How Preprocessor Annotations (Do Not) Affect
Maintainability: A Case Study on Change-Proneness

Wolfram Fenske
University of Magdeburg
Magdeburg, Germany
wfenske@ovgu.de

Abstract

Preprocessor annotations (e. g., #ifdef in C) enable the de-
velopment of similar, but distinct software variants from a
common code base. One particularly popular preprocessor
is the C preprocessor, cpp. But the cpp is also widely criti-
cized for impeding software maintenance by making code
hard to understand and change. Yet, evidence to support this
criticism is scarce. In this paper, we investigate the relation
between cpP usage and maintenance effort, which we approx-
imate with the frequency and extent of source code changes.
To this end, we mined the version control repositories of
eight open-source systems written in C. For each system, we
measured if and how individual functions use cpp annota-
tions and how they were changed. We found that functions
containing cPP annotations are generally changed more fre-
quently and more profoundly than other functions. However,
when accounting for function size, the differences disappear
or are greatly diminished. In summary, with respect to the
frequency and extent of changes, our findings do not support
the criticism of the cpp regarding maintainability.

CCS Concepts -+ Software and its engineering — Soft-
ware product lines; Maintaining software;

Keywords preprocessors, annotations, variability, mainte-
nance, change-proneness

ACM Reference Format:

Wolfram Fenske, Sandro Schulze, and Gunter Saake. 2017. How
Preprocessor Annotations (Do Not) Affect Maintainability: A Case
Study on Change-Proneness. In Proceedings of 16th ACM SIGPLAN
International Conference on Generative Programming: Concepts and
Experience (GPCE’17). ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3136040.3136059

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5524-7/17/10...$15.00
https://doi.org/10.1145/3136040.3136059

Sandro Schulze
University of Magdeburg
Magdeburg, Germany
sanschul@ovgu.de

77

Gunter Saake
University of Magdeburg
Magdeburg, Germany
saake@ovgu.de

1 Introduction

Highly configurable software systems are widely used to
efficiently develop a whole set of similar programs and, thus,
flexibly adapt to different requirements, such as resource con-
straints or different platforms. Such systems are successful
mainly because development and maintenance takes place
in a single code base in which optional or alternative parts of
the implementation are expressed by variability implemen-
tation mechanisms. A popular mechanism are annotations,
such as the #ifdef directives provided by the C preprocessor,
cpp [12, 27, 32], which is shipped with the C programming
language [23]. By using #ifdefs, developers can indicate
code fragments that are only conditionally included in the
final program, depending on the evaluation of the expression
associated with the annotation. Due to its simple and lan-
guage-independent nature, the cpp is a powerful, expressive
means to implement variability [27].

Despite its advantages, the cpp is criticized for making
programs harder to understand and maintain, and for being a
frequent source of subtle errors [47, 13, 12, 28, 33, 32, 36]. For
instance, an excessive number of #ifdefs, complex feature
expressions, or the practice of annotating incomplete syntac-
tical units (so-called undisciplined annotations [28, 44, 34, 30])
may obfuscate the source code of the underlying program-
ming language, hindering program comprehension. Some
progress has been made on investigating the cpp critique
empirically [33, 44, 35, 32, 36, 30, 34], mainly focussing on
the discipline of annotations and errors related to cpp usage.
However, maintainability is only partially discussed [44, 30]
and only for specific types of annotations.

We extend this research by investigating the effects of
the cpp on maintainability. Specifically, we present a study
of the correlation between #ifdef usage and change fre-
quency as well as code churn, both of which are associated
with increased fault-proneness and maintenance effort, re-
spectively [9, 18, 10, 37, 45]. Our first objective is to find out
whether the presence of cpp annotations affects maintenance
effort. We investigate the following research questions:

RO 1: Is feature code harder to maintain than non-feature
code?

RQ 2: Does the presence of feature code relate to the size of
a piece of code?

For RQ 1, we consider different properties of annotation
usage, such as the number of #ifdef directives or nesting of

https://doi.org/10.1145/3136040.3136059
https://doi.org/10.1145/3136040.3136059
https://doi.org/10.1145/3136040.3136059

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

directives. With RQ 2, we acknowledge findings that many
metrics correlate with the size of a piece of code [11, 49, 39,
25, 19]. Size, in turn, correlates with various maintenance
aspects, such as change- and fault-proneness [45, 18].

Our second objective is understand how different proper-
ties of cpp annotations contribute their influence on mainte-
nance. As stated by previous studies, the shape of variable
code differs from system to system and even within a single
system [41]. Hence, insights into how the shape of annota-
tions (e. g., nesting, complex feature expressions, amount of
annotated code) affects change-proneness help developers
identify the main drivers of their maintenance efforts. More-
over, such information can be the basis for guidelines, best
practices, and new refactorings. We formulate the following
research question regarding our second objective:

RQ 3: Considering all properties of annotation usage and
size in context, what is the independent effect of each property
on maintainability?

To answer these questions, we analyzed how individual
functions use annotations and how they are changed. The
data were mined from the version control repositories of
eight open-source systems written in C. Statistical analy-
ses of this data suggest that functions with annotations are
changed more frequently and more extensively than other
functions. The difference, however, is small when differences
in function size are accounted for. In particular, we make the
following contributions:

e Quantitative insights into the relationship between
fine-grained annotation use and change-proneness,

e A methodology and publicly available tool support!
to mine fine-grained information on annotation use
and changes from version control repositories,

e Publicly available replication data.’

2 C Preprocessor-Based Variability

In this section, we summarize how the C preprocessor, cpp, is
used to implement variability in highly configurable software
systems. Moreover, we introduce the terminology we use to
characterize variable source code in this paper.

Invented as part of the C programming language, the task
of cpp is to transform C source code for subsequent compi-
lation by the C compiler. This transformation is controlled
by directives in the source code and by macros specified on
the command line or in the source code. Directives allow the
inclusion of definitions from other files (via #include) or
the definition (via #define) of short-hands, called macros,
which cpp will expand during preprocessing. Most impor-
tant for our work, however, is the family of directives that
enable conditional compilation. The members of this fam-
ily are #if, #else and #endif, as well as the convenience
forms #elif (for#else if),#ifdef (for#if defined)and
#ifndef (for#if !'defined).In the remainder of this paper,

https://wfenske.github.com/IfdefRevolver/ifdefs-vs-changes/

78

Wolfram Fenske, Sandro Schulze, and Gunter Saake

1 | sig_handler process_alarm(int sig __attribute__((unused))) {
2 sigset_t old_mask;

3 if (thd_lib_detected == THD_LIB LT &&

4 Ipthread_equal(pthread_self(), alarm_thread)) {
5 | #if defined(MAIN) && 'defined(__bsdi__)

3 printf("thread_alarm in process_alarm\n");

7 fflush(stdout);

8 | #endif

9 | #ifdef SIGNAL_HANDLER_RESET_ON_DELIVERY

10 my_sigset(thr_client_alarm, process_alarm);

11 | #endif

12 return;

13 }

14 | #ifndef USE_ALARM_THREAD
15 pthread_sigmask(SIG_SETMASK, &full_signal_set, &old_mask);

16 mysql_mutex_lock(&LOCK_alarm);
17 | #endif
18 process_alarm_part2(sig);

19 | #ifndef USE_ALARM_THREAD
#if !defined (USE_ONE_SIGNAL_HAND) && defined(
SIGNAL_HANDLER_RESET_ON_DELIVERY)
21 my_sigset(THR_SERVER_ALARM, process_alarm);
#endif
mysql_mutex_unlock(&LOCK_alarm);
pthread_sigmask(SIG_SETMASK, &old_mask, NULL);

25 | #endif
26 return;
27 |}

Figure 1. Example of a function in MySQL making heavy
use of #ifdefs to implement variability.

we will refer to these directives as #ifdefs. Conditional com-
pilation allows including or excluding pieces of source code
during compilation depending on some condition. When
cpp encounters an opening #ifdef, it evaluates the corre-
sponding expression. If this expression evaluates to true, the
following code is further preprocessed. Otherwise, cpp takes
the code in the #else branch into account, if there is one.
Conditional preprocessing stops at the closing #endif.
Conditional compilation is frequently used to implement
variability in highly configurable software systems [1, 27].
In these systems, code that implements a particular feature
(a.k. a. feature code) is guarded by #ifdefs. The expression
controlling the #ifdef is called a feature expression. In this
context, a feature is a requirement that is important to a
customer or some other stakeholder [1], and the name of the
macro in the feature expression is called a feature constant.
In Figure 1, we show an exemplary function from MySQL
version 5.6.17 that makes heavy use of #ifdefs to implement
variability. The function contains five blocks of feature code,
e.g., on Lines 5-8, and 9-11. The last block, on Lines 20-22,
is nested within the block on Lines 19-25. The cpp will only
consider that last block if the feature expression of the outer
block is true. Most feature expressions in this example are
atomic, that is, they only depend on a single feature constant.
For instance, the expression on Line 14 only depends on
USE_ALARM_THREAD. Atomic expressions can be combined
using boolean operators to form complex expressions. For
instance, the expression on Line 5 means that the feature

https://wfenske.github.com/IfdefRevolver/ifdefs-vs-changes/

How Preprocessor Annotations (Do Not) Affect Maintainability

code on Lines 6 and 7 is only included if the feature constant
MAIN is defined and if __bsdi__ is not.

