stats. A parameter to select the p-value (pvalue) is provided. 

The DFA() function executes a stepwise forward variable 

selection, using the Wilk's Lambda criterion, which 

maximises the discrimination between the sources whilst 

minimising the number of tracers. This function performs a 

stepwise forward variable selection using the greedy.wilks () 

function from the R package klaR. A parameter to select the 

niveau (niveau) for an approximate F-test decision is 

provided with a default value of 0.1. This value could be 

reduced to be more restrictive in the tracer selection 

procedure. However, by reducing the value below 0.05 the 

statistical test could remove the majority of the tracers with 

the subsequent decrease in the discrimination of the different 

sources. These three tracer selection methods were applied in 

the example dataset. In Fig.3 the tracers removed by each 

method can be seen and, based on the boxplot graph, to 

decide if it is suitable to use all of them or if the selected 

tracers represent a good approximation of the dataset. After 

the implementation of the range test function, we can see in 

the boxplot graph that effectively Pb, Zn and Cr have been 

removed. However, there are other tracers such as 
40

K, Sr, Fe, 

and V that remain in the dataset though they should not be 

considered as tracer inside the sources range. Furthermore, by 

using the LDA and PCA plots we can decide if the use of 

other tracer selection methods decreases the discrimination or 

if by using them we could remove a tracer with specific 

information. The flow chart presented in Fig. 1 shows the 

preferential order to follow in the fingerprinting procedure. 

As shown in Fig.5, by removing 
226

Ra and Mn from the 

dataset by using the DFA after KW test the LDA plot shows 

similar results. In addition, the arrows of the removed tracers 

in the PCA plot were parallel to those that remain in the 

dataset. Thus, in this example, the plot information suggests 

that including or removing 
226

Ra and Mn should not produce 

important variations in the discrimination of sources or in the 

model results as it is evident in Fig. 5.  

3.5 Sediment unmixing 

The unmix() function assesses the relative contribution of 

the selected sediment sources for each mixture in the dataset. 

Fig. 3. LDA plot of the data example (catchment). a) Before running 

the statistical test, the dataset shows collinearity. b & c) 2D and 3D 

LDA display of the dataset after running the statistical selection. d) 

LDA display after merging both pines sources PI and PI1. 

A parameter (samples) with the number of samples of the 

LHS is provided. The number of iterations (iter) in the source 

variability analysis is also configurable. However, if the 

number of iterations is set as 1, results are produced in a 

single analysis considering the sources mean value. The 

result of this function displays a plot with the density 

distribution of the model solutions and a table with the mean 

value and the standard deviation of the model solutions (Fig. 

5). Besides, users can display the results in violin plots 

instead of density plots by adding the word True to the violin 

option. 

 After the tracer selection procedure, FingerPro results 

reveal that 18% of the mean sediment supply comes from 

agricultural land use and 34% and 47% from bare soil and 

pine forest, respectively. The small standard deviation of the 

three sources together with the high GOF value shows a good 

fit of the model to efficiently discriminate the selected 

sources (Fig. 5). However, users should be cautious about 

using GOF as an assessment of model reliability. Recent 

research has shown models with a high GOF can still deliver 

inaccurate results (Palazón et al., 2015; Gaspar et al., 2019), 

but also has shown that all models with low GOF always 

deliver wrong results. 

The results of the example dataset are supported by soil 

erosion rates estimated with 
137

Cs by Lizaga et al. (2018) in a 

Mediterranean catchment comprising the one studied here. 

Thus, 18% of the sediment contribution is supplied from 9% 

of the area under agricultural management and 47% of the 

contribution comes from pine forest that occupies 90% of the 

study catchment. Relatively the subsoil was the main source 

with 34% of the contribution for just only 1% of the area 

taken by the bare soil in the study catchment. Our results 

highlight the hazards that subsoils on supplying important 

amounts of sediments to the water systems.
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Fig. 4. LDA, PCA and the density plot of the unmixing process before and after the use of the DFA test.
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Fig. 5. Correlation plot of seven of the tracer properties of the medium size catchment example. 

3.6 Application in a Medium-Size catchment 

In this section, as way of example results of applying the 

FingerPro package in a medium size catchment (Lizaga et al., 

2019) are described. Its larger surface area and higher 

number of sources result in a more complex unmixing. For 

this reason, all the tools added in the FingerPro package to 

help the users and characterise the unmixing dataset are 

essential to reach robust results. Here, we highlight the most 

important decisions made during the fingerprinting procedure 

and how the different tools included in the package help the 

authors to unmix their data. In order to avoid repetition in this 

manuscript, only one mixture sample collected at the outlet of 

the catchment is used to describe the FingerPro utilities.

Fig. 6. Density plot and results of the unmixing process after the two different tracer selection approaches

.
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Following the application of the range test and Kruskal 

Wallis test, the final selection was made based on expert 

judgment using the boxplots and correlation plots to finally 

identify the tracers that were conservative. Fig. 6 illustrates 

how some tracers pass the selection tests, such as RT, KW 

and DFA, but show non-conservative behaviour, i.e. LF, Fe, 

Ti and Ca. In addition, if we analyse the correlation plot of 

the tracers that shows non- conservative behaviour, the 

mixture sample is located almost out of the point cloud. On 

the other hand, the sample mixture is located inside the point 

cloud of the conservative tracers. Thus, based on this 

information it was decided to select the tracers after passing 

the KW test using expert knowledge, thus obtaining more 

defined results and higher GOF (Fig. 7). Hence, all the tools 

added in the FingerPro package to remove the tracers that 

violate the principles of conservativeness are needed in 

fingerprinting studies. This methodology suggests that 

including tracers with discordant information into 

fingerprinting models does not add valuable information and 

could lead the model to unpredictable results. 

4. Conclusions

The application of mixing models it is necessary to 

understand source-tracer relationships what is generally 

performed by applying different software’s to select the best 

combination of sediment tracers. With FingerPro, diverse test 

and mechanisms have been incorporated for tracer selection 

in a single software. Furthermore, the inclusion of several 

plot functions such as boxPlot, correlationPlot, LDAPlot and 

PCAPlot allows the user to check if the selected tracers are 

suitable for the unmixing process. This package for sediment 

source fingerprinting in hydrological systems offers a wider 

and easier application in catchments affected by natural and 

human-induced changes.  

Due to the increasing attention in tracing sediment 

methods and the need to select the best tracer combination, an 

open source tool that includes all the steps for sediment 

unmixing is a key tool to the unmixing process. The example 

dataset included in FingerPro provides evidence of the large 

sediment supply and severe soil loss caused by land 

degradation and bare soil. In addition, the agreement between 

the unmixing results obtained from the example dataset with 

the 
137

Cs derived rates supports the capability of the model 

for sediment fingerprinting task. These results reflect the high 

importance of creating a low time-consuming and open 

source mixing model that combines the necessary tools to 

solve environmental issues such as reservoir siltation or soil 

loss and trace the sediment provenance.  

FingerPro provides the users with tools to i) characterise 

the different sediment sources, establish correlations between 

the tracers and assist the selection of the optimal tracers; ii) 

graph the results, using the state of the art of R packages; iii) 

unmix sediment samples to estimate the apportionment of the 

sediment sources. iiii) test the model using data from a 

Mediterranean study catchment included in the package.  

In addition, the example dataset and the results of a 

medium size catchment explained introduce the users on to 

the functioning and potential of the tools included in the 

FingerPro package also showing the advantages of the 

fingerprinting technique to improve the understanding of 

sediment supply processes. 
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The loss of fertile topsoil is one of the principal soil degradation problems in mountain agroecosystems world-
wide. Soil erosion rates reach their maximum during exceptional storm events that remove soil particles, espe-
cially from unprotected topsoil. In Mediterranean mountainous environments, several centuries of non-
irrigated agriculture and the subsequent removal of natural vegetation for developing agriculture has increased
the surface area prone to erosion. In addition, the irregularity in exceptional precipitation events results in a great
loss of fertile soil, the subsequent siltation of reservoirs and a decrease in water quality. To analyse the soil re-
sponse to exceptional events, 161 source samples were collected in a 23 km2 catchment that was mostly culti-
vated at the beginning of the last century. Source samples were distributed over the five main land use/land
covers such as agricultural land, pine afforestation, open forest, bare soil and channel bank areas. Furthermore,
20 channel bed sediment samples were collected along the main streams before and after the exceptional
storm event to document changes in the sediments. In addition, floodplain sediments were collected to provide
a close replication of sediments deposited during regular storm events. Source apportionments were calculated
using the FingerPro unmixing model in the pre-event, regular events and post-event scenarios.
The unmixing outputs displayed a large variation of source apportionments from the upper part to the lower part
of the catchment and from pre- to post-event sediments. After the event, a decrease of N70% of the clay fraction
and its associated elements such as Fe, Al, K, Ba, Sr, Rb, Pb, Zn, V, 137Cs, 40K, 232Th and SOC alongwith a rise in con-
tents of elements associatedwith the coarse fraction (Si, Nb, Zr, Ti, P and 226Ra) was recorded in the channel bed
sediments. At the catchment outlet, the pre-event sediment showed substantial contributions from bare soil
(29%) and from agriculture and channel banks, which both reached 35%, while the channel bank was the main
source along the catchment ranging between 44 and 71%. The low contribution from soil under natural covers
with a mean value b4% underlines the benefits of vegetation to prevent soil loss. In the post-event sediment,
the channel bank contribution increased up to 63% at the catchment outlet. Our findings highlight the hazards
of exceptional storm events on modifying sediment source contribution and exporting fine sediment.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

The impact of soil erosion onmountain agroecosystems has received
increasing attention due to the vulnerability of shallow soil to erosion
processes, which are the main cause of soil loss and subsequent land
degradation. Very intense rainstorms after dry periods are relatively fre-
quent in theMediterranean region (Serrano-Notivoli et al., 2017). Med-
iterranean agroecosystems are susceptible to degradation due to
irregular space-time distribution of high-intensity rainfall and storm
events, followed by long dry periods (Mariani and Parisi, 2014). The im-
portance of these exceptional rainstormshas been highlighted, and they
have been found to be responsible for major geomorphological changes

including piping, gully formation, landslides and subsequent soil loss
(Grodek et al., 2012; Nadal-Romero et al., 2013). Thus, fragile soils
with low nutrient contents existing in Mediterranean mountain
agroecosystems, along with an absence of dense vegetation cover due
to deforestation in the past century, have created areas prone to erosion
(Navas et al., 2017). Soils without vegetation cover are easily erodible
during exceptional storm events such as the three-day long exceptional
rainstorm event that occurred in 2012 in northeastern Spain (Serrano-
Muela et al., 2015).

Exceptional rainfall events accelerate soil and bedrock erosion on
hillslopes, which commonly results in higher sediment mobilisation
and variations in sediment sources released into the streams. Exported
fine sediment produces an important indirect impact such as rapid silta-
tion of downstreamwater bodies that reached a maximum in theMed-
iterranean mountains due to land abandonment in the mid-1950s
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(Navas et al., 2009). Since the 1950s, Mediterranean mountain
agroecosystems were commercialised through technological progress
and the EU Common Agricultural Policy (CAP), which favoured the ex-
pansion of certainmanagement systems focused onmore fertile and ac-
cessible land. These practices produced a decline in traditional farming
methods and convertedmountain agriculture intomarginal agricultural
land leading to the abandonment of the countryside (Lasanta et al.,
2016; Quijano et al., 2016a; Borrelli et al., 2017). Subsequent natural
vegetation regrowth (Navas et al., 2008) and afforestation during the
1960s and 1980s produced a large effect on reducing slope-channel
coupling and runoff due to an increase in plant cover (Cavalli et al.,
2013; Heckmann et al., 2018; Llena et al., 2019). Thus, Mediterranean
agricultural soils suffered significant modifications due to land use/
land cover changes (Romanyà and Rovira, 2011). As a consequence of
such changes, cultivated Mediterranean fields show large variability in
soil losses with average soil redistribution rates between −30 to
15 Mg ha−1 yr−1, while in other land uses that offer protection to the
soil surface (such as open forest), rates are muchmore moderate, vary-
ing from−3 to 5Mg ha−1 yr−1 (Navas et al., 2014; Lizaga et al., 2018a).

Currently, soil erosion is an estimated 10–40 times greater than soil
formation rates (Pimentel, 2006; Verheijen et al., 2009). Various ap-
proaches have been suggested for sediment yieldmonitoring and quan-
tification of soil redistribution rates (Favis-Mortlock, 2008; Walling and
Collins, 2008; Dutta, 2016;Wynants et al., 2018). However, erosion pro-
cesses are mostly influenced by a variety of driving forces such as slope,
land management, altitude, vegetation cover, land use, soil type and
changing weather patterns and extremes under current climate
(Renard et al., 2011; Lana-Renault et al., 2013; Lecce, 2013; Buendia
et al., 2016; Nadal-Romero et al., 2019; Shang et al., 2019). Thus, to con-
trol soil erosion, it is important to recognise the most susceptible areas,
soils or land uses exposed to erosion processes as these processes lead
to the loss of soil nutrients.

Concerns about the nutrient loss associatedwith fineparticles due to
soil erosion have led to analysis methods for quantifying and predicting
erosion rates offinegrain sediment. To this purpose geochemistry,mag-
netic properties, radiotracers and modelling approaches offer consider-
able potential for studying erosion processes and calculating soil
redistribution rates (Navas et al., 2005; Gaspar et al., 2013; Quijano
et al., 2016b; Masselink et al., 2017). In areas where rill erosion is dom-
inant, studies at the slope scale have proven effective (Li et al., 2009).
However, few studies quantify soil redistribution rates at catchment
or river scale (Mabit et al., 2002; Porto et al., 2003; Navas et al., 2013;
Lizaga et al., 2018a; Chen et al., 2019).

Large-scale erosion after exceptional rainstorm events has occurred
irregularly in the northeastern part of the Spanish Peninsula (Gutiérrez
et al., 1998; White et al., 1997; García-Ruiz et al., 2002). Exceptional
storm events and the subsequent overflow of river banks typically
increase sediment transfer and suspended sediment loads in river
catchments triggering variations in sediment solute concentrations
(Winston and Criss, 2002).

The large increase in fine grain sediment mobilised during excep-
tional storm events has been demonstrated to be one of themost wide-
spread contaminants in aquatic ecosystems, compromising water
quality and causing reservoir siltation (Navas et al., 2004). For these rea-
sons, defining the sources of eroded fine-grained sediment is a funda-
mental requirement for catchment management as well as for
understanding the evolution of landscapes and delineating the most
sensitive areas to soil loss.

Determining sediment provenance in catchments using conven-
tional monitoring techniques is often challenging, but in most environ-
ments it can be undertaken by applying sediment source fingerprinting
methods. Due to the growing use of fingerprinting methods, several
unmixing models such as IsoSource (Phillips and Gregg, 2003), MixSIR
(Moore and Semmens, 2008), SIFT (Pulley and Collins, 2018) and
FingerPro (Palazón et al., 2015a; Lizaga et al., 2018b) have appeared
over the last years for pollution and ecological purposes. To date, there

are several studies on identifying source apportions by fingerprinting
techniques (Klages and Hsieh, 1975; Walling et al., 1979; Yu and
Oldfield, 1989; Collins et al., 1996; Evrard et al., 2013; Schuller et al.,
2013; Palazón et al., 2015b; Meusburger et al., 2018; Upadhayay et al.,
2018), but only a few have quantified the sediment provenance after
an exceptional rainstorm event (Martínez-Carreras et al., 2010; Zhang
et al., 2017), and none of these studies have compared whether there
were changes in the provenance of sediment before and after an excep-
tional storm event.

To evaluate the unstudied effect of this unstudied phenomenon, its
source apportions were calculated using the new R package FingerPro
unmixing model (Lizaga et al., 2018b) that was tested with artificial
samples by Gaspar et al. (2019a). For this purpose, we implemented
the unmixing model in two different datasets, before and after a
three-day exceptional rainstorm event in a representative catchment
of the Prepyrenean region. The 2012 event corresponded to a return pe-
riod of 142 yr calculated at the outlet of the Yesa reservoir located 30 km
north from the catchment (Serrano-Muela et al., 2015). Our objectives
are (i) to analyse whether sediment properties vary along the main
streams before and after the exceptional storm event, (ii) to quantify
and trace the sediment provenance before the 2012 exceptional rain-
storm event in different parts of the study catchment and (iii) to exam-
ine whether sediment source apportionments after the exceptional
storm event differed from the ones during normal discharge.

Therefore, ourmulti-approach combining spatiotemporal analysis of
soil properties and fingerprintingmodelling is aimed to determine how
an exceptional storm event modifies the sediment properties of the
streambed sediments and how contributions from sediment sources
might change. To this aim, our work represents a unique opportunity
to track the changes in sediment contribution associated with excep-
tional storm events due to the availability of pre-event sediment and
floodplain mixtures that were resampled after the storm event. This
paper sheds new light on the effect of heavy storms in agriculture catch-
ments and points out the most sensitive areas to these highly erosive
processes.

2. Material and methods

2.1. The study area

The study catchment (23 km2) is drained by an ephemeral stream
tributary of the Arba River located in Barués in the middle part of the
Ebro Basin (Fig. 1). From the geomorphological perspective, the catch-
ment structure is dominated by the low angle dip of the bedding and
the presence of a Quaternary glacis located at the lower eastern part
of the catchment. The climate is characterised by cold winters and hot
and dry summers. The rainfall periods are concentrated in the spring
and autumn seasons while the droughts take place between these two
humid periods. The area is subjected to very intense though sometimes
localised storms. Themaximum andminimumannual temperatures are
30 °C and −6 °C, respectively. The mean annual rainfall is about
500 mm.

At the start of the twentieth century, most of the catchment was ag-
ricultural land. In the 1960s, nearly 60% of the catchmentwas croplands.
However, during the next 10 yr, 75% of the agricultural land was aban-
doned. Currently, ~16% of the catchment is still cultivated while open
forest and pine occupy the remaining 83.5% (Lizaga et al., 2017). The
main land use/land covers are agricultural, open forest and pine affores-
tation, occupying 16%, 50% and 19% of the catchment area, respectively.
In addition, most of the agricultural land is located on a Quaternary gla-
cis and on fluvial terraceswith gentle slopes occupying the valley floors.
The upper part of the Quaternary glacis is dissected by the La Reina trib-
utary stream, an ephemeral stream with documented exceptional dis-
charges under heavy rainfalls. Rangelands occupy the highest altitudes
and the revegetated abandoned crops are mostly located at intermedi-
ate altitudes where most of the abandoned crops were located in the
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past. Interspersed patches of highly disturbed areas, including bare soil
(subsoil), are dispersed all over the catchment, although it is more
abundant on the middle part on south-facing slopes. Valley floors are
infilled by eroded sediment from the slopes and are deeply incised by
streams, especially from the middle part of the catchment. The stream
channel banks composed of loess typematerial have steep talus that re-
mains uncovered by vegetation. Thus, channel banks of these upland
agroecosystem catchments are characterised by deep straight walls
due to flow incision by high water energy released during heavy
rainfalls.

2.2. Soil sampling and analysis

Potential sediment sources and sediment sampling locations were
manually identified during fieldwork campaigns in a design sampling
scheme. Special attention was paid to the connectivity index (Lizaga
et al., 2017) and soil properties such as CaCO3, pH, EC, SOC, grain size,
land use, soil classification (Lizaga et al., 2019) and soil redistribution
rates (Lizaga et al., 2018a).

A total of 161 source sediment sampleswere takenwith a cylindrical
core 5 cm long and 6 cm in diameter, with four replicates at each sam-
pling point combined in the field to create a representative composite
sample following the acceptedmethodology proposed in fingerprinting
studies (Owens et al., 2016; Collins et al., 2017). Fingerprinting studies

collect sediment source samples of variable depths, though 2 cm
depth is frequently used. However, heavy rainfall events in uplandMed-
iterranean agroecosystems produce deep rilling and can remove N2 cm
of surface soil. Thus, a 5 cm sample depth was selected in this study for
the appropriate characterisation of sediment eroded by exceptional
rainfall events.

Samples were collected from cropland (AG), open forest (OF), pine
afforestation (PI), eroded subsoil (SS) and channel bank (CB). Source
samples were distributed over the land uses (AG, OF and PI) across
the catchment using a 500 × 500 m grid to represent the areal percent-
age of each land use. The sample points retained their grid location as
much as possible avoiding recent highly disturbed areas that could not
be representative of the sampling source. Furthermore, 14 subsoil sam-
ples were collected on eroded bare soil distributed over the catchment,
and another 18 samples were collected along the main streams on the
channel banks near the mixture samples (Fig. 1).

Two different types of sediment mixture samples were collected in
the channel bed along the main streams from the headwaters to the
outlet of the catchment, before and after the secondary tributary
streams.Mixture sediment samples are: (i) 20 channel bed samples col-
lected before and after the 2012 storm event (identified as SMP 1–20),
and (ii) 8 floodplain sediment mixture collected at sampling points 2,
3, 6, 12, 14, 15, 17 and 20. Channel bed and floodplain sediment lie on
top of sandstone outcrops and these surface sediments can be easily

Fig. 1. Location of the study catchment in the central part of the Ebro Basin (NE Spain). 3D map of the different land uses in the catchment with the sources and mixture sampling point
distribution through the catchment. (a) Pine afforestation, (b) subsoil, (c) open forest and (d) agricultural.
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Fig. 2. Boxplots of pre- and post-storm sediment properties. Asterisks represent the elements that are significantly different between stages.

