
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Improving bug localization with word embedding and enhanced
convolutional neural networks

Yan Xiao⁎, Jacky Keung, Kwabena E. Bennin, Qing Mi
Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong, China

A R T I C L E I N F O

Keywords:
Bug localization
Convolutional neural network
Word embedding
TF-IDF
Deep learning
Semantic information

A B S T R A C T

Context: Automatic localization of buggy files can speed up the process of bug fixing to improve the efficiency
and productivity of software quality assurance teams. Useful semantic information is available in bug reports and
source code, but it is usually underutilized by existing bug localization approaches.

Objective: To improve the performance of bug localization, we propose DeepLoc, a novel deep learning-based
model that makes full use of semantic information.

Method: DeepLoc is composed of an enhanced convolutional neural network (CNN) that considers bug-fixing
recency and frequency, together with word-embedding and feature-detecting techniques. DeepLoc uses word
embeddings to represent the words in bug reports and source files that retain their semantic information, and
different CNNs to detect features from them. DeepLoc is evaluated on over 18,500 bug reports extracted from
AspectJ, Eclipse, JDT, SWT, and Tomcat projects.

Results: The experimental results show that DeepLoc achieves 10.87%–13.4% higher MAP (mean average
precision) than conventional CNN. DeepLoc outperforms four current state-of-the-art approaches (DeepLocator,
HyLoc, LR+WE, and BugLocator) in terms of Accuracy@k (the percentage of bug reports for which at least one
real buggy file is located within the top k rank), MAP, and MRR (mean reciprocal rank) using less computation
time.

Conclusion: DeepLoc is capable of automatically connecting bug reports to the corresponding buggy files and
achieves better performance than four state-of-the-art approaches based on a deep understanding of semantics in
bug reports and source code.

1. Introduction

Bug localization is a significant task during software maintenance.
To locate a newly reported bug, developers must carefully analyze the
bug report and review numerous source code files. Thus, bug resolution
activity usually requires considerable time and effort [23] to improve
software quality and ensure software integrity [5]. To reduce main-
tenance costs and substantially improve the efficiency and productivity
of the whole software team, researchers have proposed several auto-
mated bug localization approaches and tools for localization of poten-
tial buggy files, especially when the project is large and complex and
involves thousands of source files.

The existing bug localization techniques can be categorized into
four main groups. The first group comprises approaches that use tra-
ditional features related to program analysis information [14], such as
passing or failing execution information with test cases. Spectrum-

based fault localization techniques [1,25] are typical examples of these
approaches. These methods extract static features from the source code
or execution information, which is a time-consuming process. The
second group comprises the information retrieval (IR)-based ap-
proaches, which search and rank buggy files for a given bug report.
These approaches measure the textual similarity between bug reports
and the names of classes or methods in source code files. This kind of
similarity focuses mainly on the term weights as used in the IR field
[48]. In addition, machine learning (ML)-based approaches have been
proposed. These approaches adopt ML models that are trained to match
the topics of bug reports with those of source files [34] or classify
source files into multiple classes using formerly fixed files [16].

The approaches in the second and third groups focus on the term
weights of natural language texts and do not consider source code se-
mantics during the bug localization process. According to prior re-
search, semantic information is important for code suggestion [33] and

https://doi.org/10.1016/j.infsof.2018.08.002
Received 27 December 2017; Received in revised form 11 July 2018; Accepted 7 August 2018

⁎ Corresponding author.
E-mail addresses: yanxiao6-c@my.cityu.edu.hk (Y. Xiao), Jacky.Keung@cityu.edu.hk (J. Keung), kebennin2-c@my.cityu.edu.hk (K.E. Bennin),

Qing.Mi@my.cityu.edu.hk (Q. Mi).

Information and Software Technology 105 (2019) 17–29

Available online 15 August 2018
0950-5849/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.08.002
https://doi.org/10.1016/j.infsof.2018.08.002
mailto:yanxiao6-c@my.cityu.edu.hk
mailto:Jacky.Keung@cityu.edu.hk
mailto:kebennin2-c@my.cityu.edu.hk
mailto:Qing.Mi@my.cityu.edu.hk
https://doi.org/10.1016/j.infsof.2018.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2018.08.002&domain=pdf

code completion [11] and is also useful for bug localization [49]. To
bridge the semantic gap, deep learning has been introduced into the
domain of bug localization for semantic parsing. Deep learning is
known to have excellent performance in natural language processing
(NLP) and image processing [7,21]. The recently proposed deep
learning-based model for bug localization combines deep neural net-
works (DNNs) and IR techniques [22]. Its results are influenced to some
extent by the performance of IR techniques. Most importantly, many
DNN models are used together, which makes it very complex and dif-
ficult to accurately adjust the parameters of the model.

To extract the underlying semantic information from bug reports
and source code, this paper proposes a CNN-based model for bug lo-
calization, namely DeepLoc. CNN can extract local features by con-
volving filters and performs well in semantic parsing-related NLP pro-
blems [17]. Thus, DeepLoc adopts CNN to extract features from vectors
of bug reports and source files converted using word-embedding tech-
niques. Moreover, DeepLoc learns to correlate bug reports to the cor-
responding buggy files using an enhanced CNN, rather than textual
similarity, which is used in IR-based approaches. We conduct empirical
experiments on five project datasets to show the effect of the enhanced
CNN on DeepLoc and evaluate DeepLoc’s performance by comparing it
to four state-of-the-art bug localization approaches: DeepLocator,
HyLoc, LR+WE, and BugLocator. All these competitors were proposed
to localize buggy files for bug reports, which were based on the textual
similarity rather than semantic information of the words and phrases.

The main contributions of this paper are the following:

• We transform all code tokens from source files into vectors using
word-embedding techniques for bug localization. The visualization
of the learned vectors indicates that this method can benefit the
proposed model.

• We develop DeepLoc, which consists of word embedding, feature
detection, and a proposed enhanced CNN. The enhanced CNN uses
important bug-fixing experience (bug-fixing recency and frequency)
and semantic information that can be extracted by a conventional
CNN from bug reports and source files.

• A set of experiments are conducted to validate DeepLoc’s feasibility
and effectiveness. We make our dataset publicly available and pro-
vide the tool used to construct the dataset1.

In this work, we enhance our previous model, DeepLocator, pre-
sented in [47]. DeepLocator first pre-treats bug reports and source files
using revised TF-IDuF and Abstract Syntax Tree (AST) detection, re-
spectively. The same word-embedding technique (word2vec) is then
applied to transform the preprocessed words from bug reports and
source files into vectors. Later, the features of these vectors are ex-
tracted by one CNN. However, the use of the same word-embedding
technique and CNN to deal with bug reports and source files ignored the
differences between them and thus limited the performance of Dee-
pLocator.

Although the motivation for this work is somewhat derived from
Xiao et al. [47], the fundamental differences between the two studies
are as follows. (1) This paper uses two different word-embedding
techniques (Sent2Vec and combined word2vec) to convert bug reports
and source files, respectively, into vectors. (2) All code tokens are
transformed in this paper, instead of some AST nodes parsed from the
source files in [47]. (3) Two CNNs are used to extract features from the
vectors of bug reports and source files before they are supplied to the
proposed enhanced CNN. (4) We report better results and new analyses
and show the visualization of the learned vectors to demonstrate the
effectiveness of the word-embedding techniques for bug localization.

The remainder of this paper is structured as follows. Section 2 re-
views the preliminary knowledge related to DeepLoc. Section 3 gives a

detailed description of the proposed model. The experimental results
are presented in Section 4 and the discussion is presented in Section 5.
The threats to validity are discussed in Section 6, and related works are
reviewed in Section 7. We conclude the paper and discuss directions for
future work in Section 8.

2. Preliminaries

2.1. Term frequency-Inverse document frequency (TF-IDF)

The Term Frequency-Inverse Document Frequency (TF-IDF) tech-
nique is widely used in text mining and information retrieval (IR). TF
represents the frequency with which a term appears in a document, and
IDF denotes the inverse of the number of documents in which the term
appears in the entire corpus. TF-IDF can filter some common terms in
documents in specified repositories. The formulas for TF-IDF are as
follows [48]:

⎜ ⎟= = ⎛
⎝

⎞
⎠

= ×−

tf f idf log N
df

w tf idf

t d t d t d
t

tf idf t d t d

, , ,

, , (1)

where ft, d is the frequency of term t that appears in document d, N
refers to the total number of documents in the document collections,
and dft reflects the number of documents in the corpus containing term
t. However, this kind of general corpus is not always available in
practice or for research, and the equations represent general behaviors
that ignore some important individual information.

