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Abstract: Normal mixture models provide the most popular framework for mod-

elling heterogeneity in a population with continuous outcomes arising in a variety

of subclasses. In the last two decades, the skew normal distribution has been shown

beneficial in dealing with asymmetric data in various theoretic and applied prob-

lems. In this article, we address the problem of analyzing a mixture of skew nor-

mal distributions from the likelihood-based and Bayesian perspectives, respectively.

Computational techniques using EM-type algorithms are employed for iteratively

computing maximum likelihood estimates. Also, a fully Bayesian approach using

the Markov chain Monte Carlo method is developed to carry out posterior analyses.

Numerical results are illustrated through two examples.
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1. Introduction

Finite mixture models have been broadly developed and widely applied to

classification, clustering, density estimation and pattern recognition problems, as

shown by Titterington, Smith and Markov (1985), McLachlan and Basord (1988),

McLachlan and Peel (2000), and the references therein. With the growing ad-

vances of computational methods, especially for the development of Markov chain

Monte Carlo (MCMC) techniques, many works are also devoted to Bayesian mix-

ture modelling issues, including Diebolt and Robert (1994), Escobar and West

(1995), Richardson and Green (1997) and Stephens (2000), among others.

In many applied problems, the shapes of fitted mixture normal components

may be distorted, and inferences can be misleading when the data involves highly

asymmetric observations. In particular, the normal mixture (NORMIX) model

tends to overfit when additional components are included to capture the skewness.

Sometimes, increasing the number of pseudo-components may lead to difficulties

and inefficiencies in computations. Instead, we consider using the skew normal

distributions proposed by Azzalini (1985) as component densities to overcome

the potential weakness of normal mixtures. The skew normal distribution is

a new class of density functions dependent on an additional shape parameter,
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and includes the normal density as a special case. It provides a more flexible

approach to the fitting of asymmetric observations and uses fewer components

in the fitting of mixture models. A comprehensive coverage of the fundamental

theory and new developments for skew-elliptical distributions is given by Genton

(2004).

It is not easy to deal with computational aspects of parameter estimation for

the fitting of skew normal mixture (SNMIX) models. For simplicity, we treat the

number of components as known and describe how to employ EM-type algorithms

for finding the maximum likelihood (ML) estimates. In addition, Bayesian sam-

pling methods for SNMIX are considered as an alternative modelling strategy.

Priors and hyperparameters are chosen as weakly informative to avoid noniden-

tifiability problems in the mixture context.

The rest of the paper unfolds as follows. Section 2 briefly outlines some

preliminaries of the skew normal distribution. Azzalini and Capitaino (1999)

pointed out that the ML estimates might be improved by a few EM iterations,

but detailed expressions of the EM algorithm are not available in the literature.

We thus show how to compute the ML estimates for the skew normal distribution

using two EM-type algorithms. In Section 3 we show a hierarchical representa-

tion for the SNMIX model by incorporating two latent variables. Based on the

model, we also derive the corresponding EM-type algorithms for ML estimation.

Meanwhile, the information-based standard errors are also presented. In Section

4, we develop the MCMC sampling algorithm used in simulating posterior distri-

butions to carry out Bayesian inferences. In Section 5, two examples are given,

and in Section 6 we provide some concluding remarks.

2. The Skew Normal Distribution

2.1. Preliminaries

As developed by Azzalini (1985, 1986), a random variable Y follows a uni-

variate skew normal distribution with location parameter ξ, scale parameter σ2

and skewness parameter λ ∈ R if it has the density

ψ(y | ξ, σ2, λ) =
2

σ
φ

(

y − ξ

σ

)

Φ

(

λ
y − ξ

σ

)

, (1)

where φ(·) and Φ(·) denote the standard normal density function and cumu-

lative distribution function, respectively; then, for brevity, we say that Y ∼
SN(ξ, σ2, λ). Note that if λ = 0, the density of Y reduces to the N(ξ, σ2) den-

sity.