220 I. Lizaga et al. / Geomorphology 341 (2019) 216–229

CH 7

79



washed away during heavy autumn rainfall events. Thus, the aim of
these different sampling methods was to provide a close replication of
sediments deposited before and after the exceptional discharge event
and the sediment in floodplains that corresponds to regular high dis-
charge events (named as SFMP). Channel bed sediments were taken
with a cylindrical core 5 cm long and 6 cm in diameter with three rep-
licates at each sampling point. The same methodology was used for
collecting the sediment in floodplains.

The samples were air-dried, grinded, homogenised and sieved to
≤0.063 mm following the most widespread methodology (Owens
et al., 2016; Collins et al., 2017). In addition, the selection of the
≤0.063 mm particle size for sources and mixtures was related to the
predominant silt texture of soils in the catchment (Table 1) and also be-
cause the content of sand, silt and clay fractions were similar between
source and mixture samples (Table 1 and Fig. 2). Furthermore,
the relationships between tracers and the size fractions support
that ≤0.063 mm fraction compiles the existing range of variation for
most of the study tracers. Particle size, stable elements, magnetic sus-
ceptibility and radionuclides were analysed in the ≤0.063 mm fraction
for all 161 sediment samples.

Grain size and magnetic susceptibility were analysed following the
same methodology as in Lizaga et al. (2019). The analyses of the stable
elements were performed at the Consolidated Radio-isotope Facility

(CORIF, University of Plymouth) by X-Ray Fluorescence (XRF) using a
Niton XL3T 950 He GOLDD+ XRF Analyser. Samples were analysed for
major and minor elements (Ba, Nb, Zr, Sr, Rb, Pb, Zn, Fe, Mn, Cr, V, Ti,
Ca, K, Al, Si, and Mg). Concentrations, obtained after three measure-
ments per element, are expressed in mg/kg.

Gamma emissions of 137Cs, 226Ra, 238U, 232Th and 40K were analysed
at the gamma lab of the Experimental station of Aula-Dei (EEAD-CSIC)
following the methodology used in Lizaga et al. (2017) and Navas
et al. (2018). The radionuclide activities are expressed asmassic activity
in Bq kg−1 dry soil and counted for 43,200 s.

2.3. Statistical analysis and sources selection

The laboratory results were statistically analysed using R. A non-
parametric Kruskal Wallis test was used to evaluate whether sediment
mixture properties varied between the pre- and post-storm event
(Fig. 2). Correlation plots (Fig. 3)were used to evaluate the relationships
and the differences between pre- and post-event soil properties. Fur-
thermore, to identify the relationships of the different sources in the se-
lected sediment mixtures, a Euclidian distance matrix with the
normalised values and a cluster analysis using the ward.D2 method
was used with all the study properties (Fig. 4). As each mixture point

Fig. 3. Correlation coefficients of the different sediment properties before and after the exceptional storm event.
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has different source samples, the subsequent clusters may vary from
one point to another and from headwater to lowlands.

2.4. FingerPro unmixing model and tracer selection

The estimation of the relative contribution of each potential sedi-
ment source to the pre- and post-event sediment mixtures and the sta-
tistical tests were done with the FingerPro unmixing model and
package.

Source apportionment solutionswere defined by themean and stan-
dard deviation (SD) calculated from the results selected by the model.
The SD of the selected solutions and the density graph of the model
help to compare and evaluate the solution scattering as large values in-
dicate poor source contribution ascription.

A crucial requirement in fingerprint assessment is the implementa-
tion of previous statistical tests to identify individualfingerprint proper-
ties, which discriminate between potential sources to select the
optimum set of fingerprint properties (Yu and Oldfield, 1989; Walling
and Woodward, 1995; Collins et al., 1996; Collins et al., 1997; Palazón
et al., 2015a; Collins et al., 2017). Several studies following themethod-
ology implemented by Collins andWalling (2002) compare the range in
the sources to the range in the sediment mixture or target for each fin-
gerprint property (Smith and Blake, 2014; Koiter et al., 2018). The two-
step statistical procedure proposed by Collins et al. (1997) and Walling
(2005) is included as an optional step in the FingerPro R package and
was used in this study. In addition, because of the type of sedimentmix-
tures and its temporal storage in the channel bed, P, SOC and grain size
properties were considered non-conservative, and they were excluded
from the analysis following Koiter et al. (2013).

Fig. 4. Linear discrimination analysis (LDA) plot of the different sources in the Barués catchment. (13–20) Cluster analysis of the different sources presented in the mixture points. The
darker colours show a stronger correlation while the brighter colours show a lower correlation.
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As the first step in tracer selection, the range test cannot definitively
identify all tracers that are behaving non-conservatively but it removes
the tracers with the largest differences with the mixture sample that
could also reveal the existence of a non-sampled source. As an interme-
diate step we used biplot charts as proposed by Pulley et al. (2015)
using the correlationPlot () function included in the FingerPro package
to further check the conservative behaviour of each pair of tracers. The
second step suggested using the KW test to remove those tracers that
do not show significant differences between the selected sources. The
tracer selection should not be only based on statistical tests but also in
expert knowledge of the hydrological and geomorphological processes
in the study area. However, the use of many tests could remove a con-
siderable number of tracers that might restrict the discrimination be-
tween sediment sources (Blake et al., 2018). For this reason, boxplot
charts, LDA (Linear Discriminant Analysis) plots and correlation plots
are included in the FingerPro package to help in the decision. Three-
step tracer selection was implemented in this study: the range test
and Kruskal-Wallis followed by the inclusion or exclusion of some
tracers based on ‘expert judgement’ informed byvisualising the tools in-
cluded in the FingerPro package. None of the functions included in the
package are mandatory, and the tracer exclusions can be based on the
charts and results from the statistical tests.

To check the quality of FingerPro model, a set of virtual mixtures
based on the unmixing results and using the selected tracers at each
sedimentmixture point were created. By unmixing the virtualmixtures
versus themean values of the sources for the selected tracers it is possi-
ble to obtain for each mixture the RMSE values of the model. Thus, by
using virtual mixtures the results allow us to validate the model
performance.

3. Results

3.1. Temporal variation of soil properties along the streams

The measured properties of the sediment mixtures collected in the
pre- and post-event campaigns are shown in Fig. 2. Mean clay content
decreased from12.7% to 7.6% for pre- and post-event sediments, respec-
tively. In pre-event sediment, SOC contents were significantly higher
(range: 0.46–3.31%) than in post-event sediment (range: 0.24–1.8%).
Mean radionuclide activities decreased from pre- to post-event sedi-
ments for 137Cs (1.1–0.9 Bq kg−1), 40K (467.3–367.6 Bq kg−1) and
232Th (31.5–29.9 Bq kg−1) but increased for 226Ra
(26.0–30.3 Bq kg−1), and 238U (43.5–46.8 Bq kg−1). Major element con-
tents varied in pre- and post-event sediment. Mean values were: Si
(165,996–182,772 mg/kg), Al (35,231–32,370 mg/kg), Ca
(174,207–171,118 mg/kg), Mg (3320–3185 mg/kg), K
(13,208–10,862 mg/kg), Ti (3036–3226 mg/kg), Fe (19,805–
17,214 mg/kg), Mn (286–311 mg/kg) and P (987–1120 mg/kg).

A decrease of about 38% in fine fraction content in the post-event
sedimentwas coincidentalwith a decrease of stable elements and prop-
erties that were positively correlated with clay fraction such as SOC,
137Cs, 40K, 232Th, Ba, Sr, Rb, Pb, Zn, Fe, K, Al and V (Figs. 2 and 3). On
the contrary, the study properties with negative correlation with clay
but positively correlated with the coarse fraction, such as the magnetic
properties 226Ra, Nb, Zr, Ti, P and Si, were enriched in the sediment after
the storm event. 238U, Mn, Ca and carbonates were not correlated with
any grain size fraction and did not show any clear trend between pre-
and post-event sediment. In general, there was an increase in the inter-
correlation between the study elements and properties that were corre-
lated with grain size fractions in post-event sediment (Fig. 3).

Therewere important variationswhen comparing the pre- and post-
event study properties between at the headwaters, the middle and
lower part of the catchment. A higher decrease in clay content (70%)
was recorded in the middle part than in the headwaters and lower
part of the catchment, but the opposite was observed for sand, which
reached higher contents (59%) in the middle part of the catchment.
Thus,most properties positively correlatedwith clay showed similar de-
creasing trends in the headwaters, middle and lower parts of the
catchment.

The floodplain sediment as an intermediate stage between pre- and
post- event sediments showed a transitional variation in elements and
properties. Thus, the clay fraction in pre-event sediment decreased sig-
nificantly (p b 0.05) in floodplains (17%), but the decrease reached as
much as 42% in post-event sediment accompanied by a subsequent in-
crease in sand fraction of 10% and 100% in floodplain and post-event
sediment, respectively. Most of the properties such as 137Cs, 40K, 226Ra,
232Th, Nb, Sr, Zr, Rb, Zn, Fe, K, Al, Ti, P, Si and V differed significantly be-
tween these stages and showed similar increasing or decreasing trends
(Fig. 5). Furthermore, Ba, Cr, Ca, SOC and SOC fractions had similar
values in pre-event and floodplain sediment with a sharp decrease in
post-event sediment. However, 238U, χLF, Pb, Mn and Ca did not show
a clear trend between stages (Table 3).

3.2. Sources and tracers selection

The statistics of grain size, SOC and trace element properties for the
potential sediment sources are presented in Table 1. The SOC contents
were low, with a mean value of 2% and the SOC fractions ACF and SCF
ranged from 0.3% to 5.9% and from 0.036% to 1.38%, respectively. The
low frequency (χLF) and frequency dependent (χFD) mass magnetic
susceptibility had amean value of 46.64 108m3 kg−1 and 7.31%, respec-
tively. In AG, CB and SS sources, SOC contents were lower and signifi-
cantly different from the other sources, with the highest values found
in OF and PI. Furthermore, the means of 137Cs, Ba, Sr and P in AG were
significantly lower than those in the other land uses (OF, PI) (p ≤
0.05). Most properties in CB and SS significantly differed from the
other sources except for radionuclides. Major elements such as Si, Al,

Fig. 5. Bar plot of sediment properties for the three different flood stages: pre-event, regular flood and post-event.
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Ca, Mg, K, Ti, Fe, Mn and P only had significant differences in SS com-
pared to the other sources except for Fe and K, which had the lowest
mean values in CB.

The LDA plot created with all the source samples showed overlap-
ping between landuse sources and illustrated lowdiscrimination capac-
ity for AG, OF and PI (Fig. 4). The discrimination of sources that are not
well characterised might reduce discrimination or lead to erroneous
model results. Thus, land uses were grouped in two different combina-
tions based on their spatial distribution in the catchment alongwith re-
sults from a cluster analysis pursued with tracer data. In the lower part
of the catchment, cluster analysis showed the highest similarities be-
tween land uses with arboreal vegetation (OF and PI) (Fig. 4). Further-
more, AG predominated in the lower part of the catchment and had
different mean values of 137Cs, χLF, Ba, Zr, Fe, Mn, Ca, P and Sr than in
OF and PI. Thus, it was decided to merge both arboreal land uses in
one source (OF+PI). On the other hand, at the headwaters where PI
dominates, AG and OF showed the highest similarities in the analysed
tracers (Fig. 4). In addition, the tracers selected by the statistical test
in each mixture point before and after grouping sources mostly coin-
cide, supporting the adopted merging. This methodology was imple-
mented to homogenise the results and to avoid including non-
contributing or very low-contributing sources into our unmixingmodel.

Following this approach and the different source points selected for
each sediment mixture, it was decided to create a set of optimum
tracers for eachmixture point. Table 2 shows the optimum set of tracers
selected for unmixing sediment mixtures along the stream for the pre-
and post- event sediment mixtures and floodplain sediment. In addi-
tion, the low RMSE values calculated when comparing the unmixing re-
sults for the virtualmixtureswith that of the channel bed andfloodplain
sediment mixtures validate the results and the performance of the
FingerPro model (Table 3).

3.3. Sediment source contributions pre- and post- 2012 rainstorm event

The average mean relative contributions of each potential source
to the sediment mixtures indicates that overall, CB was the predomi-
nant source both before and after the event ranging between 35 ± 7
to 87 ± 13%, followed by SS with a mean contribution of 24 ± 9%. On
the other hand, AG contributed around 21 ± 9% at the lower part of
the catchment but much less in the headwaters. In contrast, PI contrib-
uted around 10 ± 9% at the headwaters, but it was almost insignificant
at the lower part of the catchment. The sediment contribution supplied
by OF+PI was only noticeable in the middle part of the catchment at
point 17 with a mean apportionment of 16 ± 6% in the pre-event
sediment.

Large variations in source contributions were recorded for each sed-
iment mixture, especially between sediment mixtures located at the
headwaters and in the middle and lower parts of the catchment
(Fig. 1). Furthermore, sediment mixtures varied greatly between the
pre- and post- exceptional event.

In the headwaters, SS and CB were the main contributing sources.
However, following the cluster group and the significant apportionment
(16% and 17%) of the forests (OF+PI), it was decided to merge AG and
OF (AG+OF) and separate the PI source. The results for sediment mix-
ture points (SMP) 13 and 15 showed a mean sediment supply of
16% and 10% from the pine afforestation. The contribution from forests
(OF+PI) was not observed downstream from SMP 17. For the down-
stream sediment mixture points, there were also significant differences
between SMP 17 located in the central part of the catchment and both
SMP 18 and SMP 20 located downstream from the La Reina tributary
stream. The agricultural source contribution reached a maximum close
to the outlet of the catchment (SMP18 and SMP20) and decreasedmar-
ginally in upstream sediment. On the contrary, at SMP 17 the

Table 2
Optimum set of tracers selected for each sampling point along the streams pre- and post- event.

20 18 17 15 13 20 17 15

pre- post- pre- post- pre- post- pre- post- pre- post- floodplains

137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs 137Cs
40K χLF χLF χLF 40K χLF 238U χLF χLF χLF Ba χLF 238U
Zr Sr Ba Ba χLF Sr χLF Pb Ba Ba Pb Ba χLF
Zn Zn Zr Zr Rb Mn Ba Ti Zr Zr Zn Cr Ba
Cr Fe Cr Sr Pb Cr Mn Cr Sr Sr Mn Ti Zr
Mg Mn Si Mn Cr Si Cr Mn Mn Cr Si Ti
V Cr V Ti Mg Ti Si Si Si Mg

Ca V V χLF V

Table 3
Mean percentages of GOF calculated following Palazón et al. (2015b), source contributions (standard deviations in parentheses) and relative source contributions (RSC; apportion (%) di-
vided area (%)) from the FingerPro model for open forest (OF), agricultural (AG), pine afforestation (PI), subsoil (SS), channel bank(CB) to the mixture samples. RMSE was calculated by
comparing the unmixing results for the virtual mixtures with the channel bed sediment mixtures.

ID RMSE GOF OF PI AG SS CB

% % % RSC % RSC % RSC % RSC % RSC

Pre-event 13 0.1 83.5 (4.5) 0.4 (1.9) 1.2 16.3 (10.7) 29.17 12 (8.9) 1200 71.3 (14.7) 4519.5
15 2.7 86.4 (6.2) 0.4 (1.5) 0.5 10.3 (5.2) 66.60 29.7 (6.4) 990 59.5 (7.1) 4370.1
17 3.9 85.0 (3.2) 14.9 (4.5) 24.2 – – 0.2 (1.6) 1.2 18.5 (7.1) 925 66.2 (6.8) 3890.0
18 1.2 83.1 (3.7) 1.5 (3.2) 2.6 – – 21.0 (9.5) 134.8 31.3 (7.8) 1565 46.1 (10.5) 2708.9
20 2 90.0 (3.1) 0.9 (3.1) 1.5 – – 36.7 (7.7) 188.8 28.9 (6.1) 1445 33.5 (6.5) 2162.6

Floodplain 15 1.6 80.2 (5.1) 4.0 (6.4) 5.7 26.5 (13) 171.36 – 46 (14.2) 1533.33 23.5 (15.6) 1726.0
17 2.60 73.9 (3.6) 0.0 (0.1) 0.0 – – 29.8 (11.5) 191.41 9.9 (7.3) 495.00 60.2 (12.7) 3537.5
20 3.3 82.2(2.7) 0.48 (2.1) 0.8 – – 39.8 (9.2) 214.17 10.3 (7.8) 515.00 49.4 3043.7

Post-event 13 3.6 82 (4.4) 4.6 (7.5) 14.6 6.0 (9) 10.74 – – 2.5 (4.8) 25 86.8 (13.3) 5451.0
15 1.7 87.9 (5.5) 1.4 (3.3) 2.0 0.8 (2.1) 5.17 – – 57.6 (19.5) 1900 40.2 (19) 2938.0
17 3.1 89.4 (4) 1.1 (2.1) 1.9 – – 3.7 (4.9) 23.77 27.8 (9.1) 1390 67.2 (9.8) 3948.8
18 1.0 87.5 (2.6) 0.8 (2.6) 1.3 – – 39.4 (9.3) 253.07 21.8 (6.9) 1090 37.9 (10.2) 2227.1
20 1.9 92.9 (2.1) 4.8 (5.8) 8.3 – – 29.0(12.7) 156.1 0.6 (1.8) 30 65.41 (8.3) 4030.2
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contribution of AG was negligible. However, the presence of sediment
from forests was detected with a mean contribution of up to 14%,
being b2% in SMP located downstream of SMP 17.

In the headwaters (SMP 13 and SMP 15) PI sediment was mostly
washed out from the streams in post-event sediment mixtures. SMP
13 showed a similar decrease in SS, thus increasing CB contribution up
to 80%. However, SS in SMP15 increased slightly with the subsequent
decrease in CB proportion. The middle part of the catchment also expe-
rienced a sharp decrease in contributions from the different land uses.
Moreover, the SS apportionment in the middle part increased from
18% in the pre-event sediment to up to 27% in the post-event sediment.
A different history occurs downstream the La Reina tributary stream at
SMP 18 where agricultural apportionments increased largely while SS
and CB decreased. At the catchment outlet, a large increment in CB ap-
portionment was recorded along with a sharp decrease in SS and a
small decrease of AG in the post-event sediment. Furthermore, a slight
increase from the forest source (OF+PI) was recorded. The SS decrease
recorded at the outlet of the catchmentwas supported by the results ex-
tracted from the SFMP where 90% of the sediment contribution was
supplied by CB and AG. In addition, the unmixing results of the SFMP in-
dicated an increase of PI and SS sediment in regular high discharge
events but the disappearance of PI sediment during exceptional events.
SFMP 17 revealed an increase in AG and a slight decrease in SS sediment
in the floodplain while it showed a sharp increase in SS with a total
wash out of AG sediment during the exceptional event. Besides that,
at the catchment outlet SFMP 20 showed a decrease in AG and SS sedi-
ment but a progressive CB increase as seen in Table 3.

4. Discussion

4.1. Variation in soil properties due to the exceptional event

Compared with the other sources, the significant differences in most
properties found in SS (except for the radionuclides) are because SS is
composed of very degraded soils that expose the substrate. In addition,
SS is mostly located in areas with high hydrological connectivity, likely
increasing its delivery to streams during storm events. In the talus of
the streams, CB sediment consisting of loess type materials infilling the
valley floor is the nearest available source to be deposited in the channel.
As such, SS and CB are themost distinctive sources from the others. How-
ever, Fig. 4 shows some similarities betweenCB andAG sources likely be-
cause the agricultural land ismostly located on the valleyfloor on alluvial
materials infilling the valleys that comprise the CB source.

The significant differences in mean contents of SOC, 137Cs, Ba, Sr and
P in agricultural land compared with PI and OF suggest that land use is
one of the principal factors affecting the variation in soil properties
after five decades of land abandonment as found by Lizaga et al.
(2019). In addition, the scarce vegetation cover and the presence of
more degraded soils with specific locations in the catchment point to
AG, CB and SS sources as themost erodible areas. Thus, due to soil redis-
tribution processes, these sources show significant differences in the
study properties. However, in the headwaters the croplands recently
abandoned due to more difficult access, which support less intensive
farming, show more similarities with OF. Furthermore, the higher con-
nectivity between OF that surrounds the AG areas in the headwaters
further contributes to similarities found in their soil properties. All
these factors operating together in the headwaters likely increase simi-
larities between AG and OF as seen in the results of the cluster analysis.