The use of #ifdefs leads to tangling and scattering. Both
are believed to make code hard to understand and change [47,
12]. Tangling means that code related to one feature is mixed
with code related to other features. Tangling is caused by
complex feature expressions, nesting, or a combination of
both (see Lines 5, 19 and 20 in the example). Scattering means
that code related to one feature is located in multiple places.
In the example, SIGNAL_HANDLER_RESET_ON_DELIVERY is
implemented by code scattered across Lines 10 and 21.

3 Methodology and Research Design

In this section, we present the design of our exploratory
study, including research hypotheses, data collection, and
statistics to test our hypotheses.

3.1 Measuring Maintainability

In Section 1, we introduced three research questions, aimed
at two objectives. First, we want to investigate whether the
presence of cpp annotations affects maintainability. Second,
we want to gain insights into the individual, independent
effect of specific properties of cpp annotations on maintain-
ability. For both objectives, we need a measure for main-
tainability. Unfortunately, a direct measurement requires
(controlled) experiments. This limits the number of systems
and annotations to be investigated. Hence, we use change-
proneness as a proxy for maintenance effort. Change-prone-
ness comes in two flavors: the frequency of changes (e. g.,
used in Khomh et al. [24, 25]) and the amount of changes
(a.k.a. code churn; e. g., used in [42]). While the former is a
good predictor of later defects [9, 18], the latter correlates
with the effort of developers when performing maintenance
tasks [10, 37, 45]. Our study considers both measures.

The level of granularity of our analysis is crucial. As cpp an-
notations can be used at a fine grain, a similarly fine-grained
analysis is required to investigate possible effects. Hence,
our analysis works at the function level, i. e., we measure
annotation use and changes for each function individually.

3.2 Null-Hypotheses

In this section, we state the null-hypotheses for our research
questions. Since we use two proxies of maintenance effort,
we formulate two null-hypotheses for each question.

RQ 1 For the first question, we define four properties of
preprocessor use: (1) Whether a function contains an #ifdef
directive, (2) whether the #ifdef directives in a function
reference two or more feature constants, (3) Whether the
function contains nested directives, (4) Whether the direc-
tives in a function use negation. Note that each #ifdef direc-
tive references at least one feature constant. Therefore, we
chose two feature constants as the threshold for the second

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

property to distinguish it from property one. For each prop-
erty, we investigate whether functions with this property are
more change-prone than functions without. To this end, we
formulate the following null-hypotheses and test them for
all four properties (though we formulate them in general).

Hy 1.1 Functions exhibiting a specific property of preprocessor
use are changed just as frequently as functions without
the property.

Hy 1.2 Functions exhibiting a specific property of preprocessor
use are changed just as profoundly as functions without
the property.

RQ2 Weinvestigate the relationship between preprocessor

usage and size by testing this null-hypothesis:

Hp 2.1 The extent of preprocessor usage in functions is unre-
lated to the size of the functions.

Moreover, we normalize the frequency and amount of
changes by function size and reevaluate the answers to RQ 1
using these normalized measures. Again, we focus on the
properties defined for RQ 1. The null-hypotheses are:

H 2.2 The number of changes normalized by function size is
equal for functions with and without a specific property
of preprocessor use.

Hg 2.3 The number of lines changed normalized by function
size is equal for functions with and without a specific
property of preprocessor use.

RO 3 InRQ1andRQ 2, different properties of preprocessor
usage are studied in isolation. For RQ 3, we investigate their
combined effect and test the following null-hypotheses:

Hy 3.1 When seen in combination, also taking function size
into account, different aspects of annotation usage do
not affect how frequently functions are changed.

Hy 3.2 When seen in combination, also taking function size
into account, different aspects of annotation usage do
not affect how profoundly functions are changed.

3.3 Subject Systems

We chose our subjects from a set of well-known systems
used in previous studies of preprocessor usage [27, 21, 41].
We used the following seven criteria to guide our selection.
1. implemented in C (as it uses cpp)
2. considerable fraction of feature code (since it is of main
interest in our study)
3. open-source software (as we need access to the reposi-
tory for extracting change information)
4. GIT version control system (due to our tooling)
5. considerable development history (to minimize the
effect of outliers in small data sets)
6. at least medium-sized so that a sufficient amount of
feature and non-feature code is available
7. systems from different domains (to avoid bias).
Based on these criteria, we selected eight systems for
which we give an overview in Table 1. In particular, we

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

Wolfram Fenske, Sandro Schulze, and Gunter Saake

Table 1. Subject Systems

System Analyzed Period Commits Files f (annot.) KkLOC (annot.) Domain
APACHE 1/1996 - 5/2017 55767 320 5035 (7.4%) 150.8 (3.9%) Webserver
BusyBox 10/1999 - 5/2017 14993 641 4446 (14.6%) 134.0 (11.6 %) Unix command line tool suite
GLIBC 5/1972-4/2017 45112 8277 11337 (9.6%) 330.7 (7.2%) GNU version of the C standard library
LIBXML2 7/1998 - 6/2017 4623 111 5653 (253%) 179.4 (19.0%) XML parser and toolkit
OPENLDAP 8/1998 - 6/2016 29566 514 5402 (12.0%) 2293 (6.5%) LDAP directory service
OPENVPN 9/2005 - 6/2016 2304 92 1963 (16.5%) 45.0 (12.9%) Secure network communication

PipGiN 3/2000 - 6/2017 38656 623 13248 (4.2%) 2837 (3.4%) Instant messaging client

SQLITE 5/2000 - 5/2017 18722 249 6804 (10.5%) 1835 (9.0%) Database management system

specify the number of .c files (based on the latest version),
the number of function definitions (column “f”), and, in
parentheses, the percentage of functions using preprocessor
annotations. Moreover, we report the number of non-blank,
non-comment lines of code comprised by function defini-
tions (column “kLOC;”) and, in parentheses, the percentage
of that code enclosed in annotations.

Note that the average percentage of feature code in our
subject systems is 9.2 %, much lower than the 24 % that Hun-
sen et al. reported for their subjects [21]. This difference
is rooted in the way we measure feature code. Hunsen et
al. measure feature code on the file level. Thus, if a whole
function definition is enclosed in an #ifdef directive, they
count the whole function definition as feature code. We, by
contrast, measure feature code on the function level. Thus,
we only consider a line as feature code if the enclosing
#ifdef directive is inside the function body.

3.4 Data Collection

In this section, we describe which data we collected from
our subject systems and how. The data falls into two cate-
gories: first, static source code properties (e. g., the number
of #ifdefs in a function) and second, change metrics (e. g.,
the number of lines added or deleted). We list the metrics in
Table 2 and Table 3. We discuss them in detail in Section 3.5.

Our data collection process comprises five tasks. First,
we identify all relevant commits from the subject’s repos-
itory. Second, we group relevant commits into snapshots,
which can be seen as time slices of the system’s development
history. Third, we extract the proposed static and change-
centric metrics for each snapshot. Fourth, we exclude snap-
shots exhibiting anomalies that might confound our analysis.
Finally, snapshots are combined into larger units, called com-
mit windows. Next, we describe these tasks in detail.

Identifying relevant commits As the first step in our data
collection process, we extract all relevant commits from the
respective GIT repository. A commit is relevant if it modifies
at least one . c file as this is where functions in C are defined.
Commits that only modify header files, shell scripts, etc. are
irrelevant. We also ignore merge commits, which are created
when integrating changes from another branch.

80

Creating snapshots Enhancements, bug fixes, etc. are in-
creasingly developed in different branches. Upon task com-
pletion, all commits of a branch are merged into the master
branch. Since many branches can exist in parallel, chrono-
logically consecutive commits may not represent logically
consecutive steps of development. To restore the logical or-
der, we group commits into chains, where each chain forms
an unbroken sequence of commits that are in a parent-child
relationship. For merge commits, which have more than one
parent, we must decide which chain to end and which to
continue. To this end, we use a simple greedy heuristic that
favors creating longer chains over shorter ones. Since the
chains can comprise different numbers of commits, we di-
vide them into equal-sized snapshots, so that all snapshots
represent roughly the same development effort.