To address the aforementioned problems, Beel et al. [2] presented
term frequency-user focused inverse document frequency (TF-IDuF)
using personal document repositories instead of a general corpus. TF-
IDuF is defined as follows [2]:

⎜ ⎟= = ⎛
⎝

⎞
⎠

= ×−

tf f idf log N
n

w tf idf

t d t d t d
u

t u

tf idf t d t d

, , ,
,

, , (2)

where Nu refers to the total number of documents in the user collections
and nt, u reflects the number of documents in the collections that in-
corporate term t.

Eqs. (1) and (2) are fundamental for term weights. When large
differences in frequencies are present, the term weights computed by
(1) and (2) do not achieve good performance in practice [8]. Therefore,
it is necessary to dampen the effects of large differences in frequencies,
which is further discussed below.

The logarithm variant of TF can improve the performance of TF-IDF
in practice, as demonstrated in Croft’s experiments [8]. Specifically, it
can dampen the effects of large differences in frequencies:

= +tf log f() 1t d t d, , (3)

Inspired by Croft et al.’s work [8], we propose an rTF-IDuF to fur-
ther improve the model’s performance:

⎜ ⎟= + × ⎛
⎝

⎞
⎠

−w log f N
n

(() 1) logtf idf t d
u

t u
,

, (4)

where ft, d is the frequency of term t appearing in document d, Nu refers
to the total number of documents in user collections, and nt, u reflects
the number of documents in user collections that contain term t.

In reality, a complete corpus is not always available. In addition, the
bug reports for different projects usually differ in their writing style and
contexts. Therefore, it is convenient and reasonable to apply rTF-IDuF,
which focuses on personal collections and is used in this paper.

2.2. Word embedding

Word embedding refers to the distributed representations of words1 https://github.com/yanxiao6/BugLocalization-dataset.

Y. Xiao et al. Information and Software Technology 105 (2019) 17–29

18

https://github.com/yanxiao6/BugLocalization-dataset

in a vector space in which similar words are close to each other [30].
After performing word embedding, words are represented by vectors of
real values instead of text, which enables text analysis using various
statistical models. Mikolov et al. [29] proposed word2vec techniques
for efficient learning of high-quality distributed vector representations.
Furthermore, this model can capture precise syntactic and semantic
word similarities.

Fig. 1 illustrates the architecture of the Skip-gram model, which
uses one of the word2vec techniques. The objective of the Skip-gram
model is to learn word representations that maximize the classification
of the surrounding words based on a current word in the same sentence.
Formally, given a sequence of T training words … …w w w, , , , ,t T1 each
current word wt is used as the input to predict its context words +wt r

within a certain range. The Skip-gram model is trained to maximize the
average log probability:

∑ ∑
= − ≤ ≤

+T
log p w w1 ()

t

T

c r c
t r t

1 (5)

where c is the size of the training context centered at the current word
wt and r≠ 0.

Because the cost of computing the derivative of each log probability
in Eq. (5) is proportional to the number of words in large vocabulary,
Mikolov et al. [30] introduced a negative sampling technique to ac-
celerate the Skip-gram model. Using this technique, its optimization
objective is defined as:

⎜ ⎟∑ ⎛
⎝

∑ ∑ ⎞
⎠

+ −
= ∈

⊤

∈

⊤

T
log σ w w log σ w w1 () ()

t

T

w P w
i t

w N w
j t

1 () ()i j (6)

where = + −σ x x() 1/(1 exp()), P(w) is the positive training examples
and N(w) is the randomly sampled negative training examples of wt.

Another word2vec technique proposed by Mikolov et al. [29] is the
continuous bag-of-words (CBOW) model, which is similar to the Skip-
gram model. However, instead of predicting context words based on the
current word, CBOW tries to maximize the classification of the current
word based on the context words in the same sentence. Pagliardini et al.
proposed Sent2Vec [35], which is an extension of CBOW [29], to
compose sentence embedding. Unlike in CBOW, the context words
running over the corpus in Sent2Vec are entire sentences instead of
fixed-length context words, whose architecture is shown in Fig. 2. wt in
formula (6) is now changed into the entire sentence where wt is, but wt

is excluded.

2.3. Convolutional neural network (CNN)

CNN, inspired by biological processes and multilayer perceptron, is
the first learning algorithm based on neocognitron [9] and receptive
fields [12]. CNN contains several convolutional layers that are often
combined with pooling steps and then followed by a fully-connected
layer similar to a standard multilayer neural network [20].

The process of convolution and pooling (subsampling) [41] is
shown in Fig. 3. In the process of convolution C, the input is convoluted
with a trainable filter W and an added offset b. Later, a nonlinear
function is used to obtain a reduced feature map ci, followed by is the
subsampling procedure S. A mean-over-time polling or max-over-time
pooling operation [7] is frequently used in this layer, which takes the
mean (=c mean c()i) or maximum value (=c max c()i) as the feature
corresponding to this particular filter. The convolutional layer is used to
detect features that are then subsampled in the pooling layer to reduce
the number of parameters. The process also alleviates the over-fitting
problem [41].

The basic structure of a CNN [21] is shown in Fig. 4. C layers are
used to capture features. The input of every neuron in C layers is linked
with the local receptive field of the former layer, and the local feature is
extracted using convolutional operations. Once the local feature is ex-
tracted, its positional relationship with other features is known. S layers
are feature mapping layers. Each computational layer has several fea-
ture maps, and every feature map is a two-dimension surface. The
weight of each neuron in this surface is the same, which follows the
well-known parameter sharing scheme. The Rectified Linear Units
(ReLU) [20] function is used to increase the network’s nonlinear
properties.

2.4. Batch normalization

Batch normalization was proposed by Ioffe and Szegedy [13] to
reduce internal covariate shift for deep networks. It allows the network
to be trained at a much faster learning rate and reduces its sensitivity to
initialization. Thus, the use of batch normalization can accelerate the
training process more than tenfold while retaining the same or much
greater accuracy [13]. Given a mini-batch with m values
(… …x x x, , , ,i m1), the transforming procedure is as follows:

̂ = −
+

x
x μ
σ ϵ

i
i

2 (7)

̂= +BN x γx β()i i (8)

where μ and σ are the mean (= ∑ =μ xm i
m

i
1

1) and variance

(= ∑ −=σ x μ()m i
m

i
1

1
2) of the mini-batch, ϵ is a constant (e.g., 1e-3)

added to the variance for the numerical purpose, and γ and β are ad-
ditional parameters to be learned during training.

3. DeepLoc

In this section, we describe DeepLoc, a deep learning-based model
that automatically localizes buggy files for bug reports. DeepLoc uses
two conventional CNNs to separately detect features from the vectors of
bug reports and source code files converted using two different word-
embedding techniques and an enhanced CNN for bug localization.

Fig. 1. The architecture of the Skip-gram model.

Fig. 2. The architecture of Sen2Vec.

Fig. 3. The process of convolution and subsampling of a CNN.

Y. Xiao et al. Information and Software Technology 105 (2019) 17–29

19

Fig. 5 provides the overall workflow of DeepLoc. In the training phase,
bug reports and source files are first transformed into vectors using two
different word-embedding techniques (Sent2Vec [35] and weighted
average word2vec [15]). The corresponding vectors are then fed into
two conventional CNNs to detect their features. Finally, the features of
the bug reports and source files are paralleled as the input to the en-
hanced CNN, along with corresponding labels (buggy or not buggy) and
the bug-fixing histories. The training stage is conducted offline. When
we receive new bug reports, the trained model will efficiently utilize the
bug reports to obtain the locations of buggy files. The details of Dee-
pLoc are discussed in the following sections.

3.1. Data pre-processing

Developers often combine words to create a new “word” when de-
fining classes or methods in source code files, which can also be men-
tioned in bug reports. Thus, we preprocess combined words in both bug
reports and source files. According to the CamelCase Naming
Convention [3], combined words can be split into separate real words
based on capital letters. For example, “WorkbenchActionBuilder” is
split into “Workbench”, “Action” and “Builder”. Note that some special
capital words, such as URI (Uniform Resource Identifier [28]), IDE
(Integrated Development Environment [39]), etc., should not be sepa-
rated. Finally, we change all capital letters to lowercase letters, to ad-
here to the rules of word embedding.