Exceptional rainfall events produce increases in connectivity and
suspended sediment loads and modify the channel bed sediments by
decreasing or increasing the concentration of different size particles
during floods. The significant differences for most study properties be-
tween pre- and post-event sediment point to exceptional storm events

as the main factors in causing sediment mobilisation from different
sources, resulting in subsequent variation of geochemistry and sedi-
ment properties as was also reported by Martins et al. (1995). The
sharp decrease experienced by the fine fraction and the increase in
the coarse fraction suggests that exceptional storm events export high
quantities of sediment composed mostly of fine sediment as was also
found by Bortoluzzi et al. (2013) in a Brazilian catchment. This hypoth-
esis is supported by the decrease inmost sediment properties positively
correlated with the clay fraction. However, the non-significant differ-
ences in 137Cs and magnetic properties could be explained by the
large variability of these properties across the catchment.

During heavy storm events, the sediment begins to be exported and
reach a maximum, beyond which the sediment exported begins to de-
cline leading to an ordered sedimentation and the increase of the
mobilised element correlation (Quesada et al., 2014; Gaspar et al.,
2019b) (Fig. 3). In our catchment, high sediment mobilisation is sup-
ported by the increase in overall intercorrelation of the study elements
that are correlated with the grain size.

4.2. Temporal and spatial variation of sediment mixture properties

The variation of sediment properties in the stream channel before
and after the exceptional event as well as in the floodplains at an inter-
mediate stage of sediment deposited by regular high floods is related to
the export of the fine grain size fractions. Thus, the loss of fine material
produces the subsequent enrichment in the content of coarse fractions
after rainfall events as was also found by Smith and Olyphant (1994)
resulting in the highest sand content in channel bed sediment after
the exceptional rainfall event.

The elements positively correlated with argillaceous materials such
as 137Cs, Rb, Sr, Fe, Zn, Al, Cr, Pb, contained in the fine fraction, show a
clear decreasing trend from pre-event, floodplain and post-event sedi-
ment due to the reduction of fine materials that are exported during
high floods. Mitchell et al. (1997) and Quiquerez et al. (2008) also re-
ported high export rates of fine sediment material and associated nutri-
ents. Thus, vanadium, which is finely incorporated into clay minerals
during weathering, is also exported. There are some elements such as
Ba and Mn that have limited mobility because they are easily precipi-
tated as sulphates and carbonates. Furthermore, Ba and Mn can also
be strongly absorbed by clayminerals, which also explains the slight de-
crease of Ba andMn infloodplain and post-event sediment and supports
the hypothesis of high fine sediment export during storm events. On the
other hand, Si is directly correlated with the coarse fraction due to the
high content of silicon grains in the sandstone strata. Many Ti-
containing minerals are resistant to weathering (also Zr) and increase
with the coarse fraction. Additionally, Nb exhibits a strong affinity
with Ti and Zr. All these mineral-element associations lead to increases
of Ti, Zr, Nb and Si after the storm event in parallel with the increase in
the coarse fraction. Therefore, the chemical changes observed are due to
themixing of soil sedimentmobilised during the exceptional eventwith
pre-existing soil sediments mobilised during regular rainfalls.

4.3. Sediment source contributions variation

The contribution of channel bed changes before and after the event
(but also from headwaters to the lower part of the catchment) is due
to the great modification power of these exceptional storm events. In
SMP 13 located in the headwaters, 30% of apportions come from PI
and SS sources, but during floodsmost of these sediments are exported,
and thus CB becomes the predominant source. Our results suggest that
during the exceptional event, most of the channel bed sediment is effi-
ciently exported. PI sediment was also exported in SMP 15 during the
storm event; however, due to the proximity of steep slopes (19 to

Fig. 6. Results of the unmixing procedure before and after the exceptional storm event in eachmixture point. AnANOVA testwas performed to assesswhether source contribution differed
between pre- and post-event mixtures. Different letters indicate significant differences at the 95% level.

225I. Lizaga et al. / Geomorphology 341 (2019) 216–229

84



226 I. Lizaga et al. / Geomorphology 341 (2019) 216–229

CH 7

85



25o) with highly disturbed areas and the predominance of bare soils in
the contributing area, SS appears as the dominant source after the storm
event.

Results obtained from both the floodplain sediment and the channel
bed sediment mixtures at SMP 15 where subsoil apportions are pre-
dominant suggest that during stormevents, sediment from surrounding
slopeswith highly degraded soils directly reaches the stream. This inter-
pretation is also supported by results at SMP 17 located in the middle
part of the catchment downstream from SMP 15 with a similarly high
subsoil contribution. The subsoil contribution then gradually decreases
in the lower part of the catchment (SMP 18 and 20) after the storm
event. Such exceptional rainfalls produce large variations on the sedi-
ment mobilised from different sources thus changing sediment source
contributions to the streams as can be seen in Fig. 6.

A different behaviour is observed in sediment mixtures located
upstream from the La Reina ephemeral stream and those located
in the lower part of the catchment at SMP 18 and 20. At these
points, the fingerprinting analysis shows a high increase of AG
provenance that is likely related to the incision of the main stream
over the agricultural land located on the glacis and the sediment ap-
portion from the La Reina ephemeral stream.

The deep incision of the streams and the almost vertical slopes of
the channel banks along with the nature of non-cohesive infilling
material are the reason that CB is the source that produces the
highest sediment supply. The incision of the streams is highly vari-
able across the catchment, but overall, it increases downstream
from the La Reina ephemeral stream where the glacis starts. In addi-
tion, during heavy storms, geomorphological processes such as pip-
ing, topples and landslides are likely to increase apportionment
from CB sources (Gaspar et al., 2019b).

During heavy rainfalls, sediment resuspension due to energy ex-
penditure in the channel is higher in the headwaters and the middle
part of the catchment (i.e., SMP 13, SMP 15 and SMP 17) than in the
lower part of the catchment. Sediment resuspension could produce
deposition downstream due to the loss of energy thus increasing
the sediment storage in the lower part of the catchment. This is sim-
ilar, though on a different scale, to what has been observed in the
lower part of the Ebro River by Quesada et al. (2014). The cluster
analysis results also support the different functioning of the headwa-
ters and the lower part of the catchment. Furthermore, the results of
the relative source contribution (RSC) (Table 3) highlight the high
sediment export from subsoil and emphasise the low apportions
from natural covers such as OF. These results are in good agreement
with studies by López-Tarazón et al. (2009) and Palazón et al. (2016)
and further support the idea of bare soil as one of the main environ-
mental problems for river ecosystems.

5. Conclusions

Large changes in the characteristics of sediment were produced by
an exceptional storm event, modifying element concentrations and sed-
iment provenance. The significant differences between pre- and post-
storm sediment mixtures highlight the great impact of such storm
events on channel bed sediment. Bearing in mind the observed spatial
variations in sediment properties and grain-size distributions, one
may conclude that the sediment mobilisation and transfer produced in
the catchment was highly dynamic.

Placing the channel bed sediment apportionments in a geomorpho-
logical context, our model results indicate an important input from SS
despite its spatial coverage in the catchment in amounts b2%. Therefore,
the subsoil is suggested to be an important environmental problem
with hot spots that are worth controlling. In contrast, the insignificant
sediment apportionment from forests underlines the benefits of natural
covers to prevent soil loss.

Composite fingerprints provide the opportunity to efficiently
trace sediment sources before and after exceptional rainstorm

events. Overall, our results provide evidence of the severe erosion
produced by this exceptional rainstorm event and reveal important
variations in sediment source patterns. Stream bank failure induced
by natural tunnelling or piping and landslides significantly contrib-
uted to sediment delivery. The magnitude of agricultural and bare
soil mobilisation during the course of this exceptional rainstorm
was much greater than under normal discharge regimes. Similar
conclusions are derived from the analysis of variations in sediment
properties between pre-event SMP, SMFP and post-event SMP. The
geomorphological analysis, the fingerprinting procedure, and the
low RMSE obtained with virtual mixtures support the good perfor-
mance of the new FingerPro unmixing model to quantify the differ-
ent sediment source apportionments.
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Consensus ranking as a method to identify non-conservative and
dissenting tracers in fingerprinting studies
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• Anovelmethod is proposed for identify-
ing non-conservative tracers.

• Predictions of each tracer are quantified
by using the mixture information.

• A clustering method discriminates
groups of similar tracers.

• A consensus ranking identifies non-
conservative and dissenting tracers.

• Inclusion of tracers with dissenting in-
formation produces inconsistent results.
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Soil erosion and fine particle transport are two of the major challenges in food security and water quality for the
growing global population. Information of the areas prone to erosion is needed to prevent the release of pollut-
ants and the loss of nutrients. Sediment fingerprinting is becoming a widely used tool to tackle this problem,
allowing to identify the sources of sediments in a catchment. Methods in fingerprinting techniques are still
under discussion with tracer selection at the centre of the debate.
We propose a novel method, termed as consensus ranking (CR), that combines the predictions of single-tracer
models to identify non-conservative tracers. In this context, a numerical procedure to quantify the predictions
of individual tracers is first delivered. The scoring function to rank the tracers is based on several randomdebates
between tracers in which the tracer that prevents consensus is discarded. Based on these results, a conservative-
ness index (CI) is presented along with a clustering method to identify groups of similar tracers.
To illustrate the CI and CR procedures, an artificial mixture created with real soil to independently test the
method is analysed. The results demonstrate the capability of our method to identify non-conservative tracers
beyond the capability of currently used selectionmethods. Further, a real sediment sample fromaMediterranean
mountain catchment is evaluated to emphasise its utility in complex natural environments. To test the utility of
our method, it was decided to include the conservative and consensus-enforcing tracers extracted by this new
approach with two different unmixing models. Furthermore, CR and CI procedures are displayed together with
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the most widespread statistical tests and the within-a-polygon approach used for tracer selection in fingerprint-
ing studies. The new proposed methodwill enable the research community to homogenise results for replicabil-
ity as well as allowing comparisons among study areas.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Soil erosion increases fine sediment and pollutant transport into
river ecosystems (Owens et al., 2005). Tracking the sources of sediment
and its associated contaminants is a vital step towards mitigation
(Walling and Collins, 2008; Quesada et al., 2014). It is necessary to iden-
tify the areasmost vulnerable to soil erosion in order to preserve soil nu-
trients and land as vital resources (Quijano et al., 2016; Lloyd et al.,
2019). Reliable information on sediment provenance is needed to pre-
serve water quality and to safeguard water resources to the lowlands
(Navas et al., 2009).

To evaluate this problem, several tools have been developed to
quantify the effects of different erosionmechanisms, such as connectiv-
ity (Lizaga et al., 2018a; Llena et al., 2019), spatiotemporal dynamics
(Rovira et al., 2012; Wynants et al., 2020) and wind erosion (Schmidt
et al., 2017; Zhang et al., 2018). However, thedetermination of sediment
provenance in catchments using traditional monitoring techniques is
frequently expensive. Thus, some preliminary work was carried out in
the early 1980s showed fingerprinting techniques as key to addressing
this problem (Klages and Hsieh, 1975). The procedure identifies sedi-
ment provenance and estimates the relative contribution of each poten-
tial source, using a variety of selected tracer properties.

Initialfingerprinting studieswere performedbased on a single tracer
(Walling et al., 1979). However, the inclusion of quantitative mixing
models enabled researchers to discriminate more than two sources
with the subsequent increase in the number of tracers (Walling et al.,
1993; Zhang and Liu, 2016). The contribution of each source is esti-
mated using a linear multivariate mixing model. Nowadays, numerous
studies use fingerprinting techniques to examine specific catchment
management problems (Palazón et al., 2015; Schuller et al., 2013), to
evaluate processes (Laceby et al., 2019) and contamination in the river
and coastal waters (McCarthy et al., 2017; Evrard et al., 2019). In recent
years, there has been a growing interest in this technique, and for this
reason, different approaches have appeared. The differences of these
proposals are mainly on three features: (a) different fingerprinting
models (e.g. SourceTracker, MixSIAR, FingerPro); (b) the use of correc-
tion factors (Koiter et al., 2018); and (c) tracer selectionmethodologies,
as can be seen in different reviews (Collins et al., 2017; Owens et al.,
2016; Smith and Blake, 2014). The concern about tracer selectionmeth-
odologies, including different statistical methods, has been discussed by
several authors (Pulley et al., 2015; Palazón et al., 2015).

Tracer selection methods rely on the information of the sources to
determine the tracer's ability to differentiate sediment sources. The
mostwidespreadmethodology consisted of an initialmass conservation
test, usually termed as range test (RT), followed by the two-step statis-
tical procedure proposed by Collins and Walling (2002) that uses the
Kruskal–Wallis (KW) and discriminant function analysis (DFA) tests.
This procedure tests the ability of individual tracers to differentiate be-
tween sources and identifies the best combination of tracers that pro-
vides the maximum discrimination of the source classes. The main
limitation of this widely used two-step statistical procedure is that it
does not incorporate the information of the sediment mixtures in the
analysis. Phillips and Gregg (2003) established that in a linear mixing
model, the mixture sample must be within a polygon bounding the sig-
natures of the sources as a requirement of conservativeness. More re-
cently, following this hypothesis, Smith et al. (2013) created an R code
to assess the geometry of the mixing space and to ensure that the mix-
ture samples fit inside the sources. If a mixture sample is outside this
polygon, then no physical solution exists for that mixture as one or

more tracers are non-conservative. In this context, some researchers
have implemented the biplot test that displays themixture samples ver-
sus two tracers as amore restrictive condition than the traditional range
test (Lizaga et al., 2019; Pulley et al., 2015).

Despite the interest of tracer selection in fingerprinting studies, to
the best of our knowledge no one has studied the information provided
by individual tracers in an unmixing context. Within this framework,
we propose a new methodology to identify non-conservative tracers
and select those with conservative and coherent information. Thus,
we developed, in R code, a tool that shows the individual nature of
each tracer, taking into account the information of the mixture. This
study aims to independently validate the methodology using an artifi-
cial mixture created with real soils and mixed in the laboratory. These
types of samples were specifically chosen to test the method and to
avoid non-geochemical sense data which increases its validity com-
pared to virtual samples or virtually altered samples. In this research,
we aim to validate the new tool by using an artificial sample and
show its utility in a real study case.

In order to investigate and select the best tracers for each finger-
printing study, we propose a novel ensemble technique, termed as con-
sensusmethod, which combines the predictions of single-tracermodels
to identify non-conservative and dissenting tracers. Based on these re-
sults, a conservativeness index (CI) is presented along with a clustering
method to identify groups of tracers with similar information and to an-
alyse their correlations. Besides, a scoring function based on several ran-
dom debates between tracers, in which the tracer that prevents
consensus is discarded, was implemented as a decision support ranking
(CR). This novel method highlights the importance of selecting the right
tracers for each individual mixture and avoids the inclusion of tracers
out of consensus or with non-conservative behaviour by using both
the CR and CI procedures.

2. Methods

To illustrate the procedure of detecting non-conservative and dis-
senting tracers, two different datasets were selected. One dataset is
composed of an artificial mixture created in the lab with real soils
from three sources that included the following elements: Ba, Nb, Zr,
Sr, Rb, Pb, Zn, Fe, Mn, Cr, V, Ti, Ca, K, Al, Si, and Mg. This dataset was ex-
tracted from Gaspar et al. (2019). The second dataset is a real example
from a study case in aMediterranean catchment that was chosen to em-
phasise the potential of our method for application in complex natural
environments. The study case is composed of three sources. In addition,
to the mentioned stable elements, gamma-emitting radionuclides,
137Cs, 226Ra, 238U, 232Th and 40K and low frequency magnetic suscepti-
bility (χLF) were also included as additional tracers. The results ob-
tained were used to validate the method and visualise its utility.

2.1. Single-tracer model

In fingerprinting studies, measured tracer values of the sediment
mixtures are usually compared to those of the sources in order to iden-
tify robust tracers that can discriminate the potential sediment sources.
However, only a few of these tracers exist, requiring the inclusion of ad-
ditional tracers in a composite fingerprint of poor discriminators (Pulley
et al., 2017). Under this scenario, it is essential to quantify the specific
information of each tracer in order to understand its contribution to
the final prediction and to assist the selection of relevant tracers.
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Standard linear mixing models require n tracers to determine the
contributions of n + 1 sources to the mixture (Phillips and Gregg,
2003). For example, with three potential sources and two tracers, the
following system of mass balance equations can be solved to obtain
the contribution of each source to the mixture:

AX ¼ B

A ¼ a11 a12a13a21a22a23111ð Þ;X ¼ x1 x2x3ð Þ;B ¼ b1 b21ð Þ

X ¼ A−1

B ð1Þ

where A contains the tracer values of each source, X represents the un-
known source contributions, and B contains tracer values of the sedi-
ment mixture. The last equation of this system constrains the
contributions to sum to one, requiring only two tracers to solve three
potential sources.

In order to quantify the predictions of each individual tracer, we pro-
pose to use the determinedmass balance equations and fabricate the re-
maining required tracers using two different procedures. The first
method consists in designing random virtual tracers (RVT). For each
tracer, a random number in the range (0,1) is assigned to each source.
Then, another random number is assigned to the mixture between the
minimum and themaximum values obtained in the previous step. Con-
sidering the example of three potential sources and two tracers, only
one additional tracer must be fabricated:

a21 ¼ random 0;1ð Þ a22 ¼ random 0;1ð Þ a23 ¼ random 0;1ð Þ
b2 ¼ random min a21; a22; a23ð Þ; max a21; a22; a23ð Þð Þ

8>><
>>: ð2Þ

The virtual tracer is then incorporated in Eq. (1) to solve the system
of equations and obtain the contribution of each source. This procedure
is repeated several times, resulting in a set of solutions or density distri-
bution that contains all the possible predictions of the considered indi-
vidual tracer.

In the second method, the required tracers are randomly chosen
(RCT) from the remaining ones. This technique is indicated when a
high number of tracers are measured. The set of solutions obtained
in this case is a subset of that obtained with random virtual tracers,
resulting in all the possible predictions of each tracer in the context
defined by the experimental dataset. The propagation of errors in
this framework is assessed using a simpleMonte Carlo iterative tech-
nique (Sherriff et al., 2015) to quantify the effect of the dispersion of
the sources and the mixture on the predictions of each individual
tracer.

The results from the single-tracermodel can be used to define a con-
servativeness index (CI). The set of possible predictions fromeach tracer
is sorted according to the Euclidian distance to the perfectly balanced
mix where all contributions are equal:

di ¼
ffiffiffiffiffiffiffiX
j¼1

s 3

wi; j−
1
3

� �2

ð3Þ

A percentile of the sorted solutions is chosen to compute the CI as
the root mean square error (RMSE) of the non-conservative part (nc)
of the apportionments from the selected solution:

CI ¼ −
ffiffiffiffiffiffiffiX
j¼1

s 3

nc wi; j
� �� �2

;nc xð Þ ¼

−x; if xb0

0; if 0≤x≤1

x−1; if xN1

8>>>><
>>>>:

ð4Þ

2.2. Tracer clustering

The classification of tracers into groups requires a method for com-
puting the dissimilarity between each pair of tracers. The results ob-
tained by the single-tracer models are used for this purpose. This
technique provides a set of solutions derived from the experimental
tracer data and a series of random numbers, which are used to fabricate
virtual tracers or to randomly select from the remaining tracers in the
experimental database. If the same randomseries is used in thedifferent
models, similar tracers will show similar predictions while distant
tracers will present inconsistent responses.

Correlation-based distance considers two tracers to be similar if
their predictions are highly correlated, even though the values may be
far apart. For this reason, the dissimilarity between each pair of tracers
was computed by the Euclidean distance between the two series of pre-
dictions. The results of each pair of tracers are gathered in a distancema-
trix that is square, nonnegative and symmetric. We use a widely used
hierarchical clustering method T based on the Ward algorithm
(Murtagh and Legendre, 2014) to group the tracers.

2.3. Consensus ranking

Feature ranking is a flexible selection process commonly used inma-
chine learning for classification problemswhen a large number of attri-
butes are present in the dataset (Hong et al., 2008). This technique
orders the features by the value of some scoring function to identify un-
informative or redundant features which can be removed to increase
the accuracy of the model. Supervised models perform this task using
a curated training dataset while unsupervised models try to discover
patterns in the data without guidance using self-organisation (Solorio-
Fernández et al., 2019).

Several approaches can be proposed to calculate the relevance of
the tracers. In this study, we focus on consensus or agreement as a
criterion to identify non-conservative tracers. Consensus models
have been used in Group Decision Making (GDM) to select from dif-
ferent opinions of a group of people, frequently referred to as experts
(Herrera-Viedma et al., 2014). Consensus reaching processes pro-
ceed in a convergent multistage way, where experts present their
opinions and they discuss and negotiate to bring positions closer by
modifying their initial opinions (Pérez et al., 2018). Exclusion of dis-
senting experts, focusing the attention where agreement is most
likely, is also contemplated.