Lemma 1. If Y ∼ SN(ξ, σ2, λ) and X ∼ N(ξ, σ2/(1 + λ2)), we have

(i) E(Xn+1) = ξE(Xn) + [σ2/(1 + λ2)][dE(Xn)/dξ].
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(ii) E(Y n+1) = ξE(Y n) + σ2[dE(Y n)/dξ] +
√

2/πδ(λ)σE(Xn).

(iii)E
{

Y − E (Y )
}n+1

= σ2[dE{Y − E(Y )}n/dξ] + nσ2E
{

Y − E(Y )
}n−1

−
{

E(Y ) − ξ
}

E
{

Y − E(Y )
}n

+
√

2/πδ(λ)σE
{

X − E(Y )
}n

.

Lemma 1 provides a simple way of obtaining higher moments without using

the moment generating function. With some basic algebraic manipulations, we

can easily obtain

E(Y ) = ξ +

√

2

π
δ(λ)σ, var(Y ) =

{

1 − 2

π
δ2(λ)

}

σ2,

γY =

√
2(4 − π)λ3

{

π + (π − 2)λ2
}3/2

, κY = 3 +
8(π − 3)λ4

{

π + (π − 2)λ2
}2 , (2)

where δ(λ) = λ/
√

1 + λ2, and γY and κY are the measures of skewness and

kurtosis, respectively. It is easily shown that γY is in (−0.9953, 0.9953) and κY

is in (3, 3.8692). Henze (1986) showed that the odd moments of the standard

skew normal variable Z = (Y − ξ)/σ have the expression

E(Z2k+1) =

√

2

π
λ(1 + λ2)−(k+0.5)2−k(2k + 1)!

k
∑

j=0

j!(2λ)2j

(2j + 1)!(k − j)!
,

while the even moments coincide with those of standard normal, as Z2 ∼ χ2
1

(Roberts and Geisser (1966)).

From (2), Arnold, Beaver, Groeneveld and Meeker (1993) showed the follow-

ing method of moments estimators:

ξ̃ = m1 − a1

(

m3

b1

)
1
3

,

σ̃2 = m2 + a2
1

(

m3

b1

)
2
3

,

δ̃(λ) =
{

a2
1 +m2

(

b1
m3

)
2
3 }− 1

2
, (3)

where a1 =
√

2/π, b1 = (4/π−1)a1, m1 = n−1
∑n

i=1 Yi, m2 = (n−1)−1
∑n

i=1(Yi−
Ȳi)

2, and m3 = (n− 1)−1
∑n

i=1(Yi − Ȳi)
3.

2.2. Parameter estimation using EM-type algorithms

In this subsection, we show how to exploit two extensions of the EM al-

gorithm (Dempster, Laird and Rubin (1977)), the ECM algorithm (Meng and

Rubin (1993)) and the ECME algorithm (Liu and Rubin (1994)), for ML esti-

mation of the skew normal distribution. A key feature of these two EM-type
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algorithms is that they preserve the stability of the EM algorithm with their

monotone convergence. In order to represent the skew normal model in an in-

complete data framework, we extend the result of Azzalini (1986, p.201) and

(Henze (1986, Thm. 1)) to show that if Yj ∼ SN(ξ, σ2, λ), then

Yj = ξ + δ(λ)τj +
√

1 − δ2(λ)Uj , (4)

with τj ∼ TN(0, σ2)I{τj > 0}, Uj ∼ N(0, σ2), where τj and Uj are independent,

TN(·, ·) denotes the truncated normal distribution, and I{·} represents an indi-

cator function. Letting Y = (Y1, . . . , Yn) and τ = (τ1, . . . , τn), the complete-data

log-likelihood of θ = (ξ, σ2, λ) given (Y , τ ), after omitting additive constants, is

ℓc(θ) = −n log(σ2) − n

2
log
(

1 − δ2(λ)
)

−
∑n

j=1 τ
2
j − 2δ(λ)

∑n
j=1 τj(yj − ξ) +

∑n
j=1(yj − ξ)2

2σ2
(

1 − δ2(λ)
) . (5)

Obviously, the posterior distribution of τj is

τj |Yj = yj ∼ TN(µτj
, σ2

τ )I{τj > 0}, (6)

where µτj
= δ(λ)(yj − ξ) and στ = σ

√

1 − δ2(λ).