3.2. Word embedding

Words themselves cannot be directly input into a CNN [52]. Thus,
the pretreated words must be embedded into vectors. Two variants of
word-embedding techniques are adopted in this paper to transform
words in bug reports and source files into vectors that retain the words’
semantics.

As shown in Table 1, bug reports usually contain summaries and

descriptions that comprise many words. If all words are transformed
into vectors as input for CNNs, the model will be difficult to train due to
the redundant input. In addition, a large amount of memory is needed
to store these vectors. Fortunately, bug reports are written in natural
languages and consist of sentences, so we can convert each sentence in
bug reports into a vector instead of transforming each word into a
vector. Summaries are always written as one sentence containing con-
densed and abbreviated information. It is difficult to retain important
information if summaries are regarded as sentences. However, de-
scriptions usually contain many sentences and some redundant in-
formation. So, to distinguish summaries and descriptions, we convert
summaries into vectors based on words using a word2vec technique
with the Skip-gram model [29] and transform descriptions into vectors
based on sentences using Sent2Vec [35]. Fig. 6 illustrates an example of
transforming descriptions in bug reports into vectors using Sent2Vec.
Each sentence in a description is transformed into a k-dimensional
vector. The dimension of word vectors of each description in a bug
report is nS× k, where nS is the number of sentences in each description

Fig. 4. The net structure of a CNN.

Fig. 5. The overall workflow of DeepLoc.

Table 1
Subject projects [48].

Project Time
range

of Bug # of Fixed Avg. # of
Buggy

Max. # of
Words

Avg. # of
Words

reports buggy files files per
bug

per bug
report

per bug
report

AspectJ 03/02-
01/14

593 1151 4.0 4068 188.5

Eclipse UI 10/01-
01/14

6495 6228 2.7 4468 124.6

JDT 10/01-
01/14

6274 5002 2.6 5233 137.4

SWT 02/02-
01/14

4151 1415 2.1 5125 125.0

Tomcat 07/02-
01/14

1056 1038 2.4 2320 87.5

Y. Xiao et al. Information and Software Technology 105 (2019) 17–29

20

and k is the dimension of word embeddings. Sent2Vec is an extension of
CBOW [29] to compose sentence embeddings. Unlike in CBOW, the
context words running over the corpus in Sent2Vec are entire sentences
rather than fixed-length context words, which meets the requirements
of our model. For experimentation purpose, we have evaluated that the
adopted strategy has a similar or even better performance with less
memory and computation cost than other kinds of strategies (e.g., only
word2vec).

Source files are composed of code tokens that are similar, but not
identical, to natural languages [46]. Some keywords (e.g., int, public)
are frequently presented in source code that may dampen the perfor-
mance of Sent2Vec. In addition, it is difficult to represent source code in
sentences. Thus, Sent2Vec is not good for converting source files into
vectors. Importantly, the average word embeddings of words in a sen-
tence have been proven to be efficient for obtaining sentence embed-
dings [15]. To dampen the effect of frequent keywords in the source
code, this paper adopts weighted average word embeddings based on
the revised TF-IDuF discussed in Section 2.1 to obtain the vectors of
each line in source code as shown in the following equation:

∑= =
=

V
n

w v
n

wv1 1
l

l i

n

i i
l1

l

(9)

where in the lth line in a source file, �∈ ×Vl
k1 is the vector of the lth

line of code, wi (�∈ ×w n1 l) is the rTF-IDuF term weight of the ith word
in the lth line of code, and vi (�∈ ×v n kl) is the word vector of the ith
word in the lth line of code, in which nl and k are the number of words
in the lth line and the dimension of the word vector, respectively. It is
better to use the right vectorized form during implementation, to ac-
celerate the computational process. The word vector (v) is obtained
using the word2vec technique with the Skip-gram model [29]. Some
words may be absent in the set of pretrained words in word2vec. These
words are initialized randomly and fine-tuned during training [17]. Ye
et al. [49] verified that word embeddings trained on a Wiki corpus and
a project-specific corpus (Eclipse and Java) had similar performance.
However, a Wiki corpus has a greater vocabulary and more words (96
times and 548 times the size of a project-specific corpus, respectively),
which is beneficial for deep learning models [54]. Thus, the pretrained
word2vec used in our model is based on a Wiki corpus.

3.3. Feature detecting

After converting bug reports and source files into a set of vectors,
the CNN model is applied to extract their features. Max-over-time
pooling [18] is used when constructing a CNN. We first find the max-
imum number (nS) of sentences from each bug report and the maximum
number (nL) of lines from each source file. They are then padded by

zeros to be separately same with their maximum lengths [24]. Fig. 7
illustrates the process of feature detection from bug reports and source
files using a CNN, in which k is the vector dimension of each sentence/
line. The two CNNs have similar architecture, containing one con-
volutional layer with multiple filters followed by a max pooling layer
[18]. We will evaluate how to choose the size of filters, the number of
filters, and the number of convolutional layers when answering
RQ1 in Section 4.3. The size of filters in the max pooling layer is

− + ×n the height of the filter size(1) 1S for bug reports and
− + ×n the height of the filter size(1) 1L for source files. The size of

the feature vectors extracted from a bug report is the number of filter
sizes*the number of filters for each filter size. The size of the feature vectors
extracted from a source file is also the number of filter sizes*the number
of filters for each filter size. We use different filter size in the max pooling
layer to ensure that the final feature vectors extracted from a bug report
and source file have the same size so that they can be concatenated in
parallel as the input to the subsequent enhanced CNN.

3.4. Enhanced CNN training and prediction

Although the conventional CNN has good performance in semantic
parsing-related NLP problems [17], it cannot learn bug-fixing experi-
ence by itself. Therefore, this section discusses a novel technique to
enhance the CNN for bug localization.

The conventional CNN is trained to minimize the following mean
cross-entropy error function [10]:

∑

∑

=

= −

=

=

L θ
N

cost

cost t log y

() 1

()

i

N

i

i
j

T

ij ij

1

1 (10)

where N is the number of samples in a batch and T is the number of
classes. costi is the cost function of sample i. tij is the true value of class j
of sample i and yij is the output probability of class j of sample i.

Apart from the semantic information, the conventional CNN model
contains no other important information related to bug localization,
especially the fixing history of source files. Furthermore, bug-fixing
recency and frequency have been verified as useful for bug localization
by Lam et al. [22] and Ye et al. [48]. The change history of source files
for bugs contains useful information for identification of fault-prone
files [37]. This implies that source files fixed recently are more likely to
be buggy than those fixed long ago (bug-fixing recency) and that source
files that have been fixed many times are more likely to still contain
bugs than those seldom fixed or even never fixed (bug-fixing fre-
quency).

Fig. 6. An example of transforming descriptions in bug reports into vectors using Sent2Vec.

Y. Xiao et al. Information and Software Technology 105 (2019) 17–29

21

We use equations similar to those in Ye et al.’s work [48] to identify
the source file’s bug-fixing recency and frequency. For a sample i with
source file s and new bug report r, the bug-fixing recency is defined as
follows:

=
− +

R
r month s month

1
. . 1i (11)

where r.month represents the month in which bug report r was gener-
ated and s.month denotes the month in which source file s was last fixed
before bug report r was created. r.month and s.month take the year into
account. For example, if r.month is January this year and s.month is
December last year, Ri is 0.5. Therefore, the bug-fixing recency Ri is the
inverse of the time interval between the creation of the bug report and
the last time the source file was fixed.

The bug-fixing frequency Fi is expressed by the number of times
source file s was fixed before bug report r was submitted [48].

Ri and Fi may have wide value ranges that make them incomparable,
which may result in detrimental effects [48]. In both the training and
testing sets, Ri and Fi are scaled as follows:

=
⎧

⎨
⎪

⎩⎪

−
−

<
≤ ≤

>

=
⎧

⎨
⎪

⎩⎪

−
−

<
≤ ≤

>

r
R R

R R

if R R
if R R R
if R R

f
F F

F F

if F F
if F F F
if F F

0

1
0

1

i
i min

max min

i min

min i max

i max

i
i min

max min

i min

min i max

i max (12)

where Rmin (Fmin) and Rmax (Fmax) are the minimum and maximum
values of Ri (Fi) in the training set. During testing, Ri (Fi) may be larger
than Rmax (Fmax) or smaller than Rmin (Fmin) obtained in the training
phase, so the first and last judgments are necessary.