Consensus ranking (CR) is implemented combining the predictions
of single-tracermodels in several randomdebates. Debate is a technique
used in Group Decision Making methods to obtain a better knowledge
about experts' preferences. Experts debate and share their ideas in
order to reach a common conclusion. The consensus represents a quan-
titative measurement of the expert agreement on the final decision
(Morente-Molinera et al., 2019). In each debate, a random subset of
the tracers is selected. Its number corresponds to theminimumnumber
of equations to overdetermine the system plus one. For example, with
three potential sources four random tracers are needed. In each debate,
several rounds are held excluding one tracer at a time. The consensus of
each round is measured through the mathematical compatibility of the
resulting system of equations. The tracer whose exclusion produces a
higher consensus is marked as dissenting. Repeating this process
through several debates, each tracer obtains a number of participations
and a number of lost debates. The consensus is simply defined as the
ratio of these two numbers with possible outcomes between 0 and
100. A low consensus indicates that a tracer is often in conflict with
the opinion of other groups while a high consensus represents a fre-
quent agreement with the group.

consensus ¼ 100 1−
lost debates
total debates

� �
ð5Þ
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Each debate results in an overdetermined system similar to Eq. (1)
but with an additional equation.

AX ¼ Bþ ϵ

A ¼ a11 a12a13a21a22a23a31a32a33111ð Þ;X ¼ x1 x2x3ð Þ;B
¼ b1 b2b31ð Þ; ϵ ¼ ε1 ε2ε3ε4ð Þ

ð6Þ

Its solution is approximated using a least squares method that min-
imises the sum of the squared errors (Sherriff et al., 2015), represented
as ϵ in the previous equation. The consensus of each debate is measured
using the RMSE of the mass balance equations.

RMSE ¼
ffiffiffiffiffiffiffiX
i¼1

r 3
∑
3

j¼1
aijx j−bi

!2

ð7Þ

3. Results

3.1. Single-tracer model

To quantify the predictions from individual tracers, our method in-
corporates the mixture information in the analysis. This knowledge
may be used to predict the role of each tracer in the unmixing model
and to understand how different tracers are grouped. The single-tracer
model was applied to the two above described datasets.

To illustrate the results, ternary diagramswere created representing
all the possible predictions from each tracer for the selected mixture.
The results of the artificial mixture and the real sample are presented
in Figs. 1 and 2, respectively. The contribution of a source is 100% in
the corresponding triangle vertex and 0% at the opposite side. Thus,
each side of the triangle corresponds to a binary composition of themix-
ture. Moreover, a line parallel to a side of the triangle represents mix-
tures with constant composition in the source situated in the opposite
vertex (see legend in Fig. 2). The results of the single-tracer model
with random virtual tracers (RVT) are represented with blue points,
and the solutions of randomly chosen tracers (RCT) are superimposed
using red points. The point clouds presented in Figs. 1 and 2 confirm
that RCT solutions are a subset of the RVT results. Visual inspection of
Fig. 1 indicates that among others Sr or Cr discriminate Source 1,
while Ba or K discern Source 2 and Zn or Mg differentiate Source 3.
Other tracers, such as V, Al or Si, are not parallel to a side of the triangle
and require a more complex interpretation. Most of the tracers of Fig. 1
present line patterns and some of them are narrow (Sr, K) while others
are wider (Ba or Cr). The single-tracer model quantifies the effect of

(a) the dispersion of the corresponding tracer in the sources; (b) the
distance of the average value of the sources, and (c) the relative position
of the tracer in themixture. The results of the real sample present higher
dispersion than those of the artificialmixture but linear patterns are also
visible, like for instance Cr discriminates Source 1, P differentiates
Source 2, and 137Cs discriminates Source 3 (Fig. 2).

The conservativeness of a tracer can also be reported from the ter-
nary diagrams, counting how many solutions fall within the triangle
or, otherwise, howdistant are these solutions from its centre. This prop-
erty has beenquantifiedusing theproposed conservativeness index (CI)
and visually assigned using a colour scale, red and black representing
the less conservative tracers and yellow representing the most conser-
vative ones. A percentile of 25% has been selected in this study so a neg-
ative CI means that at least the 75% of the solutions from the single-
tracer model present non-conservative apportionments. All tracers cor-
responding to the artificial mixture are conservative (yellow bars) and
are presented in no particular order (Fig. 1). However, tracers corre-
sponding to the real sample exhibit a different behaviour (Fig. 2).
Some of them are conservative (yellow bars) while others perform
within the limit (orange bars) and the rest remain clearly non-
conservative (red and black bars).

Fingerprinting studies usually mention the minimum number of
tracers needed to apply an unmixing model (Eq. (1)). This argument
is based on themathematical nature of themodel, requiring aminimum
number of independent equations to be solved. Ternary diagrams pro-
vide a visual reference of the consistency of the tracers. The intersection
of their point clouds represents the solution of the corresponding sys-
tem of equations. In the case of three sources, two independent tracers
are needed with non-parallel lines in the ternary diagrams. This argu-
ment promotes the use of tracers with a small intersection area regard-
less of their individual ability to discriminate one of the sources. For
instance, Rb and S from Fig. 1, could be perfectly used to unmix the ar-
tificial sample, even though its line patterns are not parallel to a side
of the triangle.

The theoretical contributions of the artificial mixture are repre-
sented in Fig. 1 using a black circle. Some tracers cross this point while
others remain distant. This fact illustrates that the information transmit-
ted by some tracers, as Al or Si, may be erroneous. The causes of this de-
viation could be an insufficient description of the sources or the
heterogeneity of the samples.

The existence of conservative tracers that could provide unreliable
information, as can be seen in Fig. 1, is the evidence which motivates
the consensus ranking as a necessary additional criterion. A common so-
lution to overcome this problem is to include all available tracers in the
model, expecting that errors are independent and will be cancelled.
However, our approach consists in identifying and excluding the

Fig. 1. Ternary diagrams of all the possible predictions from each tracer for the artificial mixture. Blue and red points represent the results of the single-tracer model with random virtual
tracers (RVT) and with randomly chosen tracers (RCT), respectively. The black circle located in the centre of the triangle represents the theoretical contributions of the artificial mixture
with equal contribution for each of the three sources. CI values of each tracer are also represented. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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erroneous tracers in order to include in the unmixing model only those
that present a conservative and consistent behaviour.

3.2. Tracer clustering

The information provided from the single-tracer model can be used
to identify groups of similar tracers. These relations can be observed in
the ternary diagrams where, for instance, in Fig. 1, Sr and Fe or Zn and
Ti are pairs of tracers that exhibit similar patterns.

The methodology presented in Section 2.2 was applied to the two
described datasets, computing first a correlation-based distance using
the RVT results and then implementing a classical hierarchical cluster-
ing method. Tracers have been ordered in Figs. 3 and 4 according to
the cluster tree or dendrogram, also displayed in the figures under the
ternary diagrams, in which the vertical axis represents the distance or
dissimilarity between tracers.

The tracers from the artificialmixture (Fig. 3) are grouped in clusters
mainly according to the source they discriminate. The blue branch of the
dendrogram corresponds to tracers that differentiate Source 1, while
the orange and yellow branches discriminate Source 2 and Source 3, re-
spectively. The rest of the tracers are grouped in the green branch ex-
cept Si that turns out to be isolated by its singular behaviour. Similar
groups are found in the tracers from the real sample where only the
conservative tracers have been represented (Fig. 4).

Tracer clustering is also related to the concept of mathematical con-
sistency. Selecting tracers from the same branch will typically produce
elongated intersections of the point clouds and high dispersion in the
corresponding unmixing model.

3.3. Consensus ranking

The results presented in Section 3.1 indicate the existence of conser-
vative tracers which transmit erroneous information. This statement is
supported by the known theoretical contributions of the artificial mix-
ture. Therefore, it is necessary to generalise this concept in order to
study real samples where the contribution of the sources is unknown.

The notion of consensus can be illustrated with the following exam-
ple. A ternary graph with the results of four tracers from the artificial
mixture is presented in Fig. 5. All the tracers present line patterns and
apparent conservative behaviour. However, only three of them (Sr, Rb
and Ca) intersect on a small areawhile the fourth tracer, Al, has different
intersections with each of the remaining tracers. In the case of three
sources, only two tracers are needed to unmix the sample. Choosing
theminimumnumber of required tracers from the first group of tracers
will produce similar solutions while the inclusion of the fourth tracer
will introduce inconsistent contribution values. The first group of
tracers is compatible in the mathematical sense, or presents a general
consensus on the possible solutions, while the fourth tracer is mathe-
matically incompatible with the rest, or its specific information is out
of consensus.

This example illustrates one of the random debates implemented in
the consensus ranking computation in which the tracer whose exclu-
sion produces a higher consensus is marked as dissenting. This suggests
that including tracerswith dissenting information does not addvaluable
information to themodel and can lead to unpredictable results. Repeat-
ing these debates in random iterations assigns problematic tracers a low
consensus rank in order to be identified as problematic and to avoid its
inclusion in the unmixing model.

Consensus was calculated considering 5000 random debates per
tracer for the two described datasets. Tracers are ordered in Figs. 6
and 7 according to the resulting scoring, and consensus values are also
presented with horizontal bar graphs. Accompanying ternary graphs
correspond to the single-tracermodels using RCT, as this is the informa-
tion that comes into play in the random debates.

Tracers from the artificial mixture (Fig. 6) present a high correlation
between the rank and the accuracy of the line patterns. The proposed
ranking is able to identify problematic tracers, that remain distant
from the theoretical solution, and also to quantify differences in the var-
iability and discrimination, visible in the thickness of the line patterns. It
is important to note that these results can be considered a blind test, as
the theoretical contribution of the artificial mixture is not provided dur-
ing the calculus of the consensus.

When this methodology is applied to the real sample (Fig. 7), non-
conservative tracers (from LF to Sr) and also tracerswith high variability
(232Th, Mn) are assigned the lowest positions in the rank. Tracers with
high consensus (137Cs, Mg and P) present conservative behaviour,

Fig. 2. Ternary diagrams of all the possible predictions from each tracer for the realmixture. Blue and red points represent the results of the single-tracermodelwith randomvirtual tracers
(RVT) andwith randomly chosen tracers (RCT), respectively. The tracers were ordered according to the CI values, represented numerically and by a colour scale. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Dendrogram plots of the ternary diagrams of the artificial sample grouped
according to the source they discriminate.
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lower variability and higher discrimination. In comparison with the re-
sults of the artificial mixtures (Fig. 6), conservative tracers of the real
sample (Fig. 7) present higher consensus values in the horizontal bar
graphs. As expected, the dissenting and non-conservative tracers that
are not present in the artificial sample influence these results. This high-
lights the importance of the resulting ranking over the specific consen-
sus values obtained in each dataset.

The consensus calculus for the real sample was repeated discarding
non-conservative tracers (from LF to Sr) from the database, obtaining
the exact same rank positions for the remaining tracers. This result indi-
cates that the proposed CR is robust and can be applied to all available
tracers with no prior filtering or screening.

With the completion of the previous steps and all the information
extracted, we can select the tracers that follow the general consensus.
To test the utility of the new method, it was decided to include the rel-
evant tracers (from 137Cs to Rb) of the real sample in two different
unmixing models: FingerPro (Lizaga et al., 2018b) and MixSIAR (Stock
and Semmens, 2016). Thus, the models were tested, including all the
tracers that pass the range test that excludes the tracers of the sediment
mixture outside the minimum and maximum values in the sediment
sources. Then, RT model results are compared with those obtained for
tracers selected with the CR method. As shown in Fig. 8, the unmixing
results obtained after application of the CR method showmore defined
and accurate contributions. Furthermore, both FingerPro and MixSIAR
models showed comparable results after the application of the CR
method.

3.4. An improved tool for detecting non-conservative tracers

CI and CR represent an alternative to the conservativeness tests fre-
quently used, such as the range test (RT) or thewithin-a-polygon (W-a-
P) approach. The RT pursued in this study removes the tracers outside
the minimum and maximum values in the potential sediment sources.

On the other hand, the second approach requires that themixture sam-
plesmust bewithin a polygon bounding the source signatures. Further-
more, this second approach needs to be done for each pair of tracers,
increasing the complexity of the analysis, and is dependent on a rela-
tionship between at least two tracer properties. In addition, two selec-
tion methods, the Kruskal–Wallis H Test with a p-value of 0.05 and
the DFA Test with a niveau of 0.05 were displayed together with the
CI and CR procedures.

The proposed method creates a ranking of tracers suitable to select
tracers based on its conservativeness and consensus rank. Furthermore,
it is possible to detect those tracers with non-coherent information that
could not be detected by other statistical tests. The CRmethodologywas
implemented in the real sample dataset to show its usefulness (Fig. 9).
Furthermore, these results were compared with different statistical
tests and the within-a-polygon approach.

As shown in Fig. 9, different statistical tests have selected different
tracers as convenient for the fingerprinting study. The selection pro-
duced by the within-a-polygon approach and the RT correlates
favourably with those of the CR and CI methods. Furthermore, the
tracers excluded by these two methods coincide with the lowest CR
and CI values.

However, both the KW and the KW+DFA tests select as more con-
venient some tracers with low CR and CI values and their subsequent
high dispersion and likely non-conservative behaviour. The KW test in-
cludes LF, Pb, Ba and Ti while the DFA includes Ba as selected tracers for
their high discrimination of the different sources. Both methods, KW
and DFA, do not use the mixture information to select the optimum
set of tracers. Thus, the solutions could end up outside the physical so-
lution space due to the relative position of the tracer in the mixture.

However, this will decrease the CI and CR values of the tracer, and
the tracer would be excluded. Thus, the CR and CI approaches can effec-
tively remove non-conservative and dissenting tracers that pass the
most widespread tests used in fingerprinting studies. These findings
further support our methodology that represents a groundbreaking al-
ternative for tracer selection methods.

4. Discussion

4.1. The new information of individual tracers

This work reveals for the first time the individual information or the
signal that each tracer contributes to the unmixing models. This infor-
mation helps to better understand the outcomes of unmixing models
and to select the correct set of tracers without including tracers with
non-coherent information that could lead models to erroneous and
unpredicted results. Furthermore, as seen in Fig. 3, the tracers with the
lowest consensus value are also classified into independent groups
and present the highest error from the known solution.

This new method also aids to classify and discriminate the different
groups of tracers, which is of interest to track the tracer's origin or the
process to which tracers are subjected and their possible relationships.
Furthermore, as a novelty, a conservativeness index is presented with
a continuousnumerical value, in contrast to thepreviousmethodologies
that only discriminates between conservative and non-conservative
tracers.

Fig. 4. Dendrogram plots of the ternary diagrams of the real sample grouped according to the source they discriminate.

Fig. 5. Ternary diagram with the results of four tracers from the artificial dataset. The
schematic diagram above and to the right shows how to interpret the ternary diagrams.
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Most of the previous studies assumed that all tracers with conserva-
tive behaviour or those selected after using themost widespreadmeth-
odologies can be directly included in fingerprinting models (Collins
et al., 2017; Owens et al., 2016; Smith and Blake, 2014). Our results do
not confirm this hypothesis; in fact, they prove that tracers with appar-
ent conservative behaviour but with non-coherent information in the
mixture can introduce errors in the unmixing models.

4.2. The novel CR and future perspectives

In most studies identifying sediment provenance by using the fin-
gerprinting technique, the first requirement that a tracer should fulfil
to be selected for unmixing is being conservative. In this regard, Smith
et al. (2018) proposed a tracer selectionmethod to identify and remove
tracers that exhibit non-conservative behaviour during transport be-
tween catchment sources and sediment sampling locations. Our results
support the idea that tracer selection methodologies are needed in
order to exclude non-conservative tracers but also those with non-
coherent information in the mixture. This new method shows the exis-
tence of tracers with erroneous or non-conservative information that
could be selectedwhen using the previously established tracer selection
methods.

We provide a new method to identify non-conservative and non-
coherent or dissenting tracers. As can be seen in Fig. 6, those tracers
with lower consensus present higher errors from the known solution
in the artificial mixture, thus supporting the method's capability. In ad-
dition, in the case of the real sample example, the tracers with the low-
est consensus value show the least coherent information and most of
their possible solutions fall outside the triangle that represents the
space of the physical solution. Our findings appear to be well

substantiated by the results of the twodifferent unmixingmodels tested
and corroborate that the tracer selection is not a model-dependent
issue.

Recent research has suggested the mixing polygon approach pro-
posed by Phillips and Gregg (2003) as the alternative to the previ-
ously established methods for tracer selection methods. However,
our findings suggest that the Phillips and Greg's method likely in-
cludes as fully conservative low-conservative or even non-
conservative tracers. Furthermore, in this study, we prove the exis-
tence of tracers with dissenting information that are selected as suit-
able tracers by the other methods that can introduce erroneous
information to the models. For this reason, the CR shows how each
tracer behaves in relation to the other tracers included in the dataset
and which information each tracer delivers to the model. Thus, this
new method composed by the CI and the CR represents a ground-
breaking alternative for tracer selection.

The CR and CI procedures represent a novel attempt that fills the gap
created by the previous methodologies that are user-dependent and do
not use the mixture information after the mass conservation test. Thus,
without this new information, final tracer selections could incorporate
dissenting and non-conservative tracers leading models to erroneous
results.

5. Conclusions

The application of unmixing models is necessary to understand
source-tracer relationships, which is generally performed by apply-
ing different software to select the best combination of sediment
tracers. However, evidences from this study suggest that tracer se-
lection methods are crucial in fingerprinting studies, as the use of
one or another tracer could substantially modify the output of the

Fig. 6.Ternary diagrams of the results of the single-tracermodel from each tracer for the artificial datasetwith randomly chosen tracers (RCT) ordered according to theCR values. The black
circle located in the centre of the triangle represents the theoretical contributions of the artificial mixture with equal contribution for each of the three sources.

Fig. 7. Ternary diagrams of the results of the single-tracer model from each tracer for the real dataset with randomly chosen tracers (RCT) ordered according to the CR values.
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models. Our results prove that including tracers with dissenting in-
formation produces inconsistent results. In addition, some conserva-
tive tracers could provide unreliable information and may be
erroneous.

Unmixing models cannot estimate reliable contributions of sedi-
ment sources if the tracer selection procedure applied does not account
for tracers with non-coherent information. Thus, in this research, we
have devised an innovative methodology to identify non-conservative
and dissenting tracers that enables to understanddatasets and, likewise,
the effect of each tracer.

The currently usedmethodswithout CI andCR informationmay lead to
selecting dissenting and non-conservative tracers. Our study provides the

framework for a new way to obtain individual tracer information to pre-
vent the inclusion of erroneous information into fingerprinting studies.
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Variations in transport of fine sediment and associated elements 

induced by rainfall and agricultural cycle in a Mediterranean 

agroforestry catchment 

ABSTRACT 

Soil erosion and fine particles exports are two of the major concerns of soil nutrients loss and water 

quality decrease nowadays. In Mediterranean mountainous environments, developing agriculture has 

increased the surface area prone to erosion in the last century. In addition, agricultural practices during 

different cropland stages likely increase sediment supplies. The present stability in agricultural 

productions is wholly dependent on chemicals in the form of pesticides, together with fertilisers needed to 

supply plants the adequate content of nutrients. Thus, the surface runoff and percolation water of the 

drainage system export fertilisers and pesticides out into the drainage system that finally reach rivers and 

accumulate in water bodies. In this study, we attempt to evaluate the soil response to different agricultural 

practices implemented during the agricultural cycle by applying the sediment fingerprinting technique 

together with the newly consensus-based tracer selection method in a medium-sized agroforestry 

catchment. To this purpose 128 source samples were distributed over the four main land use/land covers 

and geomorphic elements existing in the study area: cropland, rangeland, subsoil (exposed bare soil) and 

channel bank. To analyse the variability of source contributions from the headwaters to the outlet of the 

catchment during two hydrological years, three sampling stations were established for collecting 

suspended sediments mixtures. To further analyse the temporal variation of the exported suspended 

sediment, 21 mixture samples were collected during seven seasonal campaigns, and the bare soil cropland 

area monitored through the use of remote sensing. At the catchment outlet, the sediment sample weights 

were three to four times higher than at headwaters, being significantly and positively correlated with the 

cropland area. Certain elements such as As, Co, Li, Mn, Zn and 238U were above source ranges in the 

sediment mixtures. The enriched elements showed higher concentration in the sediment mixtures during 

sowing an after harvest periods. Besides, an enrichment of phosphorous during both agricultural practices 

periods points out to agricultural activities as the main cause of sediment and pollutants export to streams. 

The consensus method was used to shows the individual messages of each tracer revealing non-

conservative and dissenting tracers, followed by a DFA to select the best set of tracers for each mixture. 

Overall, the unmixing model outputs displayed channel bank and agriculture as the main contributing 

sources for all the seasonal campaigns. Nevertheless, the agricultural contribution was higher during the 

periods when the soil surface in croplands had no plant cover protection. Thus, in the subcatchment with 

less bare soil cropland area, the agriculture source contributed with the lowest percentages. Our results 

support the protection of croplands, especially in periods of vegetation cover absence to prevent the loss 

of fertile soil and the export of pollutants to downstream water bodies. 

1. Introduction

A goal of present and future agriculture is to meet the 

food need for the growing global population. However, the 

current agricultural production is wholly dependent on 

chemicals in the form of pesticides to the efficient control of 

pathogens and pests, together with fertilisers to supply the 

plants with the adequate content of nutrients (Prashar and 

Shah, 2016; Sharma and Singhvi, 2017). These chemicals 

associated with modern agriculture are usually sprayed in the 

fields and can be transported to the surrounding land and 

water supplies. One of the major pathways of these chemicals 

to reach water systems is in dissolved or particulate forms 

(National Research Council, 1993).  