Determining snapshot size is a trade-off between speed
and precision. While smaller snapshot sizes increase storage
consumption and analysis time, too large snapshots bear the
risk of losing information, thus, confounding our analysis.
In particular, we compute our static metrics (cf. Table 2) just
once per snapshot. Hence, if snapshots are too large, these
metrics may become invalid due to excessive changes in the
course of the snapshot. Also, the risk increases that functions
are added in the middle of a snapshot, which we would miss
as we only track changes to functions that already exist at the
beginning of a snapshot. To determine an appropriate size,
we performed an initial experiment with snapshot sizes of
50, 100, 200, and 400 on OPENLDAP.? We found few negative
effects for a snapshot size of 50, and only slightly more for
100. Afterwards, negative effects increase noticeably. As a
compromise between quality and speed, we chose 100 as the
snapshot size for all systems.

Processing snapshots FEach snapshot is processed in five
steps, (1) checkout, (2) preprocessing, (3) gathering static
source code metrics, (4) change analysis, and, finally, (5) com-
bining static metrics and change information.

The first step is to checkout the first revision of each
snapshot and copy all .c files to a dedicated directory.

In the second step, preprocessing, the files are converted to
SrcML [4], an XML representation that is easier to parse than

Detailed results can be found on the complementary website.

How Preprocessor Annotations (Do Not) Affect Maintainability

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

Table 2. Static source code metrics extracted for each function

Metric Description
FL Number of blocks annotated with an #ifdef. An #ifdef containing a complex expression, such as #1f defined(A) && defined(B),
counts as a single feature location. An #ifdef with an #else or #elif branch counts as two feature locations.
FC Number of feature constants referenced by the feature locations in the function. Constants referenced multiple times are counted only once.
CND Cumulative nesting depth of annotations. An #ifdef that is not enclosed by another #ifdef (a top-level #ifdef) has a nesting depth of 0;
an #ifdef within a top-level #ifdef has a nesting depth of 1, and so on. CND is accumulated over all feature locations within the function.
Thus, for example, if there are two feature locations in a function, each with a nesting depth of 1, CND of the function will be 2.
NEG The number of negations in the #ifdef directives in a function. Both #ifndef Xand #if !defined(X) increase NEG by 1. #else branches
also increase NEG because #if <expr> ... #else ... istreated as #if <expr> ... #endif #if !<expr> ...
LOAC Source lines of code in all feature locations within the function. Lines that occur in a nested feature location are counted only once.
LOC Source lines of code of the function, ignoring blank lines and comments.
LOACoc Proportion of LOAC to all code in the function, i.e., LOAC / LOC.

Table 3. Change metrics extracted for each function

Metric Description
COMMITS The number of commits that have modified the func-
tion definition.
LCHG The number of lines added plus the number of lines
removed, accumulated over a period of time.
COMMITS;;oc The number of commits to a function divided by its
LOC.
LCHG/joc The number of lines changed in a function divided
by its LOC.

raw C code. Using the SrcML representation, comments and
empty lines are removed. Moreover, #ifdefs are normalized
to ease subsequent analysis. For instance, #ifndef FEATURE
is transformed to the equivalent #if !'defined(FEATURE).

Third, we parse all SrcML files to identify the function
definitions that exist at the beginning of the snapshot. For
each function, we collect the metrics listed in Table 2.

In the fourth step, we analyze each commit within the
snapshot. For each modification we identify, we determine
the function definition it belongs to and how many lines
of code were added to or removed from the function body.
Subsequently, we aggregate this change data for all commits
of the snapshot, yielding the metrics listed in Table 3.

Finally, the data from the previous two steps is combined.
The result is a list of all functions in the snapshot, along
with their static source code metrics and change information
(amount and frequency).

Exclusion of snapshots Several subject systems contain
a small number of anomalous snapshots. To prevent them
from distorting our analyses, they are excluded. For instance,
OPENLDAP includes a snapshot from mid 2011, starting at
revision d620d4368 and consisting of only two files related
to a helper library. By contrast, the snapshots immediately
before and after this one comprise around 470 files. As there
may be several reasons for such anomalies, we checked for
such snapshots manually and excluded them.

81

Formation of commit windows The small number of com-
mits within our snapshots restrains our ability to observe

functions that undergo a large number of commits and heavy

changes. This makes it difficult to distinguish between func-
tions that are truly change-prone and those that are not.

We thus grouped 10 snapshots each into a commit win-
dow. To preserve the logical order of changes, only snapshots
belonging to the same chain were grouped. If less than 10
snapshots were left within a chain, we discarded them. How-
ever, this was the case for only a few snapshots.

During grouping, we match records from multiple snap-
shots that belong to the same function and aggregate them
into a single record. As a result, the aggregated record is com-
puted by averaging the static metrics (e. g., LOC), summing
up the change metrics (e. g., COMMITS), and recomputing
the ratios (e. g., COMMITS, o¢).

Compared to the individual snapshots, the frequency and
amount of changes captured by a commit window increases
substantially. For example, in OPENLDAP, the average amount
of changed functions per window increased from 7 % to 31 %.
Among the changed functions, the portion of functions un-
dergoing more than one commit rose from 23 % to 44 %. In
summary, commit windows facilitate the distinction between
change-prone functions and other functions and makes our
analysis more robust.

3.5 Statistical Analyses

We answer our research questions by investigating corre-
lations between the use of preprocessor annotations and
change-proneness. To this end, we apply different statistical
methods. In this section, we describe those methods and the
independent and dependent variables involved.

3.5.1 Answering RQ1

We use a binary classification scheme to test Hy 1.1 and Hy 1.2.
Basically, we combine the data of all commit windows for
a system into one large data set, which is then split into
an experimental group and a control group. Functions that
exhibit one of the four properties of preprocessor use defined

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

in Section 3.2 belong to the experimental group, the others
to the control group. We then test if and how much change-
proneness differs between experimental and control group.

Due to the four different properties, we create four pairs
of experimental and control group, one for each property.
To this end, we introduce four binary variables, fl.¢, fc>1,
cnds, negsg, which serve as our independent variables. The
definitions are: Let f be a function, then fI_o=1if f’s value
for the FL metric exceeds 0; otherwise, f1_ o =0. We define
the other variables similarly, based on the corresponding
metrics. Given these definitions, a function belongs to the
experimental group if and only if the respective variable is 1.

To test Hy 1.1, we consider COMMITS as our dependent
variable and apply the Mann-Whitney-U test. The test will
reveal if there is a statistically significant difference in the
values of COMMITS in the experimental group, compared to
the values of COMMITS in the control group. If the difference
is significant, we compute the effect size, which tells us how
big the difference is. To this end, we compute Cliff’s Delta [2].
We proceed in the same way to test Hy 1.2, with the exception
that LCHG is our dependent variable.

3.5.2 Answering RQ2

We answer this question in three steps. First, we investigate
whether the metrics FL, FC, CND, and NEG correlate with
LOC. To this end, we compute the Spearman rank correlation
coefficients [3]. We test Hy 2.1 based on the test outcomes.

Second, we create an additional pair of experimental and
control group to investigate the effect of size alone on change-
proneness. To this end, we introduce a new (binary) indepen-
dent variable, loc*. For functions whose LOC value is above
the median LOC of all functions, loc*=1. These functions are
in the experimental group, the others (i. e., loc*=0) are in the
control group. The dependent variables are COMMITS and
LCHG, and we perform the same tests as in Section 3.5.1.

Finally, we test Hy 2.2 and Hy 2.3 by repeating the tests
for RQ 1, but based on a definition of change-proneness that
takes function size into account. In testing Hy 2.2, we use
COMMITS) oc (see Table 3) as the dependent variable, which
is the number of changes to a function, divided by the func-
tion’s size. In testing Hy 2.3, we use LCHG/1o¢ (also in Ta-
ble 3), the number of lines changed in a function, divided by
the function’s size.

3.5.3 Answering RQ3

For the previous research questions, we simplified our analy-
sis to a binary classification, i. e., whether code is annotated
or not. While this gives initial insights, it prevents us from
studying the individual contribution of each independent
variable when put in the context of other variables. More-
over, we cannot study the relationship between independent
and dependent variables over the whole range of values.
Hence, for RQ 3, we create multivariate regression models
for each of our subject systems. These models handle the

82

Wolfram Fenske, Sandro Schulze, and Gunter Saake

full range of values and reveal for each independent variable
how much it contributes to change-proneness, and whether
the contribution is statistically significant.

We include the metrics FL, FC, CND, NEG, LOAC,oc and
LOC in our models. LOC is included in log-transformed
form, as log,(LOC). The other metrics are not transformed.
LOAC/ oc is included to investigate the influence of the
amount of annotated code in a function. We chose LOAC1oc
over LOAC because LOAC correlates more strongly with
LOC, potentially causing multicollinearity problems. Calcu-
lation of the variation inflation factor (VIF) [8] of different
model variants proved LOAC/.oc to be less problematic.