To improve the bug localization performance, we enhance the
conventional CNN by adding bug-fixing recency and frequency to the
cost function in the fully connected layer as two penalty terms. The new
cost function that considers bug-fixing recency (ri) and bug-fixing

frequency (fi) is defined as follows:

∑= − − −
=

cost t log y ω r ω f()i
j

T

ij ij i i
1

1 2
(13)

where ω1 and ω2 are initialized by random values from a truncated
normal distribution and tuned in the training phase similarly to other
weights. ri and fi are the scaled values of bug-fixing recency and fre-
quency, respectively.

Now we use the enhanced CNN to learn the relationship between
bug reports and corresponding buggy files. The feature vectors
(�∈ × *the number of filter sizes the number of filters for each filter size1 ()) extracted from bug
reports and those (�∈ × *the number of filter sizes the number of filters for each filter size1 ())
from source files are concatenated in parallel into 2-dimensional feature
vectors (�∈ × *the number of filter sizes the number of filters for each filter size2 ()) as the
input to the enhanced CNN. The concatenation process is shown in
Fig. 8. The convolutional layer in the enhanced CNN uses filters with
the size of 2× 2 to learn the correlated relationships between bug re-
ports and source files by convolving the input of the enhanced CNN that
is a concatenation of the feature vectors extracted from bug reports and
source files. The size of filters in the max pooling layer is 2 × (the
number of filter sizes * the number of filters for each filter size). The en-
hanced CNN was used to correlate bug reports to buggy files including
both linear and nonlinear relationships because of its convolutional
operation and fully connected layer. Other factors (bug-fixing recency
and frequency) are included in the enhanced CNN using Eq. (13).

All three CNNs use max-over-time pooling and are regularized by
batch normalization to speed up the training process. DeepLoc is
trained using the Adam (Adaptive Moment Estimation) Optimizer [19],
which uses an adaptive learning algorithm. Compared to Adadelta [50],
which retains an exponentially decaying average of past squared gra-
dients, Adam can also store the exponentially decaying average of past
gradients. In addition, Adam has shown better performance in large
empirical investigations than other algorithms that automatically adjust
learning rates [19].

After training, the bug reports are related to buggy files rather than
matched by textual similarity. When a new bug report appears, it is
paired with each source file and then input into the trained DeepLoc to
predict buggy files.

4. Experiments

Several experiments are conducted to evaluate DeepLoc’s perfor-
mance. We describe the datasets used, the experimental setup and the
performance metrics in Section 4.1. The research questions are listed in
Section 4.2, and the results in Section 4.3.

Fig. 7. The architecture of feature detection.

Fig. 8. The concatenation process.

Y. Xiao et al. Information and Software Technology 105 (2019) 17–29

22

4.1. Experimental settings and evaluation metrics

Because some source files may have been modified or even deleted,
we may fail to find the original mapped source files for an old bug
without before-fix versions. Thus, we collect a dataset (Table 1) with
before-fix versions of source files and relate them to each bug based on
publicly available mappings of bug reports and the corresponding
commit history provided by [48].

The chronologically sorted bug reports for each project are split into
60% as the training set (oldest bugs), 20% as the validation/develop-
ment set, and 20% as the test set (newest bugs). Large numbers of
source files exist for a given bug report, and it is infeasible to involve
them all in the training set because of the necessary training time and
memory. For fair comparison with other state-of-the-art techniques, we
use a procedure similar to that in [22,48]. In training, for each bug
report, we rank the cosine similarity of the word vectors between the
bug report and all of the source files and then select the top 300 irre-
levant files as the negative samples, which implies that the actual buggy
files and other 300 least similar files are together with each bug report
to be set as the training set. In the validation and testing set, each bug
report is paired with all source files. We use tensorflow to construct the
model, and all experiments are run on a server with CPU Intel Xeon
CPU E5-4620 2.20 GHz (32 cores), 128 GB RAM.

To evaluate DeepLoc’s performance, three metrics are adopted:
Accuracy@k, Mean Reciprocal Rank (MRR) and Mean Average
Precision (MAP). These metrics have been widely used in existing bug
localization studies [22,48,49,53]. Their definitions are expressed as
follows.

• Accuracy@k measures the percentage of bug reports for which at
least one real buggy file is located within the top k rank.

• MRR is the mean of the Reciprocal Rank that accumulates the in-
verse of the position of the first correctly-located buggy file for each
bug. For a set of Q bug reports, the MRR in this paper is computed as
follows:

∑=
=

MRR
Q first
1 1

i

Q

i1 (14)

where firsti denotes the position of the first correctly-located buggy
file for the ith bug report.

• MAP can measure performance when a query has multiple relevant
documents. It is more suitable in the field of bug localization be-
cause a bug report may have more than two buggy files on average
(as shown in Table 1). MAP is the mean of the Average Precision
(AvgP) values of Q bug reports, each of which is the average of the
precision values for a bug report. The formulation of MAP for bug
localization is as follows:

∑=
=

MAP
Q

AvgP i1 ()
i

Q

1 (15)

∑=
×

=

AvgP i
T j j ind j

B i
()

(()/) ()
()j

M

1 (16)

where M is the maximum position of correct buggy files for the ith
bug report located using the bug localization technique, ind(j) in-
dicates whether the file located in rank j is the correct buggy file
(=ind j() 1) or not (=ind j() 0), B(i) stands for the number of buggy
files for the ith bug report, and T(j) denotes the number of buggy
files in the top j.

The higher the Accuracy@k, MRR, and MAP values, the better the
performance of the bug localization technique.

4.2. Research questions

Specifically, we aim to answer the following questions.
RQ1: What effect do the model settings have on DeepLoc?

Before building DeepLoc, we need to analyze three settings using the
validation set: the size of filters, the number of filters, and the number
of convolutional layers.

RQ2: What effect does the enhanced CNN have on DeepLoc? We
then evaluate whether the enhanced CNN improves DeepLoc’s accuracy
against the conventional CNN. The only difference between the two
CNNs is that the enhanced CNN considers bug-fixing recency and fre-
quency, but the conventional CNN does not. Furthermore, we examine
their time overheads for prediction.

RQ3: How good is DeepLoc’s performance compared to state-of-
the-art techniques? To validate DeepLoc’s effectiveness and efficiency,
four state-of-the-art approaches are used as competitors:

• DeepLocator proposed in our previous work [47] uses CNN to extract
features from bug reports and source files that are pre-treated using
rTF-IDuF and AST.

• HyLoc proposed by Lam et al. [22] combines deep learning with
information retrieval (IR) technique.

• LR+WE proposed by Ye et al. [49] enhances the previously pro-
posed learning-to-rank (LR) model [48] with word embedding (WE).

• BugLocator proposed by Zhou et al. [53] uses a revised Vector Space
Model (rVSM) to measure the textural similarity between bug re-
ports and source files.

Both RQ2 and RQ3 use a testing set for evaluation. There are 50
instances in each batch.

4.3. Results and analyses

RQ1: Model performance under different model settings.
We first evaluate how to choose the size of filters using the vali-

dation set. The number of filters is set as constant (100) as a control
variable. Fig. 9 reports the MAP values of each dataset with the filter
size ranging from 1× k to 10× k (where k is the width of word vec-
tors). The results show that the best filter size for the five datasets is
3× k (AspectJ), 6× k (Eclipse UI), 4× k (JDT), 3× k (SWT), and
4× k (Tomcat) respectively. According to the empirical analysis of
Zhang and Wallace [52], using multiple filter sizes near the best single
size produces the best results. So in our experiments, the filter sizes are
set as (2× k, 3× k, 4× k), (5× k, 6× k, 7× k), (3× k, 4× k, 5× k),
(2× k, 3× k, 4× k), and (3× k, 4× k, 5× k) for the five datasets

Fig. 9. Performance of different filter sizes.

Y. Xiao et al. Information and Software Technology 105 (2019) 17–29

23

(AspectJ, Eclipse UI, JDT, SWT, and Tomcat). We fine-tune the number
of filters for each dataset given the formerly determined filter size. We
consider values {50, 100, 200, 300, 400, 500}. Fig. 10 represents the
MAP values (line chart) and the number of filters for the five datasets.
We also provide the average training time per batch (bar chart) for the
five datasets to help us choose the appropriate number of filters ba-
lanced between the results and the time consumption. The results show
that the greater the number of filters, the higher the computation time.
However, the MAP values do not always increase because more filters
may lead to overfitting. After weighing the trade-offs, we set the
number of filters as 100 for the whole dataset.