Lemma 2. Let X ∼ TN(µ, σ2)I{a1 < x < a2} be a truncated normal distribu-

tion with the density

f(x|µ, σ2) =
{

Φ(α2) − Φ(α1)
}−1 1√

2πσ
exp

{

− 1

2σ2
(x− µ)2

}

, a1 < x < a2,

where αi = (ai − µ)/σ, i = 1, 2. Then

(i) E(X) = µ− σ
φ(α2) − φ(α1)

Φ(α2) − Φ(α1)
.

(ii) E(X2) = µ2 + σ2 − σ2α2φ(α2) − α1φ(α1)

Φ(α2) − Φ(α1)
− 2µσ

φ(α2) − φ(α1)

Φ(α2) − Φ(α1)
.

By Lemma 2, we have

E(τj |yj) = µτj
+
φ(

µτj

στ
)

Φ(
µτj

στ
)
στ and E(τ2

j |yj) = µ2
τj

+ σ2
τ +

φ(
µτj

στ
)

Φ(
µτj

στ
)
µτj

στ .

The ECM algorithm is as follows.
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E-step: Calculating the conditional expectation of (5) at the kth iteration yields

ŝ
(k)
1j = Eˆθ

(k)(τj|yj) = µ̂(k)
τj

+
φ
{

λ̂(k)
(

yj−ξ̂(k)

σ̂(k)

)}

Φ
{

λ̂(k)
(

yj−ξ̂(k)

σ̂(k)

)} σ̂(k)
τ ,

ŝ
(k)
2j = Eˆθ

(k)(τ2
j |yj) = µ̂(k)2

τj
+ σ̂(k)2

τ +
φ
{

λ̂(k)
(

yj−ξ̂(k)

σ̂(k)

)}

Φ
{

λ̂(k)
(

yj−ξ̂(k)

σ̂(k)

)} µ̂(k)
τj
σ̂(k)

τ ,

where µ̂
(k)
τj , σ̂

(k)
τ are µτj

and στ in (6) with ξ, σ and λ replaced by ξ̂(k), σ̂(k) and

λ̂(k), respectively.

CM-steps

CM-step 1: Update ξ̂(k) by

ξ̂(k+1) =
1

n

(

n
∑

j=1

yj − δ(λ̂(k))

n
∑

j=1

ŝ
(k)
1j

)

.

CM-step 2: Update σ̂2(k)
by

σ̂2(k+1)
=

∑n
j=1 ŝ

(k)
2j − 2δ(λ̂(k))

∑n
j=1(yj − ξ̂(k+1))ŝ

(k)
1j +

∑n
j=1(yj − ξ̂(k+1))2

2n
(

1 − δ2(λ̂(k))
) .

CM-step 3: Fix ξ = ξ̂(k+1) and σ2 = σ̂2(k+1)
, obtain λ̂(k+1) as the solution of

nσ̂2(k+1)
δ(λ)

(

1 − δ2(λ)
)

+
(

1 + δ2(λ)
)

n
∑

j=1

(yj − ξ̂(k+1))ŝ
(k)
1j

−δ(λ)

n
∑

j=1

ŝ
(k)
2j − δ(λ)

n
∑

j=1

(yj − ξ̂(k+1))2 = 0.

For the ECME algorithm, the E-step and the first two CM steps are the same

as ECM, while the CM-Step 3 of ECM is modified as the following CML-step.

CML-step: Update λ̂(k) by optimizing the constrained log-likelihood function,
i.e.,

λ̂(k+1) = argmax
λ

n
∑

j=1

log

{

Φ
(

λ
yj − ξ̂(k+1)

σ̂(k+1)

)

}

.