We create regression models for each of our subject sys-
tems. Because we consider two dependent variables, COM-
MITS and LCHG, two models are created for each subject. As
input, we use the combined data of all commit windows of a
system. Again, we focus on COMMITS to test Hj 3.1, and on
LCHG to test Hg 3.2.

Our dependent variables constitute count data, which we
found not to be normally distributed. This ruled out many sta-
tistical methods, which assume a normal distribution. Also, a
Poisson distribution cannot be used to describe our counts, as
we found strong evidence of overdispersion [8], i. e., the vari-
ance exceeds the mean. Hence, we chose negative binomial
regression [20], which estimates the coefficients 1, 2 . . . fn
of the formula

(1)
In this formula, v, is the dependent variable (e. g., COM-
MITS), vi1,Viz . .. Ui are the independent variables (e. g.,
FL, log,(LOC)), and intercept is a constant. A coefficient de-
scribes the magnitude of the effect of an independent variable.
Regression also estimates whether the effect is significant.

We report significance and effect size based on the regres-
sion estimates. Moreover, we report the McFadden statistic
of each model as a measure of how well the model predicts
the dependent variable [31].

In(vg) = intercept + P1vi1 + Paviz - . . PnVin

4 Results

In this section, we present the results of our analysis. We
mostly report aggregated values, e.g., values aggregated
over all subjects systems. To characterize the average and
the variation of aggregated values, we report the arithmetic
mean (M) and standard deviation (SD) in the format M+SD.

4.1 ROQ1: Preprocessor Usage and Change-Proneness

Hy 1.1 We show the results for preprocessor usage and
change frequency in the upper part of Table 4, indicated by
the dependent variable COMMITS. Column “Sig”” refers to the
number of subjects where the difference in change frequency
between experimental and control group was significant
at p<0.01. The number of insignificant results is given in
parentheses. Additionally, we report the effect size in column
“Cliff’s Delta” The effect size d is negligible if |d|<0.147, small

How Preprocessor Annotations (Do Not) Affect Maintainability

Table 4. Effect of Individual Annotation Metrics on Changes

Independent Dependent ‘ Sig.! ‘ Cliff’s Delta ‘ Magnitude?

floo COMMITS 8(0)| 0.27¢0.11 |O O ©
fes1 COMMITS 8(0)| 0.39+0.12 |O © @
cndsy COMMITS 8(0) | 0.40+0.14 | O © @
negso COMMITS 8(0)| 0.32¢0.12 |O O ©
flso LCHG 8(0) | 0.2740.11 | O O ©
fes1 LCHG 8(0)| 0.39¢0.12 |O © @
cndso LCHG 8(0) | 0.40+0.14 | O © @
neg-o LCHG 8(0) | 0.324¢0.11 | O O ©
loct COMMITS 8(0) | 0.24+0.05 |O O O
loc* LCHG 8(0) | 0.2540.05 | O O O
fl>0 COMMITS/LOC 7(1) 0.22+0.07 O O O
fes1 COMMITS oc| 8(0) | 0.27£0.09 | O O ©
cnd= COMMITS/LOC 7(1) 0.29+0.08 O O ©
neg-o COMMITS;oc 8(0) 0.24+0.10 - O ©
flso LCHG0c 8(0)| 0.2240.10 | - O O
fC>1 LCHG/ 0c 8(0) 0.31+0.10 O O ©
cndso LCHGjoc 8(0)| 0.32¢0.12 | O O ©
negso LCHG/ 0c 8(0) 0.27£0.10 O O ©

! Number of subject where the difference was significant at p<0.01 or not
significant (in parentheses).

2 Magnitude of d (Cliff’s Delta), for M(d)-SD(d), M(d), and
M(d)+SD(d). - :negligible, O : small, © : medium, @ :large

if |d]|<0.33, mediumif |d|<0.474, and large otherwise [17]. We
depict the magnitude of the effect (cf. column “Magnitude”)
for three cases: (a) one standard deviation below the mean
value of d, (b) for the mean value of d and (c) for one standard
deviation above the mean value of d.

Our data reveal a medium positive correlation to COM-
MITS for fc-o and cnds(, and small positive correlations
for fl.; and neg-. Out of all properties, cumulative nest-
ing (cndso) has the largest effect (d=0.4+0.14). Regarding all
subjects, we observed the smallest effect, averaged over all
four properties, for GLIBC (d=0.19+0.08), and the largest one
for SQLITE (d=0.45+0.08). Differences in change frequency
are highly significant for all eight subjects (p<0.01).

Based on these statistics, we conclude that preprocessor
annotations have an effect on change frequency, thus, re-
Jjecting Hy 1.1. Instead, we accept the following, alternative
hypothesis: H, 1.1: Regarding the four properties of prepro-
cessor use defined in Section 3.2, functions exhibiting those
properties are changed more frequently than other functions.

Hj 1.2 We show the results regarding preprocessor usage
and the extent of changes in the upper half of Table 4, indi-
cated by the dependent variable LCHG. As for Hj 1.1 before,
correlations are highly significant, with small to medium av-
erage effect sizes. The subjects with the smallest and largest
overall effects are the same one as for RQ 1. They are GLIBC
(d=0.240.08) and SQLITE (d=0.45+0.08).

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

Hence, we reject Hy 1.2,too, and accept the alternative hy-
pothesis H, 1.2: Regarding the four properties of preprocessor
use defined in Section 3.2, functions exhibiting those properties
are changed more profoundly than other functions.

4.2 RQ2: Preprocessor Usage and Function Size

As shown by previous studies, function size may also influ-
ence source code characteristics, and thus, may confound
our results for RQ 1. Hence, we investigate the relation of
function size and our four preprocessor properties. To this
end, we initially illustrate this relation by means of Figure 2.
In particular, we consider the metrics that correspond to our
preprocessor properties (FL, FC, CND, and NEG) as indepen-
dent variables and relate them to function size (measured in
LOC) as the depend variable. For each independent variable,
we differentiate between three metric values (0,1 and 2 or
greater), resulting in three boxplots per metric. The width of
each box depends on the number of functions, with wider
boxes representing more functions. Due to limited space, we
show only the boxplots for OPENLDAP, though the other
subjects reveal the same trends.

Our plots reveal that all four annotation metrics correlate
positively with function size, indicating that functions with
more CPP annotations are, on average, longer. Moreover, with
increasing metric values (a) function size varies more (indi-
cated by longer whiskers), and (b) the number of functions
decreases considerably (indicated by leaner boxes).

O J i I S |
L «— - - ‘
o % 777777 { Number of functions
W 53770 @ 3378 O 8509
& - e e ‘
g - v |
o % 777777 { Number of functions
W 54540 @ 7958 O 3159
O [— — TP PR
s\

CND
1
I

Number of functions

o |
W 64410 @ 302 O 945

& (S W - - - - - - - - - - = = == = == == === === == ‘
(u? - - - ---------- 4
z
o % 7777777 { Number of functions
W 58925 @ 3662 [3070
T T T T T
0 100 200 300 400
LOC

Figure 2. Size and number of functions for different values
of FL, FC, CND, and NEG in OPENLDAP

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

In summary, we conclude that functions making heavy use
of (complex) cpp annotations tend to be considerably larger.
Moreover, such functions occur less frequently compared to
functions that make no use of cpp annotations.

Hjp 2.1 We calculated Spearman’s rank correlation coefli-
cient, rs, to measure the relationship between annotation
metrics and function size. The values of rs range from -1
to +1, indicating strong positive or strong negative correla-
tions, respectively. The correlation is very weak for |rg|<0.2,
weak for 0.2<|rs|<0.4, moderate for 0.4<|rs|<0.6, strong for
0.6<|rs|<0.8, and very strong for |rs|>0.8.

We show correlation coefficients, summarized over all
subjects, in Table 5. As already indicated by Figure 2, all
annotation metrics correlate positively with function size,
with CND being the least (r;=0.14+0.04) and FL being the
most correlated (r;=0.34+0.07). The correlation is significant
(p<0.01) for all subjects, but generally weak (rs<0.4).

Based on these results, we reject Hy 2.1 for all four annota-
tion metrics and accept the following alternative hypothesis:
H, 2.1: Functions using preprocessor annotations to a greater
extent than other functions will, on average, also be larger.

Function size and change-proneness While H; 2.1 con-
firms a relation between cpp annotations and function size, it
remains open whether function size solely has an impact on
change-proneness. We summarize the corresponding results
in the middle part of Table 4. Our data reveals that there
is a positive effect of function size on both, frequency and
amount of changes. All results are significant. Although the
effect is small, it varies little between subjects.

Hy 2.2 To mitigate the effect of function size on change-
proneness, we normalize change frequency by function size.
Our data reveal that all effects compared to Hy 1.1 have dimin-
ished, that is, the mean effect size decreases. However, the
standard deviations remain similar, indicating less stability
of the effects across subjects. Notably, all properties except
cndso had negligible effects in GLIBC. By contrast, in OPEN-
VPN, we observed two medium-large effects for fc.; and
cndsg (d=0.4). Two results for LIBXML2 were insignificant
(for fl.¢ at p=0.61 and cnd- ¢ at p=0.07).