Next, we compare the MAP values and the average time consump-
tion for each batch of the CNN, using one convolutional layer and two
convolutional layers. When using a two-layer CNN, the features be-
tween words are convolved again, which is able to extract deeper se-
mantic information. Table 2 demonstrates that the performance of the
two-layer CNN is slightly better than that of the one-layer CNN, but the
time consumption is much higher. Thus, DeepLoc uses a one-layer CNN.

RQ2: The enhanced CNN’s effects on DeepLoc.
In this section, we use the testing set to compare DeepLoc’s per-

formance using enhanced CNN and conventional CNN. We find that
both the MAP and MRR of the enhanced CNN are higher than those of
the conventional CNN, with a 10.87%–13.4% higher MAP (as shown in
Fig. 11). Because CNN does not have long-term memory, it cannot learn
the features of bug-fixing recency and frequency, which are included in
the enhanced CNN.

We report the time overhead of DeepLoc using the enhanced CNN
and the conventional CNN. Because more weights in DeepLoc must be
adjusted in the training phase than in the CNN, DeepLoc’s average time
consumption per batch in training is slightly higher (about 0.03 sec-
onds) than the CNN’s. Table 3 presents the average prediction time for
one bug report by DeepLoc using the enhanced CNN and the conven-
tional CNN, and the existing deep learning-related model (HyLoc) [22].

The first two rows demonstrate that DeepLoc’s average prediction times
using the enhanced CNN and the conventional CNN are very similar.

RQ3: DeepLoc’s performance.
Fig. 12 presents the Accuracy@k results for the four models (Dee-

pLoc, HyLoc, LR+WE, and BugLocator) on Project SWT, with k ranging
from 1 to 20. The results show that BugLocator has the worst perfor-
mance. The difference between HyLoc and LR+WE is not clear. Dee-
pLoc shows evident improvements, especially from Top 1 to 11, which
is more significant for bug localization because developers prefer to
search only a few source files to find buggy files. For example, DeepLoc
achieves Accuracy@k of 39.0%, 65.7%, and 77.1% for =k 1, 5, 10,
respectively. That is to say, it can correctly locate buggy files for 39.0%
of bug reports when recommending only one source file to developers,
and it can fix 77.1% of bug reports when ten source files are re-
commended. In comparison, HyLoc achieves Accuracy@k 33.4%,
71.1%, LR+WE achieves 34.0%, 71.0%, and BugLocator achieves
22.3%, 51.7% for =k 1, 10, respectively. Using a Mann-Whitney-U-Test
[26], the Accuracy@k results of HyLoc and LR+WE are not sig-
nificantly different, but DeepLoc significantly (p < 0.05) outperforms
both of them.

Table 4 lists the Accuracy@1,5,10, MAP, and MRR values of the five
models using the test set for five projects. Again, DeepLoc outperforms
the other four models for all five projects.

Compared to DeepLocator, DeepLoc achieves 2%–5% higher
Accuracy@1 and 1%–5% higher Accuracy@10. DeepLoc distinguishes
bug reports and source files using two different word-embedding
techniques and CNNs. All information in bug reports and source files is
included and deeper networks are used to further improve the bug lo-
calization performance.

In addition, DeepLoc achieves 16%–24% greater Accuracy@1 than
BugLocator. Unlike BugLocator, whose performance for unseen bug
reports is unclear due to the only parameter α being tuned on the same
dataset for both training and evaluation [53], all of the weights for
DeepLoc are learned on the training set, tuned on the validation set, and
then used to predict the testing set, whose performance is scalable. At
the same time, LR+WE achieves 2%–16% lower Accuracy@1 than
DeepLoc. LR+WE may be limited by the linear weighted sum of fea-
tures, but DeepLoc does not suffer this problem because of the con-
volutional networks.

Finally, DeepLoc achieves 2%–10% higher Accuracy@1 than HyLoc.
Because Lam et al. [22] validated HyLoc’s comparable or superior
performance against existing approaches [34,48,49,53], we use HyLoc
as the main competitor and analyze the results. When analyzing the
ranking results, we observe that some buggy files given low scores by
HyLoc can be located more precisely by DeepLoc. For example, HyLoc
gives one buggy file for Bug 54450 in Project Tomcat Rank 50, which is
a relatively low score. However, DeepLoc predicts it as a buggy file by
ranking it in fourth place because “resource” in bug reports is paired
with words related to “context” (getContext, configureContext, pro-
cessContextConfig) in source files many times. Another example is Bug
399401 in Project Eclipse UI. The rank for its buggy file given by HyLoc
is 38. However, “perspective” is paired with words related to “view”
and “visible” (getViewLayout, isPartVisible), so DeepLoc can relate
them if these pairs have ever appeared in older bug reports and cor-
responding buggy files used in its training. Therefore, even when tokens
in source files are mismatched with the words used in bug reports,
DeepLoc can relate them, which indicates that DeepLoc can learn cor-
relations if they frequently appear as pairs. In particular, DeepLoc’s
prediction time, shown in Table 3, for one bug report is much lower
than HyLoc’s, which indicates that DeepLoc is more suitable in practice.

5. Discussion

The major challenge for bug localization is the semantic gap be-
tween bug reports and source code files. Textual similarity, which is
used in most existing techniques [16,22,48,53], is based on the term

Fig. 10. Performance of number of filters.

Table 2
MAP and time consumption for different numbers of layers.

Project One-layer Two-layer

MAP Time (s) MAP Time (s)

AspectJ 0.55 6.36 0.58 212.18
Eclipse UI 0.56 6.92 0.57 217.15
JDT 0.48 6.38 0.49 212.86
SWT 0.49 6.65 0.48 213.56
Tomcat 0.57 6.74 0.59 213.91

Y. Xiao et al. Information and Software Technology 105 (2019) 17–29

24

frequency rather than semantic information of the words and phrases.
Unlike textual similarity, DeepLoc correlates bug reports to the corre-
sponding buggy files based on a deep understanding of semantics.

DeepLoc uses word-embedding techniques to map bug reports and
source files into semantic vector spaces where similar words are close to
each other. According to their characteristics, DeepLoc uses two dif-
ferent word embedding-based techniques for bug reports and source
files. Fig. 13 visualizes the learned embeddings of 500 bug reports from
Project SWT using t-SNE [40], where a number represents a bug report.
Each bug report is transformed into a word vector as discussed in
Section 3.2. These vectors are then projected into 2-D dimension by t-
SNE to make the vectors visible as shown in Fig. 13. The closer two bug
reports are in the vector space, the greater the similarity between them.
In Example I, the three bug reports are “Unused and breaks compilation

on GTK 3.x. Bug 391413 Remove GdkGCValues_sizeof”, “Remove
GdkVisual_sizeof - not used at all and breaks compilation on GTK 3.x.
Bug 391408 Remove GdkVisual_sizeof”, and“Method is not used any-
where and breaks compilation on GTK 3.x. Bug 391404 Remove
GdkImage_sizeof”. They are all related to GTK and the “sizeof” opera-
tion. Most importantly, these three bug reports point to a same buggy
file, namely OS.java, but the first bug report still contains other buggy
files. The contents of the bug reports in Example II, ”Bug 369228 Kill
pre GTK 2.4 leftovers from Tree”, “Bug 369227 Kill pre GTK 2.4 left-
overs from List”, “Bug 369226 Cleanup pre GTK 2.4 leftovers in Table”,
and “Bug 369225 Cleanup pre GTK 2.4 leftovers”, also share similar
operations. In addition, the first three bug reports share the same buggy
files. The bug reports in Example III also share the same or similar
words like “widget”, “unused 2.10 version guard” and so on. The ag-
gregation of some points in Fig. 13 indicates that these bug reports may
share similar meanings or even point to the same buggy files. Therefore,
the word-embedding technique is useful for converting text into vectors
that retain semantic information, and can help to localize buggy files.
However, it is still insufficient, which is why it requires consequent
models to detect features and learn correlations between bug reports
and source files.

The embedded vectors that contain information about semantic si-
milarities greatly benefit DeepLoc. The CNN model performs well in the
semantic parsing field because of the convolving filters [17], which
helps DeepLoc to extract hidden semantic information from bug reports
and source files. DeepLoc applies two CNNs to extract features from bug
reports and source files and then uses an enhanced CNN to correlate
bug reports and buggy files including both linear and nonlinear re-
lationships, which makes it different from the studies in [48,49], which
use a linear weighted sum of features. Bug-fixing history is also in-
cluded in DeepLoc, to make it more powerful.