On the other hand, recent findings regarding new 

detection techniques have led researchers to gain knowledge 

on new ways of sediment mobilisation and the chemicals and 

nutrients associated with its transport (Quesada et al., 2014; 

Casado et al., 2019; Lizaga et al., 2019a). The significant 

increase in fine sediment transported to water bodies has been 

demonstrated to be one of the most widespread contaminants 

in aquatic ecosystems, compromising water quality and its 

deleterious effect on water storage capacity caused by 

reservoir siltation (Navas et al., 2004). As a first step, it is 
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essential to understand where the sediments and associated 

pollutants came from, and thus, analyse the role played by 

soil and sediment sources. Preliminary studies tracking the 

source of sediments were firstly pursued by Klages and 

Hsieh. (1975) and Walling et al. (1979) and the technique 

was termed as fingerprinting.  

In agricultural landscapes, the agricultural cycle and the 

different crop stages from sowing, growth, ripening and 

harvesting modify the soil cover, from fully covered by 

vegetation to merely bare soil surface. As it is widely known, 

the vegetation cover of croplands is one of the major factors 

protecting soil from erosion and preventing the mobilisation 

of nutrients (Gómez et al., 2009; Gaspar et al., 2019c).

More recently, the concerns about soil loss and the 

subsequent nutrient loss have led to developing methods 

for quantifying and predicting erosion rates of fine-grain 

sediment.  

Thus, to control soil erosion, it is crucial to identify the 

most vulnerable areas exposed to erosion as main driver of 

soil loss and the subsequent mobilisation of  nutrients and 

chemicals (Estrany et al., 2010; Smith and Blake, 2014;

Owens et al., 2016). To this purpose, research has been 

conducted to involve different sets of tracers such as 

geochemistry, magnetic properties and radiotracers as 

fingerprints to identify the primary source of sediments by 

applying unmixing models (Martínez-Carreras et al., 2010; 

Evrard et al., 2013; Palazón et al., 2015b; Pulley et al., 2015; 

Meusburger et al., 2018; Gaspar et al., 2019a). Besides, as 

an aid tool technology such as remote sensing enables 

monitoring large areas within a short period of time. 

Satellite images providing information about soil properties, 

crop management, human activities and modifications of the 

vegetation cover are of value to relate the variations in 

sediment export rates with the susceptibility of specific areas 

to be eroded (Schillaci et al., 2017; Lizaga et al., 2019b, 

2019c; Useya and Chen, 2019; Wang et al., 2019).  

Evaluation on main drivers, natural or 

anthropogenic, that lead to the supply of fine sediments can 

be fostered by combining fingerprinting techniques with 

information derived from satellite images. To this aim our 

research re-examines the usefulness of the fingerprinting 

technique not only to identify the sediment provenance but 

also as a pollutant control technique to track the changes in 

sediment contribution associated with rainfall and 

agricultural activities. During two hydrological years 

(2014-2016) the sediment provenance is assessed in an 

agroforestry south Pyrenean catchment to understand the 

main factors leading to transport sediment and associated 

pollutants. To this purpose we develop an innovative 

multi-approach combining the spatiotemporal analysis of 

the sediment properties, remote sensing techniques and 

fingerprinting modelling to i) determine which is the 

primary source of the sediment and related pollutants, ii) 

analyse the links of sediment export with the agricultural 

cycle and iii) evaluate the effects of enriched tracers due to 

agricultural activities in the fingerprinting procedure.  

2. Materials and methods

2.1 Study Area 

The study area (23 km
2
) is drained by an ephemeral 

stream tributary of the Arba River located in the middle part 

of the Pre-Pyrenean range (Fig. 1). The Barués catchment 

structure is dominated by the low angle dip of the Uncastillo 

Miocene formation bedding and the presence of a Quaternary 

glacis located at the Middle Eastern part occupied by most 

croplands. The climate is characterised by cold winters and 

hot and dry summers. The rainfall periods are variable along 

the year being mainly concentrated in the spring and autumn-

winter seasons while the droughts take place in summer. 

However, the area is subjected to intense and localised storms 

during the second half of the summer period. The mean 

annual rainfall is nearly 500 mm and the maximum, and 

minimum annual temperatures are between 30°C and -6°C, 

respectively. 

At the start of the twentieth century, most of the 

catchment was cultivated, remaining as croplands nearly 60% 

of the area during the 1960s. However, as much as 75% of 

the agricultural land was abandoned during the following 

decade. Currently, ~16% of the catchment is still cultivated 

while the rangeland occupies the remaining 83.5 % (Lizaga et 

al., 2018a). The main land use/land covers are cropland (AG) 

and rangeland (RG) which is composed by Mediterranean 

open forest and pine afforestation. Besides, most croplands 

are located on a Quaternary glacis and on fluvial terraces 

with gentle slopes covering the valley floors. Rangeland 

occupies the upper part of the catchment and the highest 

altitudes. Interspersed patches of highly disturbed areas such 

as bare soil (subsoil) are dispersed across the catchment. The 

valley floor is infilled by eroded sediment from the 

surrounding slopes which is deeply incised, especially in the 

middle part of the catchment where its thickness reaches its 

maximum up to 4 m. The stream channel banks are mainly 

composed by loess type sediment characterised by steep talus 

without vegetation cover. 

Fig. 1. Location of the study catchment in the central part of the 

Ebro Basin (NE Spain). 3D map of the land uses in the three 

subcatchments. (a) cropland, (b) gully erosion produced in a crop 

surrounded by rangeland, (c) open forest and terraced crops, (d) 

eroded subsoil area, (e) channel bank, and (f) sampling station (ST). 

The Barués catchment is constituted by three 

subcatchments with different percentages of land use/ land 

cover (LU/LC). Thus, the AG land use predominates in the 

lower part of the catchment while RG spread over the 

catchment occupying the East part and the headwaters. 

During the previous decades, the abandonment of croplands 
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was substantially larger at headwaters due to the shallow soils 

and more steep slopes that hinder the use of machinery 

(Navas et al., 2017).  

2.2. Soil sampling and analysis 

The potential sediment sources and sediment sampling 

locations established in this study were identified during 

reconnaissance surveys following previous research 

conducted in this catchment about connectivity (Lizaga et al., 

2018a), changes in soil properties after land abandonment 

(Lizaga et al., 2019a) and estimates of spatial soil 

redistribution rates (Lizaga et al., 2018b).  

A total of 128 source sediment samples were taken with a 

2 cm cylindrical sampler with a total surface area of 127 cm
2
. 

Sediment source samples of variable depths are commonly 

collected for fingerprinting, though 2 cm depth is frequently 

used for average time study periods. Four replicates were 

collected at each sampling point and later combined in the 

field to create a representative composite sample following 

Owens et al. (2016).  

Source samples were collected from cropland (AG), 

rangeland (RG), eroded subsoil (SS) and channel bank (CB) 

following the methodology proposed in Lizaga et al. (2019b). 

Thus, fourteen subsoil samples were collected over the 

catchment, and another sixteen samples were collected along 

the main streams on the channel banks.  Suspended sediment 

mixtures (SSM) samples were collected following the 

methodology proposed by Phillips et al. (2000) in the middle 

part of the channel bed along the main streams from the 

headwaters to the outlet of the catchment in three sampling 

stations (ST). The locations were carefully selected in order 

to assemble the variability between the three main 

subcatchments. 

SSM samples were collected during a two hydrological 

years period, from October 2014 to June 2016. In this project, 

it was decided to collect them each three months in order to 

analyse the seasonal variability. However, due to technical 

problems it was not possible to retrieve the SSM samples 

corresponding to the 2
nd

 seasonal campaign that had an 

extended time lapse. The objective of the sampling schedule 

was to provide a close replication of sediments transported 

during each season for evaluating both seasonality and the 

effect of the different crop practices such as sowing, 

fertilising and harvesting. 

The samples were air-dried, ground, homogenised and 

sieved to ≤63µm following the most widespread 

methodology (Palazón et al., 2015a; Owens et al., 2016; 

Collins et al., 2017). Besides, the selection of the ≤63µm 

particle size for sources and mixtures was related to the 

predominant silt texture of soils in the catchment (Table 1). 

The relationships between tracers and the size fractions 

support that ≤63µm fraction compiles the existing range of 

variation for most of the study tracers. Particle size, stable 

elements, magnetic susceptibility and radionuclides were 

analysed in the ≤0.063mm fraction for all the 128 source 

sediment and 21 sediment mixtures samples. 

Grain size and magnetic susceptibility were analysed 

following the same methodology as in Lizaga et al. (2019b). 

Total elemental composition was analysed by ICP-AES after 

total acid digestion pursued in two cycles with HF (48 %), 

HNO3 and H2O2 and a second cycle with HNO3, HCL, and 

Milli-Q water in a microwave oven (Navas and Machín, 

2002). Samples were analysed for the following 28 elements: 

Al, As, Be, Bi, B, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, 

Ni, Pb, P, Rb, Sb, Se, S, Sr, Ti, Tl, V, Zn. The resulting 

concentration was expressed in milligrams per kilogram (mg 

kg
-1

). Gamma emissions of 
137

Cs, 
226

Ra,
 238

U, 
232

Th and 
40

K 

were analysed at the gamma lab of the Experimental station 

of Aula-Dei (EEAD-CSIC) following the methodology used 

in Navas et al. (2014). The radionuclide activities were 

counted for 86400 seconds and expressed as massic activity 

in Bq kg
−1

 dry soil. 

2.3. Cropland rotation and vegetation variation monitoring 

Satellite imagery data was analysed with digital image 

processing methods and spatial analysis techniques to detect 

spatial and temporal changes in vegetation and cropland 

rotation. A multitemporal Landsat and Sentinel 2 satellite 

dataset formed the basis for monitoring the land use change 

and the variation of the cropland area during the study 

seasons. A series of one Landsat 8 image and seven Sentinel 

2 images were acquired by the different multispectral sensors 

onboard Landsat and Sentinel satellites. Image series were 

selected with the nearest sensing period to the sample 

collection campaigns. The dates when images were available 

without cloud cover were 2014-10-17 (Landsat 8-OLI), 2015-

04-11 (Sentinel 2A), 2015-07-06 (Sentinel 2A), 2015-09-24

(Sentinel 2A), 2015-12-03 (Sentinel 2A), 2016-03-12

(Sentinel 2A), 2016-05-01 (Sentinel 2A), 2016-06-23

(Sentinel 2A). The procedure for pre-processing satellite

multispectral images to ensure temporal comparability

between scenes was carried out by the Earth Resources

Observation and Science Center (EROS) (USGS) for the

Landsat 8-OLI and by using the sen2cor.exe for the Sentinel

2 satellites. This correction was done to ensure the data

comparability between scenes. However, the different scenes

were only used to visually compare and delineate the area

that remains as bare croplands through the analysed time-

lapse. The bare soil of cropland areas for each date was then

compared with the previous temporal image to assess the

evolution of the crop rotation and the different plant growth

stages for each time interval.

2.4. Tracer selection and unmixing modelling 

In order to select the best set of tracers, the results extracted 

from the analytical determinations were statistically analysed 

using R. Correlation plots created with the CorrPlot () 

function included in the FingerPro R package (Lizaga et al., 

2018) were used to evaluate the relationships between the 

different element and soil properties analysed in the SSM. 

Besides, a Euclidian distance matrix with the normalised 

values and cluster analysis using the ward.D2 method was 

applied to group the tracers with similar behaviour through 

the study periods and investigate their relationships. A state-

of-the-art unmixing model implemented as an R package-

FingerPro (Lizaga et al., 2018) was applied for estimating 

sediment source contributions of each potential sediment 

source for the different SSM samples. Source apportionment 

solutions were expressed by the mean and standard deviation 

calculated from the model results (Table 4).  
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An essential step in fingerprinting studies is the 

implementation of previous statistical tests in order to 

identify the set of tracers which better discriminate between 

potential sources (Yu and Oldfield, 1989; Walling and 

Woodward, 1995; Palazón et al., 2015b; Gaspar et al., 

2019b; Gateuille et al., 2019). Several studies following the 

methodology implemented by Collins and Walling (2002a) 

compare the range between the sources and the sediment 

mixtures for each fingerprint tracer. However, by using the 

most widespread tracer selection methodologies, some not 

conservative tracers could be selected while informative 

tracers removed. Furthermore, the addition of tracers with 

redundant information does not deliver essential data for 

unmixing. Besides, the inclusion of only redundant tracers 

likely creates underdetermined systems where the model 

solution could be erroneous Lizaga et al., (under review).  

In order to select the best set of tracers for fingerprinting 

studies we applied the novel consensus-based method, a 

novel ensemble technique composed by the CI and CR 

methods for sediment fingerprinting tracer selection 

proposed by Lizaga et al. (under review ). CI is a 

conservativeness index that uses the predictions of single-

tracer models to identify non-conservative tracers and 

creates a ranking that indicates how conservative each 

tracer is. The CR method is a scoring function based on 

several random debates between tracers, in which the tracer 

that prevents consensus is discarded. Both, CR and CI 

methods represent a novel attempt that fills the gap created 

by the previous methodologies that are user-dependent and 

do not use the mixture information after the mass 

conservation test. The method extracts the individual 

information and the signal that each tracer could introduce 

into unmixing models. To further check this new 

methodology, the 21 mixture samples were individually 

tested and their results compared. Furthermore, to avoid 

user-dependent decisions after applying the CI and CR 

method, the final tracer selection was accomplished by 

using the Discriminant Function Analysis (DFA) test with a 

niveau of 0.1 after to remove the tracers with redundant 

information. 

To explore the behaviour of each element and the 

possible element depletion or enrichment due to pollution, 

we created a timeline scatter plot with the seven SSM 

seasonal samples values for each tracer together with the 

mean values of each source (Fig. 2). 

3. Results

3.1. Spatio-temporal variations of sediment properties and 

mixtures tracers 

The statistics of grain size, radionuclides and elemental 

composition for the potential sediment sources presented in 

Table 1 shows that the four sediment sources had similar 

contents of clay and sand, with mean values between 14-

17% and 16-19% for clay and sand, respectively. However, 

the silt contents were lower in AG and RG than in the other 

sources, with the highest contents in CB and SS. The means 

of  
40

K, B, Bi, Ca, Li, Mg, Na, Ni, Sr, Tl and V were 

significantly higher in SS than in the other sources (AG, 

CB, RG) (p ≤ 0.05). Besides, AG showed higher values of 

P and As while RG had higher values of 
137

Cs and χLF. 

Apart from P, major elements such as Al, Ca, Mg, K, Ti, Fe 

and Mn were not significantly different between sources. 

The timeline of the properties in the SSM showed 

similar trends for some elements (Fig. 2). Most elements 

that were significantly correlated with the fine fraction 

paralleled the clay trends during the study period. Only Ca, 

Mn, S, Sb, Tl and partially 
238

U did not show related trends 

with the clay fraction (Fig. 2).  

The SSM sample weights and the accumulated rainfall 

were directly and significantly correlated (r > 0.9) in ST2 

though correlations were not significant in ST1 and in the 

catchment outlet (CO) (Table 2). The differences between 

subcatchments could be caused by the temporal or partial 

blocking of the mixture collector in ST2 during the 3
rd

 

seasonal campaign as it only accumulated 17 g in 

comparison with 159 g and 622 g collected in ST1 and CO 

in this campaign. However, the amount of sediment 

collected in ST1 and CO was remarkably high for the 

scarce rain fallen during the 3
rd

 seasonal campaign (100 

mm) (Fig. 3). By removing this outlier campaign, the

correlations significantly increased in the three

subcatchments (Table 2).

 SSM Weights 

All campaigns SBC1 SBC2 SBC3 

precipitation (mm) 0.12 0.91 0.31 

Campaign 3 removed SBC1 SBC2 SBC3 

precipitation (mm) 0.81 0.91 0.68 

Table 2. Correlations between the SSM sample weights and the 

accumulated rainfall. 

According to the analysed tracers in the sediment 

mixtures, the subcatchments showed slightly different 

behaviour with the largest differences in SBC2. Most SSM 

tracers were significantly and directly correlated with the 

clay fraction, but all tracers were inversely correlated with 

the silt and sand fractions and with rainfall. The tracers that 

were enriched in some campaigns such as As, Cu, Ni, 
226

Ra, 

S, Sr,
 238

U and Zn were also strongly correlated between 

them.  

The mean concentrations of Al, As, Be, Cd, Cr, Cu, Li, 

Mg, Ni, Pb, Rb, V, and Zn in the SSM were the highest in 

ST1 at the headwaters but the lowest in the CO (Fig. 2). 

However, the sample weights were more than four times 

higher in CO than in ST1 and ST2. Thus, even with less 

concentration, the total contents of the referred elements in 

CO were more than two times higher than in ST1 and ST2. 

Besides, As, Co, Li, Mn, Zn and 
238

U were enriched and out 

of the sources range for most study seasons in the three 

subcatchments. Moreover, Be, Cd, Cu and Pb also were 

enriched though only in some seasons. Phosphorus showed 

high concentrations for all study seasons with slightly 

higher values in CO. P contents were out of range for all the 

source samples except for the agricultural samples. 
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Fig. 2a. Timeline plot of the tracer values analysed in the suspended sediment mixtures (SSM) for the seven seasonal campaigns and the 

mean values of each source represented with dash lines.

The sample weight increases were paralleled with silt 

percentage increases, thus, elements with high negative 

correlations with silt such us 
238

U, Zn, Cu, Ni, Pb, As, 
232

Th 

showed strong negative correlations with weight. Overall, 

there were some elements frequently enriched in the SSM 
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Fig. 2b. Timeline plot of the tracer values analysed in the suspended sediment mixtures (SSM) for the seven seasonal campaigns and the 

mean values of each source represented with dash lines.

such as 
238

U, Sb, Mn, Zn, Li, Co and As while others as 

Rb, Na, Se, B and Cr were depleted. Between autumn and 

spring campaigns, it was detected an increase in the 

concentrations of elements positive and significantly 

correlated with the clay fraction. Besides, some elements 

with low positive correlation with clay also showed a high 

increase during the autumn campaign such as 
238

U, Na and 

S. During these campaigns it was found that 
238

U, P, S, Li,

Mn and As were clearly above the sources range, indicating

an increase of these elements during the sowing season.

3.2. Agricultural cycle and sediment exports 

The calculation through satellite images of the bare soil 

surface generated by the agricultural cycle (Fig. 3) 

displayed the evolution of plant cover during the 

agricultural cycle and the area of bare soil surface in AG 

close to each of the seven seasonal campaigns. Although 

each image only shows the cropland stage when the SSM 

samples were collected, they are also representative of the 

cropland stages between campaigns except from the time-

lapse between images, 1-2 and 7-8. Between images 1-2 the 

time-lapse was seven months and the cropland stages 

moved from autumn-winter bare soil to fully-grown spring 

plants. For images 7-8 the time-lapse was within the same 

season campaign. Image 7 represents the period from 

2016-03-22 to 2016-05-01 when the fallow fields in SBC3 

and SBC2 were ploughed and left bare until sowing. Image 

8 was taken by the sensor one week after the sampling 

campaign when most crops were harvested. However, the 

lower part of the catchment was not harvested until one to 

CH 9

106



two weeks before sampling. Thus, as much as 90% of the 

catchment’s lower part remained unharvested for most of 

the seasonal campaigns or it was harvested after sampling. 

The temporal evolution of the accumulated rainfall and 

the surface of bare soils during the study period compared 

with the weights of the SSM samples (Fig. 4) showed two 

sharp increases in SSM weights in the 2
nd

 and 3
rd

 seasonal 

campaigns. The other five seasonal campaigns followed a 

similar trend with that of both the bare soil surface and the 

accumulated rainfall.  

Fig. 3. Satellite images and AG bare soil area graphs for the three subcatchments during the seven seasonal campaigns

3.3. Evaluating tracers reliability: the new Consensus 

method 

To assess the spatial variations in source 

apportionments from headwaters to the lower part of the 

catchment, it was required to create a set of optimum 

tracers for each SSM sample. The newly proposed tracer 

selection method includes several advantages in 

comparison with the existing ones. On the one hand, the 

conservativeness index (CI) method included in this method 

provides information about how conservative is a tracer 

with a realistic approach that uses the mixture information 

in the procedure and not only graphically or spatially as it 

was previously done with the mixing polygon approaches. 

Secondly, the Consensus Ranking (CR) method informs of 

which tracers are leading the model to a consensual solution 

and which ones are introducing dissenting messages in the 

unmixing model. The dissenting tracers do not deliver 

valuable information to models but increase uncertainty 

generating erroneous results if they are used together with 

the remaining tracers in the dataset. Thus, one of the major 

advantages of this new method is that it allows the removal 

of non-conservative and non-consensual tracers showing 

the individual messages of each tracer. 