Based on these results, we reject Hy 2.2 and accept the
alternative hypothesis H, 2.2: Regarding the four properties
of preprocessor use defined in Section 3.2, functions exhibit-
ing those properties are changed more frequently than other
functions, given a normalized change frequency.

Hy 2.3 Similarly to Hy 2.2, we normalize the amount of
changes and show the results in the last four rows of Ta-
ble 4. The results are similar in that effects have diminished.
The mean effects are small and range from d=0.22+0.10 (for
flso) to d=0.32+0.12 (cnd~(). All results are significant.
Based on these results, we reject Hy 2.3 for all four proper-
ties and accept the following alternative hypothesis. H, 2.3:

84

Wolfram Fenske, Sandro Schulze, and Gunter Saake

Table 5. Correlation of Annotation Metrics & Function Size

FL
0.34+£0.07

FC
0.33 £0.07

CND
0.14 £ 0.04

NEG
0.22 £0.06

Metric
rs

Regarding the properties stated in Section 3.2, functions ex-
hibiting one of those properties are changed more profoundly
than other functions, given a normalized change profundity.

4.3 Putting RQ 1 and RQ2 in Relation

As detailed in the above paragraphs, our data reveal consider-
able differences in change-proneness between RQ 1 and RQ 2.
Given the only difference is the normalization wrt. function
size, our data indicate that function size has a major impact
on change-proneness of annotated functions. To visualize
this observation we show the corresponding measurements
(i. e., number of commits and number of lines changed) for
the FL in Figure 3 and Figure 4 for OPENLDAP.

Change frequency: In Figure 3, we show how change-fre-
quency evolves with and without normalization. We chose
commit windows as the unit on the x-axis and the average
COMMITS per function (left side) and per LOC (i. e., number
of commits to a function divided by function size; right side)
as the unit of the y-axis. We computed these averages for
three different values of the FL metric: 0, 1, and >1, indicat-
ing no, one and more than one location(s) that are annotated
with #ifdef. The trend for each group of functions is indi-
cated by the red, green, and blue smoothing lines.

When comparing the two plots in Figure 3, we can observe

two peculiarities. First, the number of commits generally de-
creases with ongoing evolution, with a slight exception for
the metric value FL=1. Second, when comparing the two
charts, there are differences regarding the values for FL. In
particular, for the left (unnormalized) chart, the number of
commits correlates with the metric value, i. e., the higher the
value, the higher the number of commits. However, when
normalizing the change frequency by function size, this dif-
ference disappears, and thus, in the right chart, almost no
differences can be observed. This observation coincides with
our data in Table 4, indicating that the number of #ifdef di-
rectives has a rather low impact on change frequency when
normalized to function size.
Extent of changes: In Figure 4, we show the evolution for
the extent of changes over time. To this end, we display the
average LCHG (number of lines changed) per function (left
side) and per LOC (i. e., lines changed in a function divided
by function size; right side) on the y-axis. The grouping,
symbols, and colors are the same as in Figure 3.

The observations when comparing the two charts are sim-
ilar to those, made for change frequency, that is, when nor-
malizing LCHG by function size, the effect of cpp annotations
dissolve. However, we also found a difference for the extent
of changes: in the range of commit window 1-8, the (right)

How Preprocessor Annotations (Do Not) Affect Maintainability

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

w

FL

~

—-— 1

>

>1

Commits/Function

8
Commit Window

Commits/LOC

FL

—-— 1
>1

0.01-

Commit Window

Figure 3. Raw change frequency (left side) and normalized change frequency (right side) for different values of FL in OPENLDAP

50~

40-

30-

20-

Lines changed/Function

Commit Window

Lines changed/LOC

Commit Window

Figure 4. Raw lines changed (left side) and normalized lines changed (right side) for different values of FL in OPENLDAP

chart actually shows a difference, indicating an impact of the
annotations (i. e., the FL metric) and the amount of changes,
even though normalized. While we can not explain this pecu-
liarity, it coincides with the data of Table 4, which revealed
a higher effect for the LCHG/LOG metric than for the COM-
MITS/LOC metric. Hence, we conclude that, especially in
early development stages, the number of annotations has an
impact on the extent of changes, even when normalized by
functions size; however, this this observation is inconsistent
as it dissolves in later stages of development.

Summary: We created similar plots for the other subjects
and for the other metrics (FC, CND, and NEG), observing the
same trends as presented above. We conclude that apparent
differences in change-proneness between functions with pre-
processor annotations and functions without them are best
explained by differences in function size. By itself, the pres-
ence of preprocessor annotations has a small, inconsistent
effect on change-proneness.

4.4 RQ3: Independent Effects

The results discussed so far indicate that function size is
the main driver of maintenance effort, whereas cpp annota-
tions have only a minor, inconsistent effect. However, we
still lack insights into the independent effects of our inde-
pendent variables when all are considered in context. To
investigate these effects, we created regression models for
all independent variables, with results shown in Table 6.
Column “v;” contains the name of an independent variable
and the next three columns contain the exact results for the
models created for one example subject (here: OPENLDAP).
“B” is the coefficient estimate, “z” is the z-score, and p the
significance level. The following columns summarize the
models for all subjects by computing the averages. These

85

averages only include coefficients and z-scores of indepen-
dent variables that are significant at p < 0.01. If a variable
was not significant for a subject, its coefficient and z-score is
excluded. The last column, “Sig””, is the number of subjects
where the independent variable was significant.

If the regression did not converge, we excluded the corre-
sponding model values from the summary in the table. This
was the case for L1BXxML2, where neither the model for Hy 3.1,
nor for Hy 3.2 converged.’

The coefficient estimates have the following meaning: Let
Bi be the coefficient of the independent variable v;. If the
values of all other independent variables are held constant,
then an increase of v; by 1 will result in the dependent vari-
able being multiplied by 1 + . For instance, the coefficient
of FC is 0.06 in the COMMITS model of OpENLDAP. Then,
for a function f in OPENLDAP, if f’s FC increases by 1 (i.e.,
one more feature constant in f), we expect f’s COMMITS to
rise to 1.06 its previous value. Put differently, COMMITS will
increase by 6 %. The Intercept summarizes the average effect
of independent variables that are not part of our models.

The z-score is the coefficient estimate divided by its stan-
dard error. High absolute values of |z| indicate that the in-
dependent variable reliably predicts the dependent variable.
They also correspond to high significance levels. Conversely,
low values, especially < 2, indicate unreliable predictors.

Hy 3.1 For change frequency (in OPENLDAP), our data re-
veal that metrics FL and NEG are not significant at p < 0.01.

3We suspect that L1BXML2’s test suite causes the convergence problems.
Regression does converge if functions and files whose name contains “test”
are omitted. The test suite functions use annotations a bit more than other
functions (p <«0.01, d=0.14+0.14, negligible to small effects), but change
less (p<0.01, d=—0.41, medium effect). This goes against the trend that
functions with more annotations also change (a bit) more.

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

Table 6. Regression Models for RQ 3

‘ v; p z P ‘ p z Sig.

| | OPENLDAP | All Systems
(Intercept) | -3.48 -120.5 <0.001 | -3.16+0.44 -98.4+37.2 7
- FL | -0.00 -0.1 0.939 | -0.11£0.06 -5.1+01.9 4
= FC| 0.06 5.7 <0.001| 0.20+0.19 7.3x01.5 6
é CND | -0.06 -7.8 <0.001] -0.07+0.02 -7.0+01.7 3
8 NEG | 0.02 1.9 0.058 | -0.00£0.14 -1.1£09.9 3
LOACoc| 066 139 <0.001| 0.44+0.25 7.5+049 6
log,(LOC) | 0.58 1044 <0.001| 0.54+0.05 79.9+29.4 7
(Intercept) | -2.83 -69.9 <0.001 | -2.71+0.43 -59.3+21.4 7
FL| 0.00 03 0.729 na na 0
IO FC | -0.04 -1.8 0.071 | 0.23+0.20 3.2+00.3 2
% CND | -0.04 -2.9 0.003 | -0.06+0.02 -3.6+01.0 2
~ NEG | 0.02 1.1 0.268 | 0.02+0.16 0.6+£05.5 2
LOAC/ oc | 0.96 109 <0.001 | 0.69+0.30 6.4+03.6 5
log,(LOC) | 0.87 101.1 <0.001| 0.87+0.04 83.5+29.4 7

Consequently, neither metric is consistently correlated with
change frequency. All others metrics are significant, but with
small coefficients (e. g., FC, CND, NEG). For instance, the co-
efficient for FC is 0.06, thus, 16 additional feature constants
are required for COMMITS to double. Given that over all
subjects, functions with FC > 16 account for only 0.04 % of
all functions (0.03 % for OPENLDAP), this is rather unrealistic.
Moreover, we have to consider that functions rarely change.
Averaged over all systems, functions receive 0.6 commits
per 1000 commits (0.5 for OPENLDAP). Since our data reveal
similar results for the other metrics, we conclude that the
effect of our preprocessor properties on change frequency is
quite small and that this observation is significant.