6. Threats to validity

The experimental results demonstrate DeepLoc’s feasibility, how-
ever, we acknowledge some potential threats to the validity of our
approach and experiments. Following the suggestions of Wohlin et al.
[44], we discuss threats to internal validity, construct validity, external
validity, and statistical conclusion validity.

6.1. Internal validity

The proposed approach converts each sentence in a bug report into

Fig. 11. MAP and MRR of conventional CNN and enhanced CNN for five projects.

Table 3
Prediction time (seconds) per bug report for three models.

Prediction time AspectJ Eclipse UI JDT SWT Tomcat

DeepLoc 127.9 93.5 152.0 51.0 36.5
CNN 123.3 95.3 152.3 53.2 36.3
HyLoc 144.0 126.0 198.0 108.0 60.0

Fig. 12. Accuracy@k of the four models on Project SWT.

Y. Xiao et al. Information and Software Technology 105 (2019) 17–29

25

a vector, which could be affected by stemming and removal of stop
words process. This potential will be investigated in a future study. Both
bug reports and source files are transformed into vectors based on
word-embedding techniques. These techniques make texts from bug
reports and source files into adequate input for CNNs, retaining their
semantic information and saving memory space. However, the perfor-
mance of the proposed approach relies to some extent on the ability of
word-embedding techniques. It would be best to test these techniques
before adding to the proposed model. Improving these techniques will
also help to enhance our model. We leave this for future studies.
Finally, the analysis on the choice of filter size (RQ1) is related to the
writing style of the developers. For example, if the developers in a
project team prefer to use very long phrases to express bug reports, the
filter size should also be long. We analyze the results of the dataset and
provide a general conclusion, which may not be adequate.

6.2. Construct validity

As shown in Table 1, the dataset for bug localization is imbalanced.
Because the focus of this paper is not a data imbalance problem, we
selected a simple sampling strategy. A better technique for solving a
data imbalance is important for bug localization, which will be in-
vestigated in detail in a future study. On the other hand, we split the
dataset into a training set (60%), a validation set (20%), and a testing
set (20%). This approach is adopted in most machine learning-related
papers [6,32,36] but not in bug localization-related papers [16,48,53].
The effects of various splitting strategies on deep learning-related bug
localization techniques is still unknown and is worthy of investigation
in further studies.

6.3. External validity

Because the codes for HyLoc, LR+WE, and BugLocator are not
published, we implemented them according to the algorithms provided
by Lam and Co-workers [22,49,53] and obtained similar results.
However, the results are not identical. Fortunately, Ye et al. [48] and
Lam et al. [22] provided their results for the same datasets. We choose
the best results for each project comparing our results to theirs. Finally,
the datasets used were obtained from Java projects. The results may not

be generalizable to other projects written in other programming lan-
guages. In the future, we intend to improve the model for use in other
projects written in different programming languages.

6.4. Statistical conclusion validity

In this study, we used a Mann–Whitney-U-Test for the Accuracy@k
analyses. We provided Accuracy@k results of the four models
(DeepLoc, HyLoc, LR+WE, BugLocator) with k ranging from 1 to 20
and applied a Mann-Whitney-U-Test for comparison. However, the
sample size is close to the minimum required number of observations in
a standard statistical test. We thus admit the experimental results might
be subject to a threat to validity.

7. Related work

7.1. Our previous work

In [47], Xiao et al. proposed DeepLocator for improving the per-
formance of bug localization. DeepLocator applied Abstract Syntax Tree
(AST) to represent syntax and extract the programming patterns of
source code. Word2vec was then used to map the preprocessed words of
both bug reports and source files into semantic vector spaces in which
similar words are near each other. However, there were always many
words in bug reports and source files even though they were pretreated
using revised TF-IDuF and AST. Therefore, a large amount of memory
space was needed to store the word vectors. In addition, the pre-
processing procedure also caused the loss of some important informa-
tion, which limited DeepLocator’s performance. When training, only
one CNN was used to extract features from the word vectors of both bug
reports and source files and classify buggy files. The use of the same
CNN to deal with bug reports and source files ignored the differences
between them and thus dampened DeepLocator’s accuracy. To solve the
aforementioned problems, this paper proposes DeepLoc, which uses two
different word-embedding techniques and CNNs to distinguish bug re-
ports and source files, to further improve bug localization.

Table 4
Performance comparison.

Project Model Accuracy@1 Accuracy@5 Accuracy@10 MAP MRR

AspectJ DeepLoc 0.45 0.71 0.80 0.42 0.51
DeepLocator 0.40 0.66 0.78 0.34 0.49
HyLoc 0.38 0.65 0.75 0.32 0.48
LR+WE 0.29 0.58 0.74 0.30 0.45
BugLocator 0.22 0.46 0.58 0.28 0.36

Eclipse UI DeepLoc 0.45 0.70 0.79 0.43 0.53
DeepLocator 0.43 0.66 0.74 0.42 0.51
HyLoc 0.40 0.64 0.73 0.41 0.51
LR+WE 0.39 0.60 0.71 0.40 0.46
BugLocator 0.29 0.50 0.60 0.33 0.38

JDT DeepLoc 0.43 0.65 0.77 0.44 0.53
DeepLocator 0.40 0.64 0.73 0.39 0.47
HyLoc 0.33 0.59 0.69 0.34 0.45
LR+WE 0.41 0.65 0.75 0.42 0.52
BugLocator 0.19 0.40 0.51 0.29 0.37

SWT DeepLoc 0.39 0.66 0.77 0.40 0.49
DeepLocator 0.36 0.60 0.75 0.39 0.48
HyLoc 0.33 0.58 0.71 0.37 0.45
LR+WE 0.34 0.57 0.71 0.38 0.45
BugLocator 0.22 0.39 0.52 0.27 0.31

Tomcat DeepLoc 0.54 0.72 0.81 0.56 0.62
DeepLocator 0.52 0.72 0.80 0.54 0.60
HyLoc 0.52 0.71 0.78 0.52 0.60
LR+WE 0.49 0.70 0.76 0.50 0.56
BugLocator 0.36 0.62 0.71 0.43 0.48

Y. Xiao et al. Information and Software Technology 105 (2019) 17–29

26

7.2. Bug localization

In the literature, several techniques have been proposed to help
localize bugs. The commonly used techniques are either based on in-
formation retrieval (IR) methods, machine learning (ML) methods, or
deep learning (DL) methods.

IR: Zhou et al. [53] proposed BugLocator, which was based on a
revised Vector Space Model (rVSM), to measure the textural similarity
between bug reports and source files using information from similar
bugs that had previously been fixed. The weighted sum of the two
rankings was used to locate the relevant files for a bug. BugLocator was
a famous technique that attempted to rank relevant source files for bug
reports. Wong et al. [45] proposed segmentation and stack-trace ana-
lysis techniques on top of BugLocator [53], to boost fault localization.
Saha et al. [38] regarded the summary and description of bug reports as

two different query fields, combined respectively with classes, methods,
variables, and comments extracted from source files. However, these
eight features were considered equally important. Moreover, they used
the fixed version of the project in the evaluation, which led to incon-
sistency when considering future bug-fixing information.

To address the issues mentioned above, Ye et al. [48] developed an
adaptive ranking model supported by a learning-to-rank (LR) technique
to rank relevant files for bug reports. Six features were used in this
paper: surface lexical similarity, application programming interface
(API)-enriched lexical similarity, collaborative filtering score, class
name similarity, bug-fixing recency, and bug-fixing frequency. In the
literature [49], LR+WE was proposed to enhance LR, in which bug
reports and source code were represented by word embeddings and the
similarities between them were added as additional features. The
weight of each feature was then trained using the LR technique based

Fig. 13. Visualization of the learned embeddings of 500 bug reports from Project SWT using t-SNE.

Y. Xiao et al. Information and Software Technology 105 (2019) 17–29

27

on the previously fixed bugs. However, this model used a hill-climbing
algorithm with a linear weighted sum of features, which might ignore
nonlinear relationships. These IR-based techniques rely on the textual
similarities between bug reports and source files, which do not bridge
the semantic gap.