Applying the Consensus-based method for the different 

SSM and sources for each ST, CI and CR methods results 

extracted from the 21 SSM samples were compared and 

used for selecting the tracers (Table 3). There were more 

tracers that fulfilled the requirements of the method than 

selected tracers to be part of the optimum set of tracers to 

be used for unmixing (bold numbers). However, the 

messages of the non-selected tracers that passed the 

requirements of the method were redundant with some of 

the selected ones. Then, once the tracer selection that 

defined a well-determined system was accomplished, the 

inclusion of tracers with the same message only provided 

repetitive information without significantly modifying the 

model results but increasing uncertainty.  

As seen in Table 3 after the harvesting period 

corresponding to the 4
th

 seasonal campaign, the enriched 

tracer P clearly showed non-conservative and non-

consensual behaviour as indicated by the important change 

in the average values of CI and CR during the 4
th

 seasonal 

campaigns. Moreover, during the sowing season, the 5
th

seasonal campaign both S and P showed non-conservative 

and non-consensual behaviour. 

However, P was the tracer that best discriminated AG 

from the other sediment sources. The enrichment of P lead 
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the tracer out of the CI and CR methods requirements 

during specific campaigns what might difficult discriminate 

AG in the unmixing procedure.  

3.4 Assessing the spatio-temporal variability of sources 

apportionment  

Channel banks were the largest contributing source in 

the three subcatchments ranging from 35% to 47% (Fig. 5). 

The second and third largest contributing sources were AG 

and SS with 25% and 25%, respectively, while rangeland 

contributed the less (7% - 10%). At the catchment outlet 

(CO), a large increment of SSM sample weights was 

recorded along with an increase in AG percentage 

apportionment.  

Fig. 4. Line graph of the mixture sample weights, precipitation 

and AG bare soil area for the seven seasonal sampling campaigns. 

At a temporal scale, each subcatchment showed 

different but related results (Fig. 6). The main contributing 

source in the three sampling stations was CB being slightly 

higher in ST1. The CB contributions were directly and 

significantly correlated with the accumulated rainfall and 

sample weights. 

On the contrary, the AG sediment contributions were 

negatively correlated with the accumulated rainfall and 

sample weights being only significant in CO. Thus, when 

CB contribution increased the AG contribution decreased 

being SS and RG mostly residual contributing sources. The 

AG sediment export response followed similar trends in 

ST1 and CO except for the 6
th

 seasonal campaign in ST1. 

On the other hand, ST2 showed independent behaviour with 

higher CB contribution and lower AG contributions. The 

general trends in ST1 and CO followed the general crop 

stages with slightly higher AG contributions during the 

sowing seasons (1
st
 and 5

th
 seasonal campaigns) that 

gradually decreased as the crops grown-up. However, the 

increase in AG sediment exports expected after the harvest 

season is only significant in CO. In ST2 the SSM samples 

showed significant AG contributions only immediately 

after the harvest seasons (3
rd

 and 7
th

 seasonal campaigns) 

with an increasing trend from the 5
th

 to 7
th

 campaigns 

contrary to what it was observed in CO that showed 

decreasing AG apportions during the last three sampling 

campaigns.  

Fig. 5. Pie chart of the mean total apportions of the different 

sediment sources for each sampling station. 

4. Discussion

4.1. The spatio-temporal variability in sediment exports 

The differences in the provenance of sediment exported 

are mainly produced by the agricultural practices and the 

vegetation cover over the different soil sources. Thus, due 

to the protection capacity of rangelands, the main driver of 

sediment exports is the agricultural cycle and the 

agricultural practices what agrees with highest soil erosion 

found in the study catchment (Lizaga et al., 2018b) as well 

as in other nearby catchments of the south Pyrenean region 

(Navas et al., 2013,  Gaspar et al., 2013). The low 

correlation between the SSM samples weights and the 

accumulated rainfall due to the sharp increase in sediment 

exports after the harvesting period, points out to an external 

affection in the sediment export cycle in SBC1 and SBC3. 

The high increase in sediment mobilised during the 3
rd

 

seasonal campaign is likely a consequence of agricultural 

practices during harvest increasing compaction and 

rendering soil more prone to erosion (Hamza and Anderson, 

2005). Further increased sediment mobilisation is likely 

caused by machinery operations at harvest (Schuller et al., 

2013) or when crossing the streams disturbing and 

mobilising the channel bed sediments. Thus, a lower 

correlation with rainfall and the high increase in the coarse 

sediment fraction indicates that sediment was not only 

naturally generated but that other factors related to 

agricultural practices have an important influence. 

Furthermore, the processes after harvesting such as erosion 

by raindrop impact (Beguería et al., 20015) sheet wash 

erosion and rilling due to the absence of cover protection 

and the loosening of soil could also increase the sediment 

export rates  (Ruiz-Colmenero et al., 2013; Quijano et al., 

2016, 2019, 2020). However, this pattern is not observed in 

the last campaign because most of the SBC3 remained 

unharvested one to two weeks before sampling. The low 

precipitation rates during the 3
rd

 and the 7
th

 seasonal 

campaigns could have prevented the eroded or mobilised 

sediment from the harvested fields reaching the STs before 

sampling. The anomalous values in the 2
nd

 seasonal 

campaign (2015-04-15) are associated with the longest 

period that doubled the sediment amount accumulated in 

the other seasonal regular campaigns. 

The relative enrichment in the clay fraction and 

depletion in the sand fraction in the suspended sediment 

mixtures compared to the sources suggests that fine 

sediment is reaching the streams and preferentially exported 

out of the catchment. Similar results were found by Lizaga 

et al. (2019b) during an extreme storm event that happened 

in the study area in 2012. The low sand content transported 

determines that most tracers’ positively correlated with the 

clay fraction have weak negative correlations with sand. 

The temporal variation of the clay fraction follows the crop 

stages as supported by the higher clay contents present 

during sampling campaigns between July and December 

when fields have non-vegetation cover to protect soil 

surface from erosion. 

CH 9
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On the contrary, the highest silt contents during the 

sampling campaigns when fields are fully covered by crops 

suggest that less fine sediment is reaching the streams and 

that the sediment mobilised is coarser likely related with the 

higher rainfall amounts (Fig. 6). Most of the croplands are 

distributed surrounding the main stream, thus full plant 

covered fields likely minimise the sediment exported by 

other sources in the areas that are not directly connected 

with the streams that store sediments during these periods. 

The lower clay contents and the significantly higher silt 

content at the CO also indicate that higher discharge and 

transport capacity downstream increase the transport of 

coarser fractions and associated elements. Besides, the 

presence of heavy metals along with As, S, P and 
238

U in 

the SSM with contents above the range of the sources and 

following the agricultural cycle points out to the 

anthropogenic origin of these pollutants. Furthermore, the 

overall decrease in the fine fraction while sample weight 

increases suggest a possible scenario of clay and related 

elements export and the subsequent downstream pollution 

(Karageorgis et al., 2003) favoured by the association of 

lithogenic radionuclides such as 
238

U with the clay fractions 

(Navas et al., 2002b, 2011) and the radionuclide mobility 

observed in similar environments (Navas et al., 2005). 

Fig. 6. Mean sediment source contributions modelled with FingerPro for the three sampling stations during the seven seasonal 

campaigns.

4.2. Conservativeness and consensus message of the studied 

tracers 

As it can be seen in Table 3, the conservativeness and 

consensus method shows how the tracers unusually 

enriched or depleted are classified as low consensual and 

non-conservative tracers. First, the tracers unusually 

enriched or depleted show a lower value of CI than the 

assumed limits of this study. Thus, these tracers are not 

selected for the unmixing modelling. Secondly, the tracers 

that are in the appropriate range, but did not fit the 

CH 9
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consensus standards are assumed as dissenting tracers and 

excluded to avoid uncertainties and likely erroneous model 

results. The high contents of P in the 4
th

 seasonal campaign 

at ST1 lead to exclude P as tracer for unmixing. Then, the 

lack of tracers that clearly discriminate the agricultural land 

likely produced in this mixture reduces AG source 

apportions. Thus, the increase of bare soil surface in 

croplands along with the agricultural management that 

mobilise sediment during the 3
rd

 seasonal campaign and the 

important increases in P, As and fine fraction contents 

likely suggest that the AG contribution is underestimated 

by the model in this campaign highlighting the impact of 

pollutants in the unmixing modelling. 

Seasonal 

campaign 

RG AG CB SS GOF 

ST 1 

 

mean sd mean sd mean sd mean sd mean sd 

1st 0.161 0.129 0.356 0.182 0.212 0.147 0.272 0.089 0.898 0.034 

2nd 0.062 0.066 0.337 0.165 0.535 0.133 0.066 0.071 0.934 0.040 

3rd 0.093 0.114 0.087 0.079 0.595 0.145 0.225 0.128 0.893 0.054 

4th 0.080 0.054 0.180 0.100 0.535 0.152 0.206 0.097 0.951 0.022 

5th 0.152 0.091 0.401 0.166 0.360 0.149 0.088 0.059 0.912 0.025 

6th 0.132 0.038 0.028 0.073 0.719 0.129 0.121 0.104 0.977 0.021 

7th 0.010 0.026 0.418 0.155 0.328 0.200 0.244 0.151 0.866 0.055 

ST 2 

 1st 0.024 0.034 0.046 0.066 0.447 0.165 0.482 0.136 0.938 0.052 

2nd 0.178 0.103 0.076 0.069 0.117 0.108 0.628 0.115 0.866 0.036 

3rd 0.047 0.067 0.237 0.096 0.628 0.191 0.088 0.107 0.930 0.050 

4th 0.070 0.021 0.083 0.069 0.378 0.102 0.469 0.087 0.995 0.012 

5th 0.048 0.077 0.136 0.093 0.649 0.157 0.168 0.080 0.890 0.041 

6th 0.086 0.065 0.238 0.099 0.535 0.130 0.141 0.053 0.914 0.032 

7th 0.006 0.024 0.459 0.100 0.246 0.136 0.289 0.096 0.929 0.042 

CO 

 1st 0.023 0.037 0.414 0.060 0.255 0.210 0.307 0.175 0.885 0.039 

2nd 0.189 0.091 0.232 0.067 0.557 0.111 0.023 0.052 0.835 0.027 

3rd 0.156 0.062 0.036 0.069 0.542 0.237 0.266 0.188 0.874 0.060 

4th 0.030 0.053 0.436 0.110 0.100 0.124 0.434 0.113 0.917 0.039 

5th 0.010 0.027 0.534 0.066 0.038 0.080 0.418 0.088 0.873 0.039 

6th 0.038 0.067 0.292 0.107 0.297 0.201 0.373 0.150 0.871 0.030 

7th 0.088 0.069 0.244 0.077 0.626 0.131 0.042 0.067 0.901 0.032 

Table 4. Mean and standard deviation percentages source contributions from the FingerPro model for rangeland (RG), agricultural (AG), 

subsoil (SS) and channel bank (CB) to the mixture samples.

By applying the new consensus method, it is possible to 

detect atypical enriched tracers and ascertain a likely 

underestimation of AG apportion in SCB1. Therefore, 

careful attention must be paid during unmixing modelling, 

especially for the tracer selection. The new method offers 

great potential for the quality information that delivers for 

each tracer in each mixture. As seen in Table 3 during the 

sowing period the enriched tracers S and P clearly show 

non-conservative and non-consensual behaviour as 

indicated by the important change in average values of CI 

and CR during the seasonal campaigns. With this 

complementary information it appears that these tracers 

were unnaturally enriched during these campaigns in 

comparison with other elements that do not show such large 

variations in their CR values. However, the exclusion of 

tracers that efficiently discriminate one of the sources could 

influence the results and mislead the models by reducing or 

increasing the underrepresented source. 

4.3. Main drivers of sediment source contribution 

Channel banks are the main contributing source due to 

its proximity to the active water flow. Despite that stream 

talus are deeper and steeper at the lower part of the 

catchment close to the outlet, the increase of cropland 

surface and the location of most crops surrounding the 

principal and secondary streams produce significant AG 

sediment inputs, especially when crops remain unprotected 

due to the absence of vegetation cover. Thus, the high 

concordance between the SSM sample weights, the 

accumulated rainfall and the surface area of the bare soil in 

croplands during the seven seasonal campaigns suggest that 

the main drivers of sediment export are both the stages of 

vegetation cover in croplands and rainfall. On the other 

hand, the lowest AG contribution during most seasonal 

campaigns recorded in ST2 agrees with the lowest surface 

of bare soil in croplands. Lizaga et al. (2019a), found SS as 

one of the main contributing sources in this part of the 

catchment due to the proximity of steep slopes with highly 

disturbed areas and the predominance of bare soils as it can 

be seen in Fig. 1. Besides, most of the cultivated fields in 

SBC2 are located at the headwaters instead of surrounding 

the main streams as in SBC1 and SBC3.  Furthermore, 

during the second agricultural cycle several fields in SBC2 

were left fallow. However, a slight increase in AG source 

contribution was observed during the 7
th

 seasonal 

campaign. This increase coincides with the plough of the 

fields surrounding the main streams that were left fallow in 

SBC2 during the previous agricultural cycle. For this 

reason, instead of a progressive decreasing trend in AG 
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sediment contributions due to vegetation growth as in 

SBC3, a progressive increasing trend in AG sediment 

contributions occurs. Finally, ST1 shows a progressive 

decreasing trend in AG contribution in the first agricultural 

cycle from the 1
st
 to the 3

th
 seasonal campaigns that 

coincide with the vegetation growth while an increase from 

the 3
th

 to the 5
th

 campaigns occurs when the highest surface 

of bare soil in croplands happen. Similar behaviour than in 

ST2 was observed during the 7
th

 seasonal campaign 

coinciding with the plough of the fields that were left 

fallow.  

5. Conclusions

The study of a medium-size catchment during two

hydrological years with fingerprinting methods has 

emphasised the great impact of agricultural activities and 

the agricultural cycle in the suspended sediment and 

pollutants exported to the streams. The positive correlation 

between the cropland area and the sediment mixture 

weights confirm the influence of the agricultural practices 

as the primary driver of rising sediment exports rates. The 

enrichment above sources ranges detected in the suspended 

sediment mixtures of some elements such as As, Co, Li, 

Mn, Zn, 
238

U and P, and their higher increase during sowing 

and after harvest periods points to the important impact of 

agricultural activities on supplying sediment and pollutants 

to the streams.  

This work has revealed that the consensus method 

ensures the exclusion of non-conservative and dissenting 

tracers. CI and CR methods were successful in detecting the 

optimum set of tracers in the 21 unmixing runs. The 

consensus-based method highlighted the elements with 

similar behaviour and the ones occasionally enriched or 

depleted. The method provides a broader and easier 

application in fingerprinting studies creating an agreement 

in tracer selection methodologies. The results of the 

unmixing modelling highlights the increase in AG sediment 

provenance during sowing and after harvest periods, 

underlining the lower AG contribution in the subcatchment 

with less bare soil area.  

The evidence from this study suggests that the 

agricultural practices are the main drivers of the variability 

of sediment export in mountain agroecosystems for regular 

hydrological years as the ones of the study period. These 

findings report the effect of human activities in mountain 

agroecosystems and shed new light about the periods when 

most pollutants are supplied to streams. From these results, 

conservation practices are recommended to land users and 

policymakers to ensure the protection of cropland soils, 

especially in periods of absence of vegetation cover to 

prevent the loss of fertile soil and the export of pollutants to 

water bodies. 
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CSSI for tracking the provenance of sediments in a 

mediterranean agroecosystem under intense land cover changes 

ABSTRACT 

A Compound Specific Stable Isotope (CSSI) sediment tracing approach is evaluated for the first time in 

Mediterranean mountain agroecosystems subjected to intense land use changes in the past decades. 

Mediterranean mountain environments have suffered the conversion of rangelands into croplands during the 

previous centuries to increase agricultural production. Among side effects, conversion lands practices have 

increased the risk of erosion and in severe conditions have led to loss of fertile topsoil.  After land 

abandonment the process was reversed during the middle of the XXth century, allowing the recovery of 

vegetation and subsequent variation in land cover and soil erosion rates. 

This work aims to assess the potential of FAs to discriminate vegetation covers in complex landscapes 

subjected to land cover changes after generalised land abandonment. We attempt to evaluate for the first time 

the soil response in highly altered agroforestry systems by applying state of the art sediment fingerprinting 

techniques along with compound-specific stable isotopes (CSSI) as tracers. The MixSIAR model with 

concentration dependence is applied for unmixing CSSI in suspended sediments mixtures collected in a 

medium-sized Mediterranean agroforestry catchment. To this purpose, 30 composite sediment sources were 

collected over the four main land covers existing in the study area: cropland, Mediterranean forest, pine 

afforestation forest, scrubland, and two main geomorphic elements: subsoil and channel bank. To analyse the 

variability of source contributions from the headwaters to the outlet of the catchment during one year 

sampling period, three sampling points with three replicates were established for collecting suspended 

sediments mixtures. The fatty acids (FAs) concentrations were significantly higher at the catchment outlet 

than at the headwaters. Most of the mixture samples were below the sources range for the majority of FAs. 

The δ13C-FAs were successful in discriminating between Mediterranean forest, scrubland, pine afforestation 

and both geomorphic elements. Overall, the unmixing model results identify agricultural land cover as the 

largest contributing source for most seasonal campaigns. The inclusion of prior information increases the 

agricultural contributions in detriment to the other sources except for subsoil. The results of this study likely 

suggest that additional tracers are needed to correctly assess channel bank and subsoil contributions. The 

high agricultural apportionments point out to the impact of human activities and the agriculture cycle in 

these mountain agroecosystems. 

1. Introduction

The significant increase in fine sediment transport to 

water bodies has been confirmed as one of the most prevalent 

contaminants in aquatic biomes, compromising human water 

supplies and being a major cause of reservoir siltation (Navas 

et al., 2004). Soil is a valuable natural resource that performs 

crucial ecosystem functions and is vital to meet the food need 

for the growing world population (Costanza et al., 1997). At 

present, soil formation is an estimated 10–40 times less than 

soil erosion rates what represents a main threat because the 

loss of fertile topsoil leads to the subsequent reduction in 

agricultural productivity. In turn, soil losses are directly 

related with increases in sediment export rates (Borrelli et al., 

2017).  

In order to mitigate the impacts of soil loss and the 

associated sediment exports to water bodies, reliable 

quantitative information on fine-grained sediment sources is 

required. Nevertheless, determining the sediment provenance 

in catchments is often challenging and requires expensive 

monitoring stations challenging to install in remote areas. In 
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this regard, Klages and Hsieh. (1975) and Clarke (2014) 

pursued preliminary studies tracking the source of sediments 

developing the technique known as fingerprinting. The initial 

fingerprinting investigations were essentially qualitative in 

their result, but the introduction of quantitative mixing 

models enabled researchers to obtain quantitative results of 

the relative contribution from different sediment sources 

(Collins et al., 1997; Walling, 2005). Since these early works, 

sediment source fingerprinting applications have been greatly 

expanding with the development of new techniques (Owens 

et al., 2016). To date, there are several studies on identifying 

source apportions by fingerprinting techniques (Gruszowski 

et al., 2003; Clarke, 2014; Palazón et al., 2015a). The 

increasing complexity of the studies promoted including 

additional tracers to fulfil the basics of the technique. A wide 

range of sediment-properties has been implemented as 

fingerprinting tracers such as radionuclides (Evrard et al., 

2013; Palazón et al., 2015a), geochemical properties (Smith 

et al., 2013; Mabit et al., 2014; Wynants et al., 2020) and 

magnetic properties (Martínez-Carreras et al., 2010). While 

these tracers can provide accurate estimates of source 

apportionment as was proved by Gaspar et al. (2019a), they 

are restricted in their capability to discriminate between 

different land uses especially those with vegetation cover in 

some specific ecosystems. This is particularly evident in 

areas where the lithology is homogenous, and most of the 

variability of the sources is introduced by the type of 

vegetation (Gellis and Walling, 2013; Hancock and Revill, 

2013).  

Recent research has proposed plant-specific organic 

molecules that exist in sediment as a new effective isotopic 

fingerprinting approach for land-use-specific sediment source 

identification (Gibbs, 2008; Gibbs, 2013). To this purpose, 

the use of compound-specific stable isotope (CSSI) of very 

long-chain fatty acids (VLCFAs) has emerged as a suitable 

alternative to the previously analysed tracers (Reiffarth et al., 

2016, 2019). Recent research use the CSSI signatures of soil 

organic biomarkers such as natural fatty acids ( Blake et al., 

2012; Alewell et al., 2016; Upadhayay et al., 2017; Bravo-

Linares et al., 2018; Mabit et al., 2018; Lavrieux et al., 2019) 

to obtain the sediment export apportionments from various 

land uses.  

The land use is usually defined by the plants growing in 

the land. These plants tend to modify soil properties and 

exude different biomarkers (Reiffarth et al., 2016). Most 

plant species produce a similar range of organic compounds 

but with different isotopic signatures δ
13

C (Tolosa et al., 

2013). Thus, for fingerprinting studies, the CSSI technique 

relies on the determination of the δ
13

C signatures of particular 

soil organic compounds (i.e. FAs) (Mabit et al., 2018). An 

additional quality of the technique is the ratio conservatism. 