The coefficient of LOACoc suggests a comparatively
large effect. However, LOAC ¢ is a ratio, taking values
from 0.0 (no annotated code) to 1.0 (all code is annotated).
Thus, a conceivable increase is 0.1 or 10 %. For such an in-
crease, COMMITS will rise by 6.6 %, which is, again, small.

Interestingly, CND has a small negative effect, meaning
we can expect functions in OPENLDAP that exhibit nesting
to be changed slightly less frequently than functions without
nesting. A possible explanation might be that developers are
more reluctant to change functions that exhibit nesting.

Compared to our annotation metrics, function size has
a larger impact. We included size as log,(LOC), thus, the
LOC has to double for log,(LOC) to increase by 1. Hence, if
a function in OPENLDAP doubles in size, it will change 58 %
more frequently. Our data, especially the absolute z-scores of
log,(LOC), reveal that log,(LOC) is by far the most reliable
predictor of COMMITS.

Considering all models together (right side of Table 6), we
observe the same pattern as for OPENLDAP: Most annota-
tion-related independent variables have small coefficients.
Moreover, compared to the coefficients’ mean values, the
standard deviations are high, indicating that effects vary

86

Wolfram Fenske, Sandro Schulze, and Gunter Saake

considerably between subjects. Finally, only function size
(log,(LOC)) significantly affects change frequency in each
subject. The small standard deviation indicates a stable effect.

We also computed the McFadden effects of our (converged)
models to estimate how well they fit the data. On average, the
effect is 0.088+0.020. This is a low value, because it means
that the models explain less than 9 % of the observed vari-
ance in COMMITS. We compared the full models to models
that are only based on function size, i. ., the only indepen-
dent variable was log,(LOC). Regression for the size-only
models converged for all subjects, including LiBxmr2. The
McFadden effects were 0.083+0.015. Thus, in comparison,
the full models perform slightly better than the size-only
models, but the improvement—0.5 %—is negligible.

In summary, none of the annotation metrics are consis-
tently correlated with change frequency. If a significant cor-
relation exists, the effect is small. We therefore reject Hy 3.1
for FC and LOAC/ oc¢ and accept the alternative hypothesis
H, 3.1: Functions with a higher number of feature constants
or a higher percentage of annotated lines of code are changed
more frequently in some systems than other functions. The
increase is likely small. We cannot reject Hy 3.1 for the other
annotation metrics (FL, CND, NEG).

Hjy 3.2 For the amount of changes (lower part of Table 6,
our results are even more diverse in the sense that (1) the
annotation metrics for LCHG are even less significant than
for COMMITS, and (2) the effect of function size is significant
for only 5 of the subjects, but has increased compared to the
models for COMMITS (cf. f=0.69+0.30).

The average McFadden effect is 0.047+0.007, which means
that our models explain the extent of changes poorly. Again,
we compared the full models with simple models based on
function size alone. These models converged for all subjects.
Their McFadden effects are 0.047 +0.006, indicating the same
(poor) quality. Thus, taking annotation metrics into account
fails to improve the prediction of the extent of changes.

We conclude that only LOAC, ¢, has a significant, yet
small, positive effect on the extent of changes in most, but not
all systems. Except for LOAC/oc, the number and complexity
of preprocessor annotations in a function is not consistently
correlated with the extent of changes to that function. We
therefore reject Hy 3.2 for LOAC/;oc in favor of the alterna-
tive hypothesis H, 3.2: Functions with a higher percentage of
annotated lines of code are changed more profoundly in some
systems than other functions. The increase is likely small. We
cannot reject Hy 3.2 for the other annotation metrics.

5 Discussion

In this section, we summarize the answers to our three re-
search questions and relate them to each other. Moreover,
we discuss the implications of our findings from a broader
perspective.

How Preprocessor Annotations (Do Not) Affect Maintainability

cppP Annotations Have an Inconsistent Effect: Although
annotation use generally correlates significantly and pos-
itively with change-proneness, effect sizes vary between
subjects. During regression, we found that, when seen in
context with each other and with size, few of our annotation-
related metrics correlate significantly with change-prone-
ness in the majority of subjects. Among them, LOAC/oc was
the most reliable predictor of change-proneness.

The Effect of Annotation Use Is Small: Where we found
significant correlations between annotation use and change-
proneness, the average effect size was small. The results
for RQ 1 revealed medium and even large effects in at least
some systems. However, the results for RQ 2 indicate that
these effects occur as a corollary of annotated functions
being larger. Using regression models to predict change-
proneness, we found that prediction quality improves only
by a negligible amount when annotation metrics were added
to the models.

Size Has a Consistent Effect: Function size correlates con-
sistently and significantly with change-proneness in all of
our tests with effect sizes varying only little between sub-
jects. This was expected, given previous findings by other
researchers, and emphasizes the importance of controlling
for size as a potential confounding factor.

Long Functions with Annotations May Still Be a Bad
Idea: We found only small effects of annotation-usage on
change-proneness. However, that does not mean that anno-
tations should be used carelessly, especially since functions
with annotations also tend to be longer (see Section 4.2).
Previous work indicates that annotation usage affects other
maintenance aspects, such as fault-proneness and program
comprehension (e. g., [44, 32, 36, 30]). Since the effects ac-
cumulate, the combination of preprocessor annotations and
long functions likely spells trouble.

Important Predictors of Change-Proneness Are Missing:
Our regression models generally predicted change-prone-
ness poorly. Hall et al. made similar observations when pre-
dicting fault-proneness based on static code metrics, which
coincides with our results [19]. However, the poor predic-
tions show that we are missing other important factors that
have a more profound impact on change-proneness than pre-
processor annotations. For instance, process-metrics, such
as the age of the code and previous changes [38], are likely
to play important roles.

6 Threats to Validity

In this section, we discuss possible threats to the validity of
our findings and how we mitigated these threats.

6.1 Internal Validity

Our study can only reveal correlations between preproces-
sor usage and change-proneness. However, even where we

87

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

found correlations, we cannot claim that annotations cause
change-proneness. Our methodology is based in large part
on studies of the effects of code smells on change- or fault-
proneness (e. g., [39, 25, 19, 43]). Although we investigate
different phenomena (preprocessor use, not code smells),
the underlying questions are similar, and the same methods
apply. Thus, we at least conform to the state of the art.

Most statistics are sensitive to the distribution of the data.
Where possible, we used robust statistical tests so as not to
violate any assumptions about the analyzed data. We chose
negative binomial regression as our regression technique
based on analyses of distribution characteristics and addi-
tional statistics on model fitness. Others used such models
for similarly shaped data [40, 48, 16, 19].

We use the frequency and the amount of changes as a
proxy for maintenance effort. This is common in software
engineering research (e. g., [5, 6, 29, 39]), but has known
limitations. For instance, preprocessor directives may hinder
program comprehension, which we cannot measure with
our methodology. Hence, we only claim that the use of pre-
processor annotations is largely unrelated to frequency and
amount of changes as per version control information.

Bugs in the tools we developed and in third-party tools
could confound our analyses. We mitigate this threat by
relying on mature tools where possible (SRc2srRcML [4], cPp-
STATS [27, 21], REPODRILLER [46], and EGrT*). We checked
for bugs in our own tools using regression tests and sam-
ple-based inspection of output data. A small number of files
(<0.1 %) could not be parsed due to errors in our tool-chain.
This is unlikely to skew our data to any relevant degree.

We collect data using a snapshot technique, which entails
some imprecisions. For example, the static metrics of a func-
tion could change considerably in the course of a snapshot.
Moreover, we had to discard some commits during snapshot
creation to keep snapshots comparable. However, we care-
fully investigated these threats in preliminary experiments
(cf. Section 3.4) and chose the snapshot size accordingly.
Other studies of change-proneness use releases of a software
system as snapshots (e. g., [7, 25, 19]). Since our snapshots
are much shorter than typical release cycles, our analysis is
at least as precise as the current state of the art. Moreover,
any remaining imprecision will affect annotated as well as
un-annotated functions equally. Hence, our statistics and
conclusion remain valid.

6.2 External Validity

We cover many well-known aspects of preprocessor use,
e.g., the number of #ifdef directives, nesting and negation.
Nevertheless, we miss some aspects, such as annotation dis-
cipline. We cannot generalize our findings to these aspects.