ML: Kim et al. [16] applied a Naive Bayes classifier to build a two-
phase recommendation model. Phase 1 was used to decide whether the
bug was predictable or not. If not, there was no further prediction be-
havior. If it was predictable, Phase 2 applied a Bayes model to re-
commend a set of files to fix. However, the model mainly focused on the
names of the fixed files. Thus, it was difficult for the model to re-
commend a file that had never been fixed before. Moser et al. [31] built
a model based on three common machine learners to find defective files
from Eclipse projects considering code changes. Markov logic was used
in [51] by combining statement coverage, static program structure in-
formation, and prior bug information. The authors, however, did not
consider contextual information (failure explanations). BugSout, a
topic-based machine learning model proposed by Nguyen et al. [34],
used an extended Latent Dirichlet Allocation (LDA) [4]. The bugs were
related to their corresponding buggy files by their shared topics.
However, a tuning process was needed to find the right number of to-
pics for different projects, which meant that the model was not auto-
mated. In addition, there was a strong assumption in this paper that the
textual contents of bug reports shared some technical aspects with the
textual contents of the corresponding buggy files. However, natural
language texts used in bug reports likely differ from code tokens in the
source code files of real-world projects, which implies that this as-
sumption is insufficient.

DL: Deep learning is a relatively new concept, and there is little
prior work about deep learning-based bug localization. Lam et al. [22]
built a model named HyLoc that combined deep learning with the IR
technique. About six deep neural networks (DNNs) were used in this
model: two for feature extraction, two for projection, one for relevancy
estimation, and one for feature combination. However, using so many
kinds of DNNs posed a risk of complex weight adjustment and high
training and learning costs. Their experiments showed that using DNNs
alone achieved poor performance and that most improvements still
benefited from IR techniques, which implied that DNNs in their model
was a subsidiary.

Previous studies have proposed several features to represent pro-
gram source code. However, few methods try to extract semantic in-
formation from source code. Deep learning can help to bridge this gap.

7.3. Deep learning in software engineering

In recent years, many deep learning techniques have been in-
troduced to software engineering research, such as code suggestion, API
suggestion, defect prediction, effort estimation, program classification,
and bug localization.

White et al. [43] proposed a deep architecture to model software
language specific to sequential data and suggested many avenues for
future work, especially for code suggestion. A novel tree-based con-
volutional neural network (TBCNN) was built by Mou et al. [32] for
programming language processing. Wang et al. [42] used a deep belief
network to detect features from tokens extracted from an AST of source
code to find defective files, but it was insufficient for mapping the to-
kens to continuous integers.

Choetkiertikul et al. [6] proposed a deep learning-based prediction
system for estimating story points based on Long Short-Term Memory
(to learn a vector representation for issue reports) and Recurrent
Highway Network (to build a deep representation). DeepAPI was pro-
posed by Gu et al. [10] to find API usage sequences given an API-related
natural language query. The model adopted the attention-based re-
current neural network (RNN) Encoder-Decoder model considering API
importance by using IDF-based weighting to train API usage sequences
and their corresponding annotations. The training time of this model

was very long, which is also a drawback of RNN.
In the software engineering field, many files are written in natural

languages, such as bug reports, API descriptions, and annotations. Even
source codes themselves are similar to natural language to some extent.
Thus, many mature techniques used in natural language processing can
be applied to some issues in software engineering to extract semantic
information.

8. Conclusions and future work

The existing approaches to bug localization focus on the similarities
or relationships between the term weights of words from bug reports
and source files. However, most of these approaches ignore the se-
mantic information hidden in the bug reports and source files. In par-
ticular, few approaches consider the semantics of an entire source code.
DeepLoc, a deep learning-based model that consists of an enhanced
CNN, together with word-embedding techniques and two CNNs for
detecting features from bug reports and source files, is proposed to
address these challenges and improve the performance of bug locali-
zation. Unlike the existing approaches, word-embedding techniques are
adapted to convert each sentence of bug reports and each line of source
code into vectors, retaining their semantics in vector space. These
vectors are then fed into the CNNs to extract their hidden semantics and
features. An enhanced CNN is used to detect the correlation between
the feature vectors extracted from bug reports and source code con-
sidering the bug-fixing experience (bug-fixing recency and frequency).

We provide empirical suggestions on how to construct the model
and evaluate DeepLoc’s performance against four state-of-the-art
bug localization techniques (DeepLocator, HyLoc, LR+WE, and
BugLocator) using more than 18,500 bug reports extracted from five
projects. The experimental results show that DeepLoc performed better
than conventional CNN (10.87%–13.4% MAP improvements), which
indicates the importance of bug-fixing experience for bug localization.
Compared to the other four approaches, DeepLoc achieved higher
Accuracy@k, MAP, and MRR, using less computation time. DeepLoc
bridges the semantic gap by adapting word embedding to retain the
semantics of bug reports and source code, CNNs to parse their syntax,
and the enhanced CNN to learn the correlations between bug reports
and source code considering bug-fixing experience.

However, the existing learning-based models, including our model,
seldom consider the orders of buggy files during training, which may
limit their performance when using metrics such as MAP and MRR to
test their ability. In the future, we intend to improve DeepLoc’s sensi-
tivity to buggy file orders. We will also investigate DeepLoc’s perfor-
mance using other TF-IDF weight schemes [27,48]. Few papers have
studied the effect of imbalanced data on bug localization and relevant
techniques, which we leave for future work.

Acknowledgments

This work is supported in part by. the General Research Fund of the
Research Grants Council of Hong Kong [No. 11208017], and the re-
search funds of City University of Hong Kong [No. 7004683]

References

[1] R. Abreu, P. Zoeteweij, R. Golsteijn, A.J. Van Gemund, A practical evaluation of
spectrum-based fault localization, J. Syst. Softw. 82 (11) (2009) 1780–1792.

[2] J. Beel, S. Langer, B. Gipp, TF-IDuF: a novel term-weighting scheme for user
modeling based on users’ personal document collections, Proceedings of the
iConference 2017, Wuhan, China, (2017). URL http://ischools.org/the-
iconference/ .

[3] D. Binkley, M. Davis, D. Lawrie, C. Morrell, To camelcase or under_score, Program
Comprehension, 2009. ICPC’09. IEEE 17th International Conference on, IEEE, 2009,
pp. 158–167.

[4] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent Dirichlet allocation, J. Mach. Learn. Res. 3
(Jan) (2003) 993–1022.

[5] B. Bruegge, A.H. Dutoit, Object-Oriented Software Engineering Using UML, Patterns

Y. Xiao et al. Information and Software Technology 105 (2019) 17–29

28

http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0001
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0001
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0002
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0002
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0002
http://ischools.org/the-iconference/
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0003
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0003
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0003
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0004
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0004
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0005

and Java-(Required), Prentice Hall, 2004.
[6] M. Choetkiertikul, H.K. Dam, T. Tran, T.T.M. Pham, A. Ghose, T. Menzies, A deep

learning model for estimating story points, IEEE Transactions on Software
Engineering (2018).

[7] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natural
language processing (almost) from scratch, J. Mach. Learn. Res. 12 (Aug) (2011)
2493–2537.

[8] W.B. Croft, D. Metzler, T. Strohman, Search Engines: Information Retrieval in
Practice, vol. 283, Addison-Wesley, Reading, 2010.

[9] K. Fukushima, S. Miyake, Neocognitron: a self-organizing neural network model for
a mechanism of visual pattern recognition, Competition and Cooperation in Neural
Nets, Springer, 1982, pp. 267–285.

[10] X. Gu, H. Zhang, D. Zhang, S. Kim, Deep api learning, Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ACM, 2016, pp. 631–642.

[11] A. Hindle, E.T. Barr, Z. Su, M. Gabel, P. Devanbu, On the naturalness of software,
Software Engineering (ICSE), 2012 34th International Conference on, IEEE, 2012,
pp. 837–847.

[12] D.H. Hubel, T.N. Wiesel, Receptive fields, binocular interaction and functional ar-
chitecture in the cat’s visual cortex, J. Physiol. 160 (1) (1962) 106–154.

[13] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by
reducing internal covariate shift, International Conference on Machine Learning,
(2015), pp. 448–456.

[14] J.A. Jones, M.J. Harrold, Empirical evaluation of the tarantula automatic fault-lo-
calization technique, Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering, ACM, 2005, pp. 273–282.

[15] T. Kenter, A. Borisov, M. de Rijke, Siamese cbow: optimizing word embeddings for
sentence representations, arXiv:1606.04640 (2016).