The isotopic signature is fully conservative from sources to 

the mixture in contrast to concentration. The CSSI technique 

exploits differences in the stable isotope signature of 

individual biotracers to recognise the areas prone to erosion 

and those that export high quantities of sediment to water 

supplies (Blake et al., 2012; Cooper et al., 2015; Alewell et 

al., 2016; Upadhayay et al., 2018; Reiffarth et al., 2019).  

The likely limited capabilities of traditionally 

implemented tracers to effectively discriminate between 

different land covers growing on similar substrates was 

detected in a Mediterranean agroecosystem by Lizaga et al. 

(2019a). Thus, the low geochemical discrimination by the 

same shared lithology for pine afforestation and 

Mediterranean forest forced merging both sources. In this 

context, the present paper aims to validate for the first time 

the utility of CSSI as an improvement in the discrimination of 

land covers developed on similar lithology in an agroforestry 

mountain catchment subjected to highly dynamic changes in 

land cover and land uses.  

We aim to assess the usefulness of state of the art 

techniques implemented for the use of CSSI in fingerprinting 

studies in Mediterranean landscapes. Our research evaluates 

the sediment provenance during one hydrological year (June 

2016 to June 2017) from the headwaters to the catchment 

outlet in a representative agroforestry catchment.  To this 

purpose, a total of 66 samples, including 30 sediment sources 

and 36 suspended sediment mixtures were collected to 

characterize the system, and the following four steps are 

carried out: i) the selection of suitable tracers by applying the 

within a polygon approach or mixing polygon (Phillips and 

Gregg, 2003); ii) evaluate the capability of δ
13

C Fatty Acids 

as fingerprinting tracers; iii) apply the MixSIAR model 

implementing the concentration dependence; iv) evaluate the 

use of informative priors in the unmixing model result. Our 

results will contribute to gain knowledge on the main factors 

leading to sediment export in complex and highly dynamic 

landscapes. 

2. METHODOLOGY

2.1 Study Area 

The study catchment with a total area of 23 km
2
 is drained 

by an ephemeral stream tributary of the Arba River located in 

the Pre-Pyrenean range (Fig. 1). The Barués catchment 

structure is dominated by the low angle dip sandstones of the 

Uncastillo Miocene formation bedding and the presence of a 

Quaternary glacis located at the Middle Eastern part. The 

climate is characterised by cold winters and hot and dry 

summers. The rainfall periods are mainly concentrated in the 

spring and autumn-winter seasons while the droughts take 

place in summer. The area is subjected to intense and 

localised storms during the second half of the summer period. 

The mean annual rainfall is nearly 500 mm and the 

maximum, and minimum yearly temperatures are between 

30°C and -6°C, respectively. 

At the start of the twentieth century, most of the 

catchment was cultivated, remaining as croplands nearly 60% 

of the area during the 1960s. However, as much as 75% of 

the agricultural land was abandoned during the following 

decade. Currently, ~16% of the catchment is still cultivated 

while the rangeland occupies the remaining 83.5 % (Lizaga et 

al., 2018a). The main land covers are cropland (AG), 

Mediterranean forest (MF), pine afforestation forest (PI) and 

scrubland (SC). Besides, most croplands are located on a 

Quaternary glacis and fluvial terraces with gentle slopes 

covering the valley floors. Rangeland occupies the upper part 
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of the catchment and the highest altitudes. Interspersed 

patches of highly disturbed areas such as bare soil (subsoil; 

SS) are dispersed across the catchment. The valley floor is 

infilled by eroded sediment from the surrounding slopes 

which is deeply incised, especially in the middle part of the 

catchment where its thickness reaches its maximum up to 4 

m. The stream channel banks (CB) are mainly composed by

loess type sediment characterised by steep talus without

vegetation cover.

The study catchment is organised in three subcatchments 

(SBCs: 1, 2 and catchment outlet) with different percentages 

of land use/land cover (LU/LC). Thus, the agricultural land 

use predominates in the lower part of the catchment while 

Mediterranean forest and scrubland spread over the 

catchment occupying the East and West parts, being the pine 

afforestation forest the predominant land use at the 

headwaters. The abandonment of croplands during the recent 

decades was substantially greater at the headwaters due to the 

existence of shallow soils and more steep slopes that hinder 

the use of machinery (Navas et al., 2017).  

Fig.1. Location of the study catchment in the central part of the Ebro Basin (NE Spain). 3D map of the land covers: (a) cropland (AG) and 

Mediterranean forest (MF); (b) pine afforestation; (c) scrubland (SC) developed over abandoned cropland fields; (d) subsoil area (SS); (e) 

channel banks (CB), deeply incised stream and landslides (topples), and (f) view of topples in a channel bank (CB) section.

2.2. Soil sampling, analysis and clearcutting monitoring 

The potential sediment sources and sediment sampling 

locations established in this study were selected following the 

information of reconnaissance surveys, connectivity maps 

(Lizaga et al., 2018a), soil properties (Lizaga et al., 2019b) 

and spatial soil redistribution rates (Lizaga et al., 2018b). The 

precipitation was recorded per minute at the study site with 

an Em50 decagon data logger connected to a tipping bucket 

rain gauge in order to correlate the rainfall information with 

the variability of sediment properties. Furthermore, to 

monitor the strip clearcutting in the catchment, satellite 

imagery data was analysed with digital image processing 

methods. A multitemporal Sentinel 2 satellite dataset formed 

the basis for monitoring the areas affected by clearcutting 

during the study seasons. Satellite images where selected 

based on the status of the strip clearcutting to track the 

beginning of the clearcutting and the dates when the forest 

recovered in terms of density cover. The selected dates when 

images were available without cloud cover were 2016-01-05, 

2016-05-24, 2016-06-23 and 2016-10-21. 
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A total of 30 sampling points (5 for each source) were 

selected as the most representative for each sediment source. 

The samples were collected with a 2 cm cylindrical sampler 

with a total surface area of 127 cm
2
. Four replicates were 

collected at each sampling point and later combined in the 

field to create a representative composite sample following 

Owens et al. (2016). Source samples were collected from 

agricultural land (AG), Mediterranean forest (MF), pine 

afforestation (PI), scrubland (SC), eroded subsoil (SS) and 

channel bank (CB). Thus, five subsoil samples were collected 

over the catchment, and another five samples were collected 

along the main streams on the channel banks.  

Suspended sediment mixtures (SSC) were collected 

following the methodology proposed by Phillips et al. (2000) 

in the middle part of the channel bed along the principal 

streams from the headwaters to the outlet of the catchment in 

three sampling locations with three parallel replicates in each 

point. Suspended sediments samples at SBC1, SBC2 and the 

catchment outlet were collected during one hydrological year 

period, from June 2016 to June 2017 each three months to 

analyse the seasonal variability. The objective of the 

sampling schedule was to provide a close replication of 

sediments transported during each season for evaluating both 

seasonality and the effect of different crop practices such as 

sowing, fertilising and harvesting in the CSSI signal. Samples 

were air-dried, weighted, ground, homogenised and sieved to 

≤63µm following the most widespread methodology (Palazón 

et al., 2015b; Owens et al., 2016; Collins et al., 2017). 

Besides, the selection of the ≤63µm particle size for sources 

and mixtures was related to the predominant silt texture of 

soils in the catchment (Lizaga et al., 2019a).  

Lipids were extracted from the soil (source) and sediment 

(sink mixture) samples using accelerated solvent extraction 

(Dionex ASE 350, Thermo Scientific, Bremen Germany) 

with dichloromethane (DCM): MeOH (9:1 v/v) at 100ºC and 

13 MPa for three cycles of 5 min (30 mL cells, 60% flush 

volume). For this c.a. 3 g of dried  (x °C, y h) and 0.063 mm 

sieved sample was weighed in 22 mL stainless steel cells to 

which a recovery standard was added (12.5 ng C17:0FA, 

dissolved in 50 µL ethyl acetate). The lipid extract was dried 

using rotary evaporation (CentriVap, Labconco, Kansas City, 

USA) at 60ºC and 20 mbar. Lipid fraction was re-dissolved in 

DCM/Isopropanol (2:1 v/v) before being separated in neutral 

and acid fraction using aminopropyl solid-phase extraction 

columns (Bond Elute, 500mg, 6mL, Agilent Technologies) 

according to Blake et al. (2012). Neutral fraction was 

removed with DCM/Isopropanol after which the acid fraction 

was eluted using 2 % acetic acid in diethyl ether (Russell and 

Werne, 2007). After taking the acid fraction to dryness by 

rotary evaporation, the Fatty acids were methylated using 

Methanolic BF3 (14%, 20min at 60°C).   

The obtained fatty acid methyl esters (FAME) were 

quantified, after addition of an internal standard (C19:0 

FAME), using capillary gas chromatography (GC Trace 

Ultra, Thermo scientific) with flame ionisation detection 

(FID) equipped with a 5% Phenyl Polysilphenylene-siloxane 

column (BPX5, 30 m x 0.25 mm x 0.25 µm, Trajan). After 

adapting the solvent volume for optimal concentration for 

compound-specific stable isotope (CSSI) analysis, the 
13

C 

abundance of the individual FAME was determined using 

GC-isotope ratio mass spectroscopy (GC-IRMS). The GC-

IRMS system used consisted out of a Trace 1310 GC 

equipped with the same GC column as for GC-FID connected 

to an ISOLINK II through a CongFlo IV to a Delta-V 

advantage IRMS detector (All Thermo scientific). 

Normalisation of the 
13

C signal on the Vienna Pee Dee 

belemnite (VPDB) scale was performed by injecting a 

mixture of C14:0, C16:0, C18:0 C20:0 and C30 FAME, and 

C14:0, C16:0, C18:0 C20:0 Fatty acid ethyl ester provided by 

Arndt Schimmelmann (Indiana University), calibrated using 

NBS 19, and L-SVEC defined as exactly +1.95 and -46.6 ‰, 

on the VPDB scale, respectively, every five samples. 

Additionally, mixtures of Fatty acids (C16, C17, C19 and 

C20) were methylated together with the samples to correct 

for the contribution of the methyl group of the FAME in 

order to obtain the δ
13

C of the FA.  

2.3. Data processing and MixSIAR formulation 

The estimation of the relative contribution of each 

potential sediment source to the sediment mixtures was done 

with the MixSIAR unmixing model and package following 

the recommendation of previous research using compound-

specific stable isotopes (CSSI) of very-long-chain fatty acids 

(VLCFAs: C22-C32). To test the discrimination capacity of 

the selected tracers, an LDA (Linear Discriminant Analysis) 

was performed. A crucial requirement in fingerprint 

assessment is the implementation of previous statistical tests 

to identify individual fingerprint properties, which 

discriminate between potential sources to select the optimum 

set of fingerprint properties (Yu and Oldfield, 1989; Walling 

and Woodward, 1995; Collins et al., 1996; Palazón and 

Navas, 2017). MixSIAR is Bayesian tracer mixing model 

framework implemented as an open-source R package that 

helps to create and run Bayesian mixing models with JAGS, 

a program for analysis of Bayesian graphical models using 

Gibbs sampling (Plummer. 2003). 

Before running the unmixing model with MixSIAR, the 

conservativeness of the tracers was tested using the mixing 

polygon approach as the most widespread techniques when 

unmixing CSSI (Upadhayay et al., 2017). The method states 

that the mixture samples must be within a polygon bounding 

the signatures of the sources as a requirement of 

conservativeness. The apportionment of land use sources 

contributing to sediment was estimated using the δ
13

C values 

of the selected fatty acids. The concentration of the selected 

FA was included as concentration dependence in MixSIAR, 

using a residual error term. However, two different results 

were delivered by using an uninformative prior and including 

the prior information obtained from previous fingerprinting 

studies in the catchment extracted from Gaspar et al. (2019b), 

Lizaga et al. (2019a) and Lizaga et al. (under review) 

together with a geomorphological assessment pursued during 

fieldworks. The Markov Chain Monte Carlo (MCMC) 

parameters in MixSIAR were set as follows: number of 

chains = 3, chain length = 3,000,000 (extreme), burn = 

1,500,000, thin =500. The convergence of mixing models 
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was evaluated using the Gelman-Rubin diagnostic, rejecting 

the model output if any variable was above 1.0, in which case 

the chain length was increased. Furthermore, a diagnostic 

matrix plot of posterior source contribution was used to 

evaluate the quality of source discrimination. Density plots 

are reported along with the mean, median and standard 

deviation proportional contributions. 

Moreover, due to the previous knowledge of high sediment 

contribution from the CB and SS sources a second model was  

created by introducing an informative prior extracted from a 

previous fingerprinting study pursued in the catchment 

 during two hydrological years by using radionuclides and 

stable elements as tracers by Lizaga et al. (under review). In 

this study, the overall modelled mean contributions were 

24%, 44%, 8% and 24% for AG, CB, RG (MF, PI, SC) and 

SS, respectively. 

3. Results

3.1. Sediment source discrimination 

The analytical results and the LDA plot evidenced the 

discrimination capacity of the δ
13

C-FAs (Table 1, Fig. 2).  

Fig.2. Linear discrimination analysis (LDA) plot of the sediment sources in the Barués catchment a) six sources; b) five sources and c) cluster 
analysis of the sediment sources. 

The LDA plots discriminated the four land covers what 

was especially evident between AG and PI though with a 

small overlap between MF and SC. Overall, the four different 

land covers and both geomorphic elements were efficiently 

discriminated by δ
13

C-FAs of the VLCFA. Considering the 

 results from the LDA and cluster analyses the two natural 

vegetation covers (MF and SC) were merged into one source 

termed as rangeland (RG). After merging, the LDA plot 

showed significant discrimination between the five potential 

sediment sources. 

Table 1. Mean and standard deviation of the δ13C-FAs for the sediment sources. 

C22 C24 C26 C28 C30 C32 

sources mean sd mean sd mean sd mean sd mean sd mean sd 

AG -34.26 0.49 -34.66 0.46 -35.71 0.38 -36.05 0.38 -35.50 0.47 -35.79 0.43 

CB -33.13 0.51 -33.27 0.50 -33.73 0.69 -34.04 0.31 -34.37 0.32 -33.79 0.83 

OF -32.79 0.27 -33.58 0.25 -33.93 0.42 -34.95 0.19 -35.08 0.17 -36.08 0.20 

PI -32.40 0.66 -34.26 0.53 -35.74 0.29 -35.71 0.28 -35.73 0.32 -36.05 0.41 

SC -33.47 0.18 -33.96 0.09 -34.28 0.11 -35.05 0.10 -35.45 0.25 -36.44 0.33 

SS -33.45 0.58 -33.26 0.81 -33.28 0.32 -34.72 0.61 -34.07 0.87 -32.23 2.49 

There were differences in the VLCFAs concentrations 

between the different sediment sources (Table 2, Fig. 3). The 

dominant FA in the source samples was C26, whereas C32 

had the lowest concentration. For all analysed FAs the 

highest concentrations were found in MF while the lowest  

were in SS. The concentrations in the suspended sediment 

mixtures ranged between a minimum of 0.49 µg g
-1 

soil for 

C32 and a maximum of 16.19 µg g
-1 

soil for C24.  

3.2. Spatio - Temporal variation of FAs in the suspended 

sediment mixtures  

The sample weights of the suspended sediment mixtures 

varied with the accumulated rainfall (Fig. 3). A decreasing 

trend in the mixture sample weights was recorded from 

summer to spring seasons in SBC1 and in the catchment 

outlet. 
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Table 2. Mean and standard deviation of the FAs concentration sediment sources and sediment mixture samples. 

C22 C24 C26 C28 C30 C32 

sources mean sd mean sd mean sd mean sd mean sd mean sd 

AG 3.28 0.78 3.64 0.78 4.45 1.58 4.11 1.61 2.79 0.78 1.43 0.25 

CB 1.93 0.61 3.13 1.52 2.87 1.36 2.87 1.14 2.66 0.75 1.47 0.36 

OF 7.38 3.12 9.96 4.61 14.88 7.63 12.67 7.32 12.95 7.22 5.52 3.15 

PI 10.50 6.32 12.78 7.36 19.02 14.97 11.92 7.82 11.24 7.93 5.33 3.58 

SC 8.38 2.92 11.25 4.66 17.43 8.36 10.79 6.10 10.22 5.31 4.54 2.70 

SS 0.84 0.34 0.74 0.34 0.60 0.25 0.84 0.35 0.85 0.38 0.49 0.21 

Mixture 3.40 1.85 4.32 2.87 3.88 2.46 4.40 2.28 4.32 2.80 1.67 1.83 

The sample weights in SBC 2 remained constant during 

summer, autumn and winter.  However, a slight increase in 

the sample weight was recorded during spring for all three 

subcatchments. The accumulated rainfall presented an inverse 

trend with the sample weights in SBC 1 and in the catchment 

outlet (Fig. 4).  

The mean contents of all FAs were higher in the 

catchment outlet than in the headwaters subcatchments being 

significantly higher (p<0.05) for C22, C24 and C30 (Fig. 5). 

The concentrations of the SSC in the three subcatchments 

had different trends though similarities were closer between 

SBC 1 and the catchment outlet. The mean values for the 

three subcatchments displayed similar temporal variation in 

all FAs (from C22 to C30) except for C32. Overall, the 

lowest concentrations were recorded in autumn in the three 

subcatchments. 

Fig.3. Line graph of the sediment mixture weights in the 
subcatchments and the accumulated rainfall for the four seasonal 
sampling campaigns. 

Despite significantly higher concentrations in the 

catchment outlet, this pattern was not observed in the δ
13

C-

FAs values that were similar in SBC1 and in the catchment 

outlet but differed slightly in SBC 2 (Fig. 6). 

The timeline of δ
13

C-FAs showed two different trends for 

C22 to C28 and for C30 to C32 (Fig.4). Contrary to the FA 

concentrations, the mean δ
13

C-FA values were similar in 

SBC 1 and in the catchment outlet (Fig. 5) that in turn had 

similar trends during the study hydrological year. However, 

this pattern was not observed in SBC 2. In all subcatchments, 

the minimum δ
13

C-FA values from C22 to C30 were in 

autumn with maxima in winter.  

Most δ
13

C-FA values in the suspended sediment mixtures 

were out of the mean values of the sources for C22, C24, C30 

and C32 (Fig. 6). Only C26 and C28 were inside the mean 

sources range in most mixture samples. In most seasons, 

δ
13

C-FAs values of VLCFAs were little conservative for C22, 

C24, C30 and C32.  

3.3. Source discrimination and sediment source contributions 

A significant discrimination between the four different 

land covers was found by using the δ
13

C isotopic signatures 

of the VLCFAs. The MixSIAR average means relative 

contributions of each potential source to the sediment 

mixtures indicated that overall, AG was the predominant 

source for the whole year (Table 3). Despite the general high 

contribution from AG along the year, in SBC 1 a 

significantly higher contribution of PI than in both SBC 2 and 

catchment outlet was found during summer and autumn 

seasons but during the spring season in SBC 2. 

 After the inclusion of the prior information, the results 

varied, increasing the AG apportions and reducing 

contributions from the other sources except for CB that 

remained almost equal (Table 3).  

4. Discussion

4.1 δ
13

C-FAs signature for land use discrimination 

The concentrations and δ
13

C-FAs values under each land 

cover type and for the two geomorphic elements in this study 

show the extent of source discrimination that might be 

expected from the literature. The slight differences between 

MF and SC are linked with their origins. Most scrubs and 

forests were previous croplands few decades before, and the 

geochemical signal of the agricultural lands likely remains in 

soil increasing the complexity to discriminate between land 

covers. For this reason, scrubland that is the early phase of 

the successional stages of natural revegetation, in the 

transition to Mediterranean forest present similar isotopic 

values and FAs concentrations as in MF. The effect of 

centuries of rainfed agriculture and the later abandonment of 

agricultural land in the last 60 years and its subsequent 

natural revegetation, as well as afforestation practices likely 

introduce a significant limitation to source discrimination.
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Fig.4. a) Boxplots of FAs concentrations in SBC1, SBC2 and in the catchment outlet. b) Timeline of the FAs concentration in the four seasons 
and mean values of the sediment sources (dash lines). 

However, δ
13

C-FAs has the ability to discriminate 

between the different land covers such as AG, PI and RG, 

which suggests in agreement with Lizaga et al. (2019b) that 

60 years after land abandonment, the soils under natural 

revegetation and afforestation covers have recovered 

previous soil quality and differ from agriculture land. This 

implies that δ
13

C-FAs signatures extracted from the soil 

surface were not extremely influenced by the past crops that 

occupied most of the area during the previous century. 

4.2 FAs data for catchment assessment 

The differences in the provenance of sediment are mainly 

produced by rainfall, agricultural practices and vegetation 

cover. Thus, due to the soil protection capacity of rangelands, 

the main drivers of sediment export are the quantity and 

intensity of rainfall but especially the agricultural practices 

what agrees with highest soil erosion rates found in the study 

catchment by Lizaga et al. (2018b) as well as in other nearby 

catchments of the south Pyrenean region (Gaspar et al., 2013; 

Navas et al., 2013).  
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Fig.5. a) Boxplots of δ13C-FAs in SBC1, SBC2 and in the catchment outlet. b) Timeline of the δ13C-FAs in the four seasons and mean values 
of the sediment sources (dash lines). 