Software systems differ in how they use preprocessor an-
notations and how changes are performed, depending on

4www.eclipse.org/egit/

http://www.eclipse.org/egit/

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

their domain. We mitigate these threats by choosing systems
that differ in size and domains. All of our subject systems are
open source; no industrial systems were analyzed. Hunsen
et al. showed that annotation usage is the same for open-
and closed-source systems [21]. Hence our results should be
generalizable to at least other systems in the same domains,
both open- and closed-source.

We only consider subjects written in C and using cpp
annotations. We expect our findings to be generalizable to
other procedural languages and other preprocessors that
implement conditional compilation similarly to the cpp.

7 Related Work

C Preprocessor Usage and Variability-Related Problems
In recent years, several researchers studied empirically how
cpp annotations relate to fault-proneness and code compre-
hension. Syntax errors caused by an incorrect use of annota-
tions were found to be rare, but once introduced, they are
particularly long-lived [33, 35, 32]. Moreover, developers
perceive cpp-related bugs as easier to introduce, harder to
fix and more critical than other bugs. Melo et al. showed
that developers find bugs more slowly and less precisely
when the amount of variability increases [36]. Ferreira et
al. suggests that functions with security vulnerabilities ex-
hibit more preprocessor annotations than non-vulnerable
functions [15].

Another line of work explored the use of colors to sup-
port or replace cpp-based variability [22, 14, 26]. Specifically,
highlighting cpp-annotated code with background colors
helps program comprehension in some (but not all) situa-
tions [14]. A combination of background colors and virtual
separation of concerns [22] was proposed as an alternative
to cpp-based variability [26]. Experiments showed that this
alternative improves efficiency and correctness of program
comprehension compared to using plain cpp directives.

It is an ongoing debate whether undisciplined annotations
matter with regards to the speed and precision of bug-find-
ing. Such annotations encompass only parts of a syntactical
unit, for example, a parameter in a function declaration. Our
previous study suggested that discipline did not matter [44],
but newer studies suggest it does [30, 34]. It also matters
to developers: They prefer disciplined annotations [32, 34,
30]. We will investigate how preprocessor discipline affects
change-proneness in an extension of the present paper.

These studies relate preprocessor use to program compre-
hension and fault-proneness. We complement this work with
quantitative empirical findings on a different maintenance
aspect, namely change-proneness.

C Preprocessor Usage in General Other work analyzed
cpp use in highly configurable software, for instance, with
respect to scattering and tangling (e. g., [12, 27, 28, 21, 41]).
They do not relate cpp usage to maintenance, as we do. Nev-
ertheless, their insights into the statistical distributions of

88

Wolfram Fenske, Sandro Schulze, and Gunter Saake

cpp usage metrics helped us choose appropriate tests in our
study, and we build on some of their tooling.

8 Conclusion

Conditional compilation using preprocessor annotations,
such as the #ifdefs, is a common means to achieve fine-
grained variability in the source code of highly configurable
software. Although widely used, annotations have long been
criticized for making code hard to understand and change,
and more fault-prone. Recent studies analyzed this critique
empirically, suggesting that annotation indeed hinder code
comprehension and increases fault-proneness.

We complement these studies with a quantitative analysis
of whether and how annotations relate to another impor-
tant maintenance aspect, change-proneness. To this end, we
collected data about the presence and complexity of anno-
tations in individual functions and the change behavior of
those functions for eight systems, written in C. Statistical
analyses of the data suggest a significant, positive correlation
between annotation use and change-proneness. However,
the effect size is small, especially when controlling for differ-
ences in function size. Effect sizes vary widely, with medium-
sized effects in some systems and negligible effects in oth-
ers. Among the properties of annotation use we studied, the
percentage of annotated code to un-annotated code was the
one most consistently associated with increases in change-
proneness. Our findings call into question the criticism that
preprocessor annotations make code harder to change. Mea-
sured by the number of commits and the number of lines
changed, the impact is small at best.

In future work, we will apply our methodology to investi-
gate the relationship of annotation use to other properties
of maintenance and evolution. Our first objective is to study
the effect on fault-proneness, but other aspects, for instance,
co-changes, are also of interest. Controlled experiments are
another interesting line of future work. They would allow
us to measure the effects of annotation use on maintenance
effort directly instead of using changes as a proxy. Experi-
ments may also increase our insights into other aspects, such
as program comprehension.

Acknowledgments

This work was partly funded by project EXPLANT of the
German Research Foundation (DFG, grant SA 465/49-1). We
would like to thank Hannes Klawuhn, Reimar Schroter, and
Jens Meinicke for their contributions and fruitful discussions
at the early stages of this work. Additional thanks go to
Sven Apel and the participants of the FOSD’16 meeting for
suggestions on improving the methodology.

References

[1] S. Apel, D. Batory, C. Késtner, and G. Saake. Feature-
Oriented Software Product Lines. Springer, 2013.

How Preprocessor Annotations (Do Not) Affect Maintainability

2]
(3]
(4]

(10]

(11]

(12]

N. Cliff. Ordinal Methods for Behavioral Data Analysis.
Erlbaum, 1996.

J. Cohen. Statistical Power Analysis for the Behavioral
Sciences. 2nd ed. Erlbaum, 1988.

M. L. Collard, H. H. Kagdi, and J. L. Maletic. “An XML-
Based Lightweight C++ Fact Extractor”. In: Proceed-
ings of the International Workshop on Program Com-
prehension (IWPC). IEEE, 2003, pp. 134-143.

M. D’Ambros, A. Bacchelli, and M. Lanza. “On the Im-
pact of Design Flaws on Software Defects”. In: Proceed-
ings of the International Conference on Quality Software
(OSIC). IEEE, 2010, pp. 23-31.

I. Deligiannis, M. Shepperd, M. Roumeliotis, and L
Stamelos. “An Empirical Investigation of an Object-
Oriented Design Heuristic for Maintainability”. In:
Journal of Systems and Software 65.2 (2003), pp. 127-
139.

M. Di Penta, L. Cerulo, Y.-G. Guéhéneuc, and G. An-
toniol. “An Empirical Study of the Relationships Be-
tween Design Pattern Roles and Class Change Prone-
ness”. In: Proceedings of the International Conference on
Software Maintenance (ICSM). IEEE, 2008, pp. 217-226.
A.]. Dobson and A. Barnett. An Introduction to Gener-
alized Linear Models. 3rd ed. CRC Press, 2008.

S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A.
Mockus. “Does Code Decay? Assessing the Evidence
from Change Management Data”. In: IEEE Transac-
tions on Software Engineering (TSE) 27.1 (Jan. 2001),
pp. 1-12.

K. El Emam. A Methodology for Validating Software
Product Metrics. Tech. rep. NCR 44142. Ottawa, On-
tario, Canada: National Research Council, June 2000.
K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. “The
Confounding Effect of Class Size on the Validity of
Object-Oriented Metrics”. In: IEEE Transactions on
Software Engineering (TSE) 27.7 (2001), pp. 630-650.
M. D. Ernst, G. J. Badros, and D. Notkin. “An Empiri-
cal Analysis of C Preprocessor Use”. In: IEEE Transac-
tions on Software Engineering (TSE) 28.12 (Dec. 2002),
pp. 1146-1170.

J.-M. Favre. “Understanding-in-the-Large”. In: Proceed-
ings of the International Workshop on Program Com-
prehension (IWPC). IEEE, 1997, pp. 29-38.

J. Feigenspan, C. Késtner, S. Apel, J. Liebig, M. Schulze,
R. Dachselt, M. Papendieck, T. Leich, and G. Saake. “Do
Background Colors Improve Program Comprehension
in the #ifdef Hell?” In: Empirical Software Engineering
18.4 (Aug. 2013), pp. 699-745.

G. Ferreira, M. Malik, C. Kastner, J. Pfeffer, and S. Apel.
“Do #ifdefs Influence the Occurrence of Vulnerabil-
ities? An Empirical Study of the Linux Kernel”. In:
Proceedings of the International Software Product Line
Conference (SPLC). ACM, 2016, pp. 65-73.

&9

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

(16]

(17]

(18]

(19]

[20]

[21]

[25]

(28]

K. Gao and T. M. Khoshgoftaar. “A Comprehensive
Empirical Study of Count Models for Software Fault
Prediction”. In: IEEE Transactions on Reliability 56.2
(2007), pp. 223-236.

R. J. Grissom and J. J. Kim. Effect Sizes for Research: A
Broad Practical Approach. Erlbaum, 2005.

T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Coun-
sell. “A Systematic Literature Review on Fault Predic-
tion Performance in Software Engineering”. In: IEEE
Transactions on Software Engineering (TSE) 38.6 (2012),
pp- 1276-1304.

T. Hall, M. Zhang, D. Bowes, and Y. Sun. “Some Code
Smells Have a Significant but Small Effect on Faults”.
In: ACM Transactions on Software Engineering and
Methodology (TOSEM) 23.4 (Sept. 2014), 33:1-33:39.
J. M. Hilbe. Negative Binomial Regression. 2nd ed. Cam-
bridge University Press, 2011.