[16] D. Kim, Y. Tao, S. Kim, A. Zeller, Where should we fix this bug? A two-phase re-
commendation model, IEEE Trans. Software Eng. 39 (11) (2013) 1597–1610.

[17] Y. Kim, Convolutional neural networks for sentence classification, arXiv:1408.5882
(2014).

[18] Y. Kim, Y. Jernite, D. Sontag, A.M. Rush, Character-aware neural language models.
AAAI, (2016), pp. 2741–2749.

[19] D. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv:1412.6980
(2014).

[20] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep con-
volutional neural networks, Advances in Neural Information Processing Systems,
(2012), pp. 1097–1105.

[21] B. Kwolek, Face detection using convolutional neural networks and gabor filters,
Artificial Neural Networks: Biological Inspirations–ICANN 2005, (2005), pp.
551–556.

[22] A.N. Lam, A.T. Nguyen, H.A. Nguyen, T.N. Nguyen, Combining deep learning with
information retrieval to localize buggy files for bug reports (n), Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on, IEEE, 2015,
pp. 476–481.

[23] T.D. LaToza, B.A. Myers, Hard-to-answer questions about code, Evaluation and
Usability of Programming Languages and Tools, ACM, 2010, p. 8.

[24] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436.
[25] C. Liu, L. Fei, X. Yan, J. Han, S.P. Midkiff, Statistical debugging: a hypothesis

testing-based approach, IEEE Trans. Software Eng. 32 (10) (2006) 831–848.
[26] H.B. Mann, D.R. Whitney, On a test of whether one of two random variables is

stochastically larger than the other, Ann. Math. Stat. (1947) 50–60.
[27] C.D. Manning, P. Raghavan, H. Schütze, Scoring, term weighting and the vector

space model, 100 (2008), pp. 2–4.
[28] M. Mealling, R. Denenberg, Report from the Joint W3C/IETF URI Planning Interest

Group: Uniform Resource Identifiers (URIs), URLs, and Uniform Resource Names
(URNs): Clarifications and Recommendations, Technical Report, (2002).

[29] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word re-
presentations in vector space, arXiv:1301.3781 (2013a).

[30] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representations
of words and phrases and their compositionality, Advances in Neural Information
Processing Systems, (2013), pp. 3111–3119.

[31] R. Moser, W. Pedrycz, G. Succi, A comparative analysis of the efficiency of change
metrics and static code attributes for defect prediction, Proceedings of the 30th
International Conference on Software Engineering, ACM, 2008, pp. 181–190.

[32] L. Mou, G. Li, L. Zhang, T. Wang, Z. Jin, Convolutional neural networks over tree
structures for programming language processing, AAAI 2 (2016), p. 4.

[33] A.T. Nguyen, T.N. Nguyen, Graph-based statistical language model for code,
Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference
on, vol. 1, IEEE, 2015, pp. 858–868.

[34] A.T. Nguyen, T.T. Nguyen, J. Al-Kofahi, H.V. Nguyen, T.N. Nguyen, A topic-based
approach for narrowing the search space of buggy files from a bug report,
Automated Software Engineering (ASE), 2011 26th IEEE/ACM International
Conference on, IEEE, 2011, pp. 263–272.

[35] M. Pagliardini, P. Gupta, M. Jaggi, Unsupervised learning of sentence embeddings
using compositional n-gram features, arXiv:1703.02507 (2017).

[36] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, Z. Jin, Building program vector re-
presentations for deep learning, International Conference on Knowledge Science,
Engineering and Management, Springer, 2015, pp. 547–553.

[37] F. Rahman, P. Devanbu, How, and why, process metrics are better, Proceedings of
the 2013 International Conference on Software Engineering, IEEE Press, 2013, pp.
432–441.

[38] R.K. Saha, M. Lease, S. Khurshid, D.E. Perry, Improving bug localization using
structured information retrieval, Automated Software Engineering (ASE), 2013
IEEE/ACM 28th International Conference on, IEEE, 2013, pp. 345–355.

[39] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth, Z. Szatmári,
D. Varró, Emf-incquery: an integrated development environment for live model
queries, Sci. Comput. Program 98 (2015) 80–99.

[40] L. Van Der Maaten, Accelerating t-sne using tree-based algorithms. J. Mach. Learn.
Res. 15 (1) (2014) 3221–3245.

[41] P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing
robust features with denoising autoencoders, Proceedings of the 25th International
Conference on Machine Learning, ACM, 2008, pp. 1096–1103.

[42] S. Wang, T. Liu, L. Tan, Automatically learning semantic features for defect pre-
diction, Proceedings of the 38th International Conference on Software Engineering,
ACM, 2016, pp. 297–308.

[43] M. White, C. Vendome, M. Linares-Vásquez, D. Poshyvanyk, Toward deep learning
software repositories, Mining Software Repositories (MSR), 2015 IEEE/ACM 12th
Working Conference on, IEEE, 2015, pp. 334–345.

[44] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering, Springer Science & Business Media,
2012.

[45] C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, H. Mei, Boosting bug-report-
oriented fault localization with segmentation and stack-trace analysis, Software
Maintenance and Evolution (ICSME), 2014 IEEE International Conference on, IEEE,
2014, pp. 181–190.

[46] Y. Xiao, J. Keung, K.E. Bennin, Q. Mi, Machine translation-based bug localization
technique for bridging lexical gap, Inf. Softw. Technol. (2018).

[47] Y. Xiao, J. Keung, Q. Mi, K.E. Bennin, Improving bug localization with an enhanced
convolutional neural network, Asia-Pacific Software Engineering Conference
(APSEC), 2017 24th, IEEE, 2017, pp. 338–347.

[48] X. Ye, R. Bunescu, C. Liu, Learning to rank relevant files for bug reports using do-
main knowledge, Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ACM, 2014, pp. 689–699.

[49] X. Ye, H. Shen, X. Ma, R. Bunescu, C. Liu, From word embeddings to document
similarities for improved information retrieval in software engineering, Proceedings
of the 38th International Conference on Software Engineering, ACM, 2016, pp.
404–415.

[50] M.D. Zeiler, Adadelta: an adaptive learning rate method, arXiv:1212.5701 (2012).
[51] S. Zhang, C. Zhang, Software bug localization with Markov logic, Companion

Proceedings of the 36th International Conference on Software Engineering, ACM,
2014, pp. 424–427.

[52] Y. Zhang, B. Wallace, A sensitivity analysis of (and practitioners’ guide to) con-
volutional neural networks for sentence classification, arXiv:1510.03820 (2015).

[53] J. Zhou, H. Zhang, D. Lo, Where should the bugs be fixed? More accurate in-
formation retrieval-based bug localization based on bug reports, Proceedings of the
34th International Conference on Software Engineering, IEEE Press, 2012, pp.
14–24.

[54] Z.-H. Zhou, J. Feng, Deep forest: towards an alternative to deep neural networks,
arXiv:1702.08835 (2017).

Y. Xiao et al. Information and Software Technology 105 (2019) 17–29

29

http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0005
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0012a
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0012a
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0012a
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0008
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0008
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0008
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0011
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0011
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0013
http://arxiv.org/abs/1606.04640
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0014
http://arxiv.org/abs/1408.5882
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0015
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0015
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0023
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0023
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0024
http://arxiv.org/abs/1301.3781
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0012b
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0012b
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0028
http://arxiv.org/abs/1703.02507
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0040
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0040
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0040
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0041
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0041
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0041
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0042
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0042
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0042
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0042
http://arxiv.org/abs/1212.5701
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0043
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0043
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0043
http://arxiv.org/abs/1510.03820
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0044
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0044
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0044
http://refhub.elsevier.com/S0950-5849(18)30165-4/sbref0044
http://arxiv.org/abs/1702.08835

	Improving bug localization with word embedding and enhanced convolutional neural networks
	Introduction
	Preliminaries
	Term frequency-Inverse document frequency (TF-IDF)
	Word embedding
	Convolutional neural network (CNN)
	Batch normalization

	DeepLoc
	Data pre-processing
	Word embedding
	Feature detecting
	Enhanced CNN training and prediction

	Experiments
	Experimental settings and evaluation metrics
	Research questions
	Results and analyses

	Discussion
	Threats to validity
	Internal validity
	Construct validity
	External validity
	Statistical conclusion validity

	Related work
	Our previous work
	Bug localization
	Deep learning in software engineering

	Conclusions and future work
	Acknowledgments
	References