The negative correlation between the mixture samples 

weights and the accumulated rainfall pinpoint the agricultural 

cycle and the farming practices as the main drivers of the 

variability of sediment export in the catchment. The heaviest 

mixture samples were collected after summer with only 88 

mm of accumulated precipitation, of which 54 mm were 

recorded during a 3 days storm event by mid-September. 

Thus, localised storms after several months without 

precipitation along with high temperatures cause severe 

erosion of both dry soils and bare fields before crops planting 

in autumn. These interacting factors likely increase the 

sediment supply to streams and subsequently, the weights of 

the suspended sediment mixtures.  

After summer the three next seasons had higher 

precipitation rates, but the sediment collected was lower what 

suggests an additional factor to rainfall. The reduction of 

suspended sediment weights is likely affected by two main 

factors; first the gradual growth of crops and the soil 

protection by the growth of natural vegetation favoured by 

more water available in soil after summer.  

The headwaters subcatchments SBC1 and SBC2 showed 

the highest percentage areas of land uses with the highest 

FAs concentrations such as PI, SC and MF. Interestingly, the 
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sediment mixtures in SBC1 and SBC2 have similar low 

concentrations while the catchment outlet has the highest FAs 

concentrations. Thus, a difference between the three 

sampling points in terms of concentration can only be 

attributable to the stream discharge, and to relatively higher 

AG sediment apportions in the catchment outlet. However, 

the variation in the FAs concentrations through the four 

seasons shows a similar trend for SBC 1 and the catchment 

outlet indicating the influence of similar factors in both. 

Besides, SBC 2 shows a different temporal trend and also 

different sample weights than in both SBC 1 and the 

catchment outlet likely due to greater surfaces occupied by 

natural vegetation covers. Besides, most cultivated fields in 

SBC2 are located at the headwaters instead of surrounding 

main streams as in SBC1 and the catchment outlet, what 

would probably limit connectivity thus restraining the supply 

of sediments reaching the streams.   

Despite similar concentrations between the different FAs, 

C32 shows the lowest concentration and a different temporal 

trend than the other FAs. Besides, C32 contents negatively 

correlate with the accumulated rainfall but positively with the 

sediment weight. This pattern is specially marked in the 

catchment outlet what likely suggests the sensitivity of C32 

to external factors in terms of concentration. This pattern is 

not visible in δ
13

C isotopic values indicating the conservatism 

of the isotopic signatures. However, the low conservatism 

between δ
13

C-C32 mixture and sources values suggest the 

low conservatism of this FA in this type of Mediterranean 

environment. 

The high fluctuations found in isotope values during and 

between seasons are in agreement with previous results by 

Reiffarth et al. (2019) who attribute such fluctuations to 

continuously variable environmental conditions. In addition, 

the high variability of the different land covers in our 

mountain agroecosystems could also have an influence on the 

isotope fluctuations recorded. 

4.3 Source sediment contributions 

The potential of CSSI to effectively discriminate land 

covers document a successful discrimination between 

different vegetation covers for unmixing what was not 

possible to achieve by using only geochemical tracers 

(Lizaga et al., 2019a; Gaspar et al., 2019b). The sources with 

mature and undisturbed vegetation covers show a small 

contribution to total sediment apportions what agrees with 

previous findings in other environments (Gibbs et al. 2008; 

Bravo-Linares et al., 2019).  

The good discrimination of vegetation covers from CSSI 

allows to identify pine afforestation as the main contributing 

source among the natural vegetation covers (SC, MF and PI). 

The high contribution of PI in SBC1 during summer is likely 

associated with the strip clearcutting also favoured by the 

intense and localised rainfall on dry soil conditions.  

The increased contribution from PI in the SBC 1 that 

varies from <10% in spring to >30% in summer during 

clearcutting is in agreement with findings reported by Gibbs 

(2008) in New Zealand where the high sediment contribution 

came from clear cut areas of recently harvested pine forest. 

The pine sediment contribution increase due to clearcutting 

was also reported by Schuller et al. (2013) by unmixing 

suspended sediments using radionuclides as tracers in 

Chilean catchments. Moreover, further studies pursued in the 

same catchments using CSSI as tracers highlighted the low 

sediment contribution from Chilean forests before clear-cut 

operations (Bravo-Linares et al., 2019). With this information 

in mind and the low 
137

Cs derived soil redistribution rates of 

the PI cover calculated by Lizaga et al. (2018b) it is likely 

that high PI contributions are promoted by external factors 

such as strip clearcutting what can be appreciated in the 

satellite images of Figure 6. 

Fig.6. Sentinel 2 satellite images comparison from different months 
evidencing the clearcut area: a) Location of the pine afforestation 
submitted to strip clearcutting in the SBC1; b) pine afforestation 
harvest start; c) end of the clearcutting, and d) prompt recovery of 
the pine afforestation by October 2016. 

The residual contribution of RGs is determined by the 

protecting capacity of the vegetation cover. Only extreme 

storm events have the capability to mobilise surface soil 

sediment from these well-protected lands to the streams. 

However, during extreme storm events as studied by Gaspar 

et al. (2019b) and Lizaga et al. (2019a) the rises of AG, CB 

and SS contributions mask the sediment exported from RGs. 

Thus, the low contributions of RGs, together with the only 

occasional PI apportionments, also suggest an anthropic 

factor for PI contribution rises. In contrast to Alewell et al. 

(2016), our results indicate that sediment contribution from 

forest does not vary substantially between base flow and high 

flow regime, what highlights the protection capacity of the 

vegetation in Mediterranean mountain agroecosystems. 

Despite clearly identifying the signals of vegetation 

cover, it appears that the other sources from geomorphic 

elements such as channel banks and subsoil are probably 

underestimated. At this point, further research is required to 

determine the cause of the insignificant apportionments from 

the CB source and the mostly absence of SS in the overall 

contribution.  

Furthermore, the “prior” implementation mainly affects 

contributions from land covers with permanent vegetation, 

reducing its apportionment in favour of AG while not 

significantly modifying the other source apportionments. 

Besides, the informative priors effectively remove the PI 
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contribution of autumn and spring seasons when no clear-

cutting works occurred and the afforestation forest has 

recovered most of the lost density cover (Fig. 6). However, 

while the prior implementation significantly increases the 

summer SS contribution and the winter CB contribution in 

SBC1, these patterns are not observed in the other 

subcatchments and seasons. Thus, overall CB and SS 

sediment sources appear as residual sources of sediments in 

this study by using only CSSI as tracers. Furthermore, it 

cannot be totally discarded an anchoring problem of the 

model as reported by Davis et al. (2015) when using the 

SIAR model. 

Table 3. Sediment source contributions (mean, sd) to the sediment mixtures modelled with MixSIAR by implementing: a) uninformative 
priors and b) informative priors. Agricultural (AG), channel bank (CB), rangeland (RG), pine forest (PI) and subsoil (SS). 

a) AG CB RG PI SS 

Mixture id mean sd mean sd mean sd mean sd mean sd 

1 74.3 10.2 3.5 3.1 4.8 3.9 9.6 8.3 7.9 7.3 

2 88.9 6.2 2.7 2.7 1.0 1.1 2.4 2.6 5.0 5.1 

3 33.4 26.3 7.5 6.5 4.0 3.3 38.1 23.8 17 14.9 

4 82.2 13.6 2.8 2.6 1.3 1.4 7.5 9.5 6.1 8.2 

5 82.2 10.3 4.2 4.1 1.5 1.5 3.7 6.6 8.5 8.0 

6 48.9 27.7 4.8 4.2 2.9 2.5 25.4 24.4 18 16.6 

7 75.3 18.8 4.2 4.2 4.6 3.7 3.2 3.0 12.8 19.5 

8 86.6 8.6 3.4 3.2 1.7 1.8 2.7 2.7 5.5 7.5 

9 36.4 15.7 16.3 12.8 19.5 12.9 6.8 7.4 21.1 17.5 

10 84.5 9.1 4.0 3.7 2.4 2.3 2.7 2.7 6.4 8.3 

11 35.2 20.7 11.7 9.4 4.9 4.2 28.5 17.9 19.7 14.5 

12 69.2 18.7 5.1 4.7 4.4 3.4 2.9 3.4 18.4 19.6 

Mean 66.4 15.5 5.9 5.1 4.4 3.5 11.1 9.4 12.2 12.3 

b) AG CB RG PI SS 

Mixture id mean sd mean sd mean sd mean sd mean sd 

1 90.9 9.0 2.7 3.3 0.9 2.4 2.1 5.9 3.4 6.2 

2 96.9 3.9 1.3 2 0 0.2 0.1 0.4 1.6 3.4 

3 61.9 36 8.5 8.7 0.5 1.6 20 32.8 9.2 15.4 

4 96.7 3.9 1.4 2 0 0.2 0.3 1.6 1.6 3.1 

5 93.3 7.7 2.6 3.6 0.1 0.4 0.2 2.6 3.7 6.7 

6 83.0 20.1 4.1 5 0.2 0.9 2.8 13.2 9.9 15.4 

7 88.6 18.1 3.2 4.4 0.6 1.9 0.2 1.0 7.3 18.2 

8 96.4 4.9 1.8 2.7 0.1 0.4 0.1 0.6 1.6 4.1 

9 42.1 17.0 29.8 19.4 5.7 12.5 0.4 2.2 22.0 27.0 

10 94.4 7.8 2.7 3.8 0.2 0.7 0.2 0.6 2.5 7.0 

11 63.3 24.3 14.1 11.9 0.5 1.7 6.9 17.6 15.3 18.7 

12 81.1 20.6 4.7 5.9 0.5 1.7 0.1 0.6 13.5 21.4 

Mean 82.4 14.4 6.4 6.1 0.8 2.1 2.8 6.6 7.6 12.2 

The apparent lack of correlation with previous results and 

with the geomorphological assessment of the study area can 

be attributed to the low FAs concentration in CB and SS that 

could limit their applicability to assess the apportionment of 

geomorphic elements that have not vegetation cover. 

Furthermore, the δ
13

C-FAs indicate high similarity between 

most suspended sediment mixture samples and the AG source 

what suggest the need for additional information. Thus, 

following the recommendation proposed by Reiffart et al. 

(2016) it would be needed to implement along with CSSI 

other additional tracing methods such as geochemistry or 

radionuclides for detecting CB and SS sources in order to 

complement the CSSI approach and further confirm the 

results from these novel tracers in geomorphological actives 

landscapes. 

5. Conclusions

Comparison of the CSSI-derived source sediment

apportions with previous unmixing results using 

radionuclides, magnetic properties and geochemical tracers 

revealed further detail about the soil mobilization dynamics 

from croplands and forest covers in this agroecosystem. By 

using CSSI of VLCFA for the first time in Mediterranean 

128



environments, we found that exported sediments are mainly 

originated from agricultural lands; thus, efforts should be 

focused to control soil erosion in croplands.  

Only C26 and C28 FAs showed conservative behaviour 

for most suspended sediment mixtures. The low 

conservativeness of some FAs such as C30 and C32 and its 

temporal trend coinciding with external factors likely suggest 

the low conservative behaviour of these VLFA in 

Mediterranean mountain agroecosystems.  

Our results suggest that CSSI should be applied in 

conjunction with radionuclides and geochemical 

fingerprinting approaches in highly dissected landscapes, 

with exposed substrates drained by energetic streams and 

gullies that are also affected by intense rainfalls and present 

high sediment export dynamics. Future work will concentrate 

on implementing a method to combine the excellent 

discrimination of CSSI with geochemical data for further 

assessing the contribution from channel banks and subsoils.  

This research has highlighted the effect of the agricultural 

and afforestation practices, agricultural cycle and vegetation 

cover in the delivery of sediment to water bodies. 

Conservation practices, especially in periods of absence 

of vegetation cover, should be encouraged to prevent the loss 

of fertile topsoil. These findings report the effect of human 

activities in mountain agroecosystems, shed new light about 

the impacts of clearcutting practices in Mediterranean 

mountain agroecosystems and underline the benefits of 

natural covers to prevent soil loss.  
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11. Conclusions
11.1  Soil properties, sediment connectivity, plant cover changes and soil redistribution rates 

After decades of land abandonment that have greatly transformed the distribution of land uses in the 

Barués catchment a main impact is recorded in some main soil physico-chemical properties that have 

changed over the years resulting in significant differences among the land uses especially between those 

that have maintained previous agricultural uses and the afforested lands. Besides, naturally revegetated 

and afforested areas have been shown to be very efficient in reducing connectivity and soil redistribution 

rates, thus likely limiting soil erosion in present times.  

On the other hand, contemporary land use and land cover changes produced by human intervention 

mostly agriculture practices and clearcutting, have intensified the natural geomorphological processes 

such as landsliding and gullying what increased sediment export. The tillage practices and the fact that 

soil is left bare during part of the year have contributed to increase soil mobilization resulting in important 

soil loss. Overall higher soil redistribution rates recorded in cultivated fields were directly linked to tillage 

and other agricultural practices. Higher erosion rates are associated with the loss of nutrients that result in 

less fertile agricultural soils. On the contrary lower erosion rates are related to the natural revegetation 

with an increase in the vegetation cover and its maturity what is most documented in the Mediterranean 

open forest.  

The implementation of the SdRI roughness index and Total Aerial Biomass estimate improved both 

the topography and vegetation cover features, increasing the quality and adjustment of the connectivity 

index. The novel connectivity index proposed is probably a good approximation to the reality in this area, 

emphasising that anthropogenic activities are nowadays the greatest landscape modifiers. Moreover, this 

index represents a good estimate to the temporal connectivity variation in Mediterranean agricultural 

catchments and has the potential to be used for ecological purposes, soil management as well as for field 

geomorphological surveys, mapping and sampling. 

The potential of 
137

Cs measurements to quantify and spatialise the soil redistribution rates in the 

context of land use changes that occurred in last decades confirms that some of the main factors triggering 

erosion are related to tillage and farming practices. This method enabled to identify and discriminate the 

main erosion and deposition areas in the catchment. The tillage practices and the fact that soil is left bare 

during part of the year under the predominant agricultural use in the catchment lowlands led to the highest 

soil redistribution rates. The lowest soil erosion rates were found under land uses with more abundant 

plant cover on higher altitudes and slopes. Therefore, in this environment, land use was found to be the 

main controlling factor of soil redistribution rates. 

Although the 
137

Cs method has generated precise spatial distribution data, the extrapolation at the 

catchment scale is complex but allows gaining a better understanding of the spatial extent, the severity of 

soil loss over the catchment and the benefits of the natural revegetated areas in terms of soil conservation. 

The knowledge acquired on the relationships between the land use change and the spatial variability of 

soil redistribution, may help to implement erosion control practices to mitigate soil degradation and 

reservoir siltation. 

Multitemporal satellite imagery has been a fundamental tool for the quantification of spatial and 

temporal vegetation changes and the effects of human intervention, which could not be accomplished 

through conventional mapping. The results extracted from remote sensing analysis and estimates of soil 

nutrient stocks indicate that in the short term, afforestation produces a faster increase in SOC than natural 

covers, although a similar increase is not observed in TN. After more than 50 years since land 

abandonment, the soil quality was similar under naturally revegetated and afforested cover. Furthermore, 

the abandoned land became naturally revegetated with native species 15 years after land abandonment. 

The use of mixtures of native and fast-growing species such as pine promotes increases in SOC and TN 
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and good soil recovery. It could, therefore, be a suitable alternative to cost-intensive afforestation with 

pine monoculture. 

The first three chapters of this thesis highlight the effects of recent land use changes on the hydraulic 

connectivity, soil redistribution rates and soil properties. This section underlines the importance of 

preserving natural forests to prevent erosion and the subsequent nutrient depletion produced by intensive 

agricultural practices. Here, it has been shown three different approaches to analyse the soil erosion 

problem and detect the most vulnerable areas in order to establish effective and localised remediation 

practices. Besides, the results of this research suggest that the effects of recent land use changes on soil 

properties should be considered for rational land use planning. Overall, the knowledge gained is useful for 

environmental managers to take decisions about best practices to implement after land abandonment and 

for future afforestation programmes. 

11.2  Sediment source fingerprinting and tracer selection methods 

The fingerprinting approach and the application of the FingerPro® unmixing model have been proved 

relevant to understand source-tracer relationships and are of value for identifying sediment sources, the 

processes leading to increased sediment load and for providing useful information for management 

strategies. 

During this research an open-source R package, FingerPro®, was developed. In this package, the need 

for using additional software’ or R packages to select the best combination of sediment tracers has been 

eliminated by including various tests and mechanisms for tracer selection. Furthermore, the inclusion of 

several informative plot functions has increased the efficiency on the time-consuming fingerprinting 

procedure for checking if the selected tracers are suitable for the unmixing process. 

Tracer selection methods are crucial in fingerprinting studies, as the use of one or another tracer could 

substantially modify the output of the models. It has been proved that including tracers with dissenting 

information produces inconsistent results in different unmixing models such as FingerPro and 

MixSIAR. Besides, some conservative tracers could provide unreliable information and may be 

erroneous. Unmixing models cannot estimate reliable contributions of sediment sources if the tracer 

selection procedure applied does not account for tracers with non-coherent information. Thus, in this 

thesis, we have devised an innovative methodology to identify non-conservative and dissenting tracers 

that enables to understand datasets and, likewise, the effect of each tracer. The currently used methods 

without CI and CR information may lead to selecting non-consensual and non-conservative tracers. Our 

study provides the framework for a new way to obtain individual tracer information to prevent the 

inclusion of erroneous information into fingerprinting studies.  

The application of the new FingerPro model provided the opportunity to trace efficiently the sediment 

sources before and after exceptional rainstorm events. The results indicate an important input from 

subsoil despite its small spatial coverage in the catchment what represents a significant environmental 

problem with hot spots that are worth controlling. In contrast, the insignificant sediment apportionment 

from forests underlines the benefits of plant covers to prevent soil loss. Streambank failure induced by 

natural tunnelling or piping and landslides significantly contributed to sediment delivery being the 

channel bank the most contributing source. The magnitude of agricultural and bare soil mobilisation 

during the course of this exceptional rainstorm was much greater than under regular discharge regimes. 
The significant differences between pre- and post-storm sediment mixtures highlight the great impact of 

extreme events on the characteristics of channel bed sediments. Overall, our results provide evidence of 

the severe erosion produced by this exceptional rainstorm and reveal important variations between pre 

and post storm event sediment source contributions.  

 By implementing the novel consensus method together with FingerPro model, it has been emphasised 

the great impact of agricultural activities and the agricultural cycle in the suspended sediment and 

pollutants exported to the streams. The positive correlation between the cropland area and the sediment 
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mixture weights confirm the influence of the agricultural practices as the primary driver of rising 

sediment exports rates. The enrichment above sources ranges detected in the suspended sediment 

mixtures of some elements such as As, Co, Li, Mn, Zn, 
238

U and P, and their higher increase during 

sowing and after harvest periods points to the important impact of agricultural activities on supplying 

sediment and pollutants to the streams. The results of the unmixing modelling highlight the increase in 

agricultural sediment provenance during sowing and after harvest periods. 

The comparison of the CSSI-derived source sediment apportions with previous unmixing results using 

radionuclides, magnetic properties and geochemical tracers revealed further detail about the soil 

mobilisation dynamics from croplands and forest covers. By using CSSI of VLCFA for the first time in 

Mediterranean environments, we found that exported sediments are mainly originated from agricultural 

lands and afforested areas under clearcutting practices; thus, efforts should be focused to control soil 

erosion in croplands and bare soil areas during clearcuts.  

Results, however, indicate that CSSI should be applied in conjunction with radionuclides and 

geochemical fingerprinting approaches in highly dissected landscapes affected by intense and localised 

rainfalls and high sediment export dynamics. Future work will concentrate on implementing a method to 

combine the excellent cropland and forestland discrimination by CSSI with geochemical data that 

effectively estimate the apportionment of channel banks and subsoils. It has been evidenced the important 

effect of agricultural practices in the delivery of sediment to water bodies and more importantly, in the 

associated pollutants exported. Besides, this study shed new light about the impacts of clearcutting 

practices and underlines the benefits of natural covers to prevent soil loss in Mediterranean environments.  

 Overall, the different methodologies implemented in this research have allowed to successfully 

estimate the consequences of recent land use changes and contemporary human activities on soil physico-

chemical properties, soil redistribution rates and sediment delivery provenance. The three main strategies 

implemented to quantify and model such effects pinpoint to agricultural land and agricultural practices as 

main drivers of soil loss in Mediterranean mountain agroecosystems. The findings from different 

methodologies and approaches implemented and elaborated during this research support similar 

conclusions about the effect of recent and contemporary land use changes what provides additional 

robustness to the results obtained. Our study suggests that environmental planners and stakeholders 

should support conservation practices, especially in periods of absence of vegetation cover to prevent the 

loss of fertile soil and pollutants export. 
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