C. Hunsen, B. Zhang, J. Siegmund, C. Késtner, O. Lefle-
nich, M. Becker, and S. Apel. “Preprocessor-Based
Variability in Open-Source and Industrial Software
Systems: An Empirical Study”. In: Empirical Software
Engineering 21.2 (2016), pp. 449-482.

C. Kastner and S. Apel. “Virtual Separation of Con-
cerns — A Second Chance for Preprocessors”. In: Jour-
nal of Object Technology 8.6 (Sept. 2009), pp. 59-78.
B. W. Kernighan and D. M. Ritchie. The C Programming
Language. Prentice Hall, 1978.

F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc. “An
Exploratory Study of the Impact of Code Smells on
Software Change-Proneness”. In: Proceedings of the
Working Conference on Reverse Engineering (WCRE).
IEEE, 2009, pp. 75-84.

F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. An-
toniol. “An Exploratory Study of the Impact of Anti-
patterns on Class Change- and Fault-Proneness”. In:
Empirical Software Engineering 17.3 (2012), pp. 243—
275.

D. Le, E. Walkingshaw, and M. Erwig. “#ifdef Con-
firmed Harmful: Promoting Understandable Software
Variation”. In: Proceedings of the Symposium on Visual
Languages and Human Centric Computing (VL/HCC).
IEEE, 2011, pp. 143-150.

J. Liebig, S. Apel, C. Lengauer, C. Késtner, and M.
Schulze. “An Analysis of the Variability in Forty Pre-
processor-Based Software Product Lines”. In: Proceed-
ings of the International Conference on Software Engi-
neering (ICSE). ACM, 2010, pp. 105-114.

J. Liebig, C. Kastner, and S. Apel. “Analyzing the Disci-
pline of Preprocessor Annotations in 30 Million Lines
of C Code”. In: Proceedings of the International Confer-
ence on Aspect-Oriented Software Development (AOSD).
ACM, 2011, pp. 191-202.

GPCE’17, October 23-24, 2017, Vancouver, BC, Canada

(29]

(30]

(32]

(33]

(36]

(38]

(39]

A. Lozano and M. Wermelinger. “Assessing the Ef-
fect of Clones on Changeability”. In: Proceedings of
the International Conference on Software Maintenance
(ICSM). IEEE, 2008, pp. 227-236.

R. Malaquias, M. Ribeiro, R. Bonifacio, E. Monteiro,
F. Medeiros, A. Garcia, and R. Gheyi. “The Discipline
of Preprocessor-Based Annotations Does #ifdef TAG
n’t #endif Matter”. In: Proceedings of the International
Conference on Program Comprehension (ICPC). IEEE,
2017, pp. 297-307.

D. McFadden. Quantitative Methods for Analyzing Travel
Behavior of Individuals: Some Recent Developments. In-
stitute of Transportation Studies, University of Cali-
fornia, 1977.

F. Medeiros, C. Kastner, M. Ribeiro, S. Nadi, and R.
Gheyi. “The Love/Hate Relationship with the C Pre-
processor: An Interview Study”. In: Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP). Schloss Dagstuhl-Leibniz-Zentrum fiir In-
formatik, 2015, pp. 495-518.

F. Medeiros, M. Ribeiro, and R. Gheyi. “Investigat-
ing Preprocessor-Based Syntax Errors”. In: Proceed-
ings of the International Conference on Generative Pro-
gramming: Concepts & Experiences (GPCE). ACM, 2013,
pp- 75-84.

F. Medeiros, M. Ribeiro, R. Gheyi, S. Apel, C. Kastner,
B. Ferreira, L. Carvalho, and B. Fonseca. “Discipline
Matters: Refactoring of Preprocessor Directives in the
#ifdef Hell”. In: IEEE Transactions on Software Engi-
neering (TSE) (2017). accepted for publication, p. 16.
F. Medeiros, I. Rodrigues, M. Ribeiro, L. Teixeira, and R.
Gheyi. “An Empirical Study on Configuration-Related
Issues: Investigating Undeclared and Unused Identi-
fiers”. In: Proceedings of the International Conference
on Generative Programming: Concepts & Experiences
(GPCE). ACM, 2015, pp. 35-44.

J. Melo, C. Brabrand, and A. Wasowski. “How Does
the Degree of Variability Affect Bug Finding?” In: Pro-
ceedings of the International Conference on Software
Engineering (ICSE). ACM, 2016, pp. 679-690.

A. Mockus and L. G. Votta. “Identifying Reasons for
Software Changes Using Historic Databases”. In: Pro-
ceedings of the International Conference on Software
Maintenance (ICSM). IEEE, 2000, pp. 120-130.

R. Moser, W. Pedrycz, and G. Succi. “A Comparative
Analysis of the Efficiency of Change Metrics and Static
Code Attributes for Defect Prediction”. In: Proceedings
of the International Conference on Software Engineering
(ICSE). ACM, 2008, pp. 181-190.

S. M. Olbrich, D. S. Cruzes, and D. L Sjeberg. “Are All
Code Smells Harmful? A Study of God Classes and
Brain Classes in the Evolution of Three Open Source

90

(40]

(43]

(44]

(46]

(47]

[49]

Wolfram Fenske, Sandro Schulze, and Gunter Saake

Systems”. In: Proceedings of the International Confer-
ence on Software Maintenance (ICSM). IEEE, 2010, pp. 1-
10.

T.]J. Ostrand, E. J. Weyuker, and R. M. Bell. “Predicting
the Location and Number of Faults in Large Software
Systems”. In: IEEE Transactions on Software Engineer-
ing (TSE) 31.4 (2005), pp. 340-355.

R. Queiroz, L. Passos, M. T. Valente, C. Hunsen, S. Apel,
and K. Czarnecki. “The Shape of Feature Code: An
Analysis of Twenty C-Preprocessor-Based Systems”.
In: Software & Systems Modeling (SOSYM) 16.1 (2017),
pp- 77-96.

D. Romano and M. Pinzger. “Using Source Code Met-
rics to Predict Change-Prone Java Interfaces”. In: Pro-
ceedings of the International Conference on Software
Maintenance (ICSM). IEEE, 2007, pp. 303-312.

A. Saboury, P. Musavi, F. Khomh, and G. Antoniol. “An
Empirical Study of Code Smells in JavaScript Projects”.
In: Proceedings of the International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER).
IEEE, 2017, pp. 294-305.

S. Schulze, J. Liebig, J. Siegmund, and S. Apel. “Does
the Discipline of Preprocessor Annotations Matter? A
Controlled Experiment”. In: Proceedings of the Inter-
national Conference on Generative Programming and
Component Engineering (GPCE). ACM. 2013, pp. 65—
74.

D. I Sjgberg, A. Yamashita, B. C. D. Anda, A. Mockus,
and T. Dyba. “Quantifying the Effect of Code Smells on
Maintenance Effort”. In: IEEE Transactions on Software
Engineering (TSE) 39.8 (2013), pp. 1144-1156.

F. Z. Sokol, M. Finavaro Aniche, and M. A. Gerosa.
“MetricMiner: Supporting Researchers in Mining Soft-
ware Repositories”. In: Proceedings of the Working
Conference on Source Code Manipulation and Analysis
(SCAM). IEEE, 2013, pp. 142-146.

H. Spencer and G. Collyer. “#ifdef Considered Harm-
ful, or Portability Experience With C News”. In: Pro-
ceedings of the USENIX Technical Conference. USENIX
Association, 1992, pp. 185-197.

G. Succi, W. Pedrycz, M. Stefanovic, and J. Miller.
“Practical Assessment of the Models for Identification
of Defect-Prone Classes in Object-Oriented Commer-
cial Systems Using Design Metrics”. In: Journal of
Systems and Software 65.1 (2003), pp. 1-12.

Y. Zhou, H. Leung, and B. Xu. “Examining the Poten-
tially Confounding Effect of Class Size on the Associ-
ations Between Object-Oriented Metrics and Change-
Proneness”. In: IEEE Transactions on Software Engi-
neering (TSE) 35.5 (2009), pp. 607-623.

	Abstract
	1 Introduction
	2 C Preprocessor-Based Variability
	3 Methodology and Research Design
	3.1 Measuring Maintainability
	3.2 Null-Hypotheses
	3.3 Subject Systems
	3.4 Data Collection
	3.5 Statistical Analyses

	4 Results
	4.1 RQ1: Preprocessor Usage and Change/Proneness
	4.2 RQ2: Preprocessor Usage and Function Size
	4.3 Putting RQ1 and RQ2 in Relation
	4.4 RQ3: Independent Effects

	5 Discussion
	6 Threats to Validity
	6.1 Internal Validity
	6.2 External Validity

	7 Related Work
	8 Conclusion
	Acknowledgments