The maximization in the CML-step requires a one-dimensional search, which

can be easily solved by the function “optim” embedded in the statistical package
“R”. As noted by Liu and Rubin (1994), the ECME has a faster convergence

rate than the ECM algorithm.
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Lemma 3. If Z ∼ SN(0, 1, λ), then

(i) E
{

φ(λZ)
Φ(λZ)

}

=
√

2
π

1√
1+λ2

.

(ii) E
{

Z2k+1 φ(λZ)
Φ(λZ)

}

= 0, k = 0, 1, 2, . . ..

(iii) E
{

Z2 φ(λZ)
Φ(λZ)

}

=
√

2
π

λ
(

1+λ2
) 3

2
.

The method of moments estimators in (3) can provide good initial values.

Applying Lemma 3, the Fisher information I(ξ, σ, λ) can be easily obtained. The

results are shown in Azzalini (1985, p.175). The standard errors of ML estimates

can be computed by taking the square root of the corresponding diagonal ele-

ments of I−1(ξ̂, σ̂, λ̂).

3. The Skew Normal Mixtures

3.1. The model

We consider a finite mixture model in which a set of independent data

Y1, . . . , Yn are from a g-component mixture of skew normal densities

f(yj | Θ) =

g
∑

i=1

ωiψ(yj | ξi, σ2
i , λi), (7)

where ω = (ω1, . . . , ωg) are the mixing probabilities, constrained to be non-

negative and sum to unity, and Θ = (θi, . . . ,θg) with θi = (ωi, ξi, σ
2
i , λi) being

the specific parameters for component i.

We introduce a set of latent component-indicators Zj = (Z1j , . . . , Zgj), j =

1, . . . , n, whose values are a set of binary variables with

Zkj =

{

1 if Yj belongs to group k,

0 otherwise,

and
∑g

i=1 Zij = 1. Given the mixing probabilities ω, the component-indicators

Z1, . . . ,Zj are independent, with multinomial densities

f(zj) = ω
z1j

1 ω
z2j

2 · · · (1 − ω1 − · · · − ωg−1)
zgj . (8)

We write Zj ∼ M(1; ω1, . . . , ωg) to denote Zj with density (8).

From (4), a hierarchical model for skew normal mixtures can be written as

Yj | τj , Zij = 1 ∼ N
(

ξi + δ(λi)τj ,
(

1 − δ2(λi)
)

σ2
i

)

,

τj | Zij = 1 ∼ TN(0, σ2
i )I(τj > 0),

Zj ∼ M(1; ω1, . . . , ωg) (j = 1, . . . , n). (9)
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3.2. Maximum likelihood estimation

As in (6), we have τj | Yj = yj, Zij = 1 ∼ TN(µτij
, σ2

τi
)I{τj > 0}, where

µτij
= δ(λi)(yj − ξi), στi

= σi

√

1 − δ2(λi). (10)

From (9), the complete-data log-likelihood function is

ℓc(θ) =
n
∑

j=1

g
∑

i=1

Zij

{

log(ωi) − log(σ2
i ) −

1

2
log
(

1 − δ2(λi)
)

−
τ2
j − 2δ(λi)τj(yj − ξi) + (yj − ξi)

2

2σ2
i

(

1 − δ2(λi)
)

}

. (11)

Letting ẑij =E ˆΘ
(k)(Zij | Y ), ŝ1ij =E ˆΘ

(k)(Zijτj | Y ) and ŝ2ij =E ˆΘ
(k)(Zijτ

2
j |

Y ) be the necessary conditional expectations of (11), we obtain

ẑ
(k)
ij =

ω̂
(k)
i ψ(yj | ξ̂(k)

i , σ̂2(k)

i , λ̂
(k)
i )

∑g
m=1 ω̂

(k)
m ψ(yj | ξ̂(k)

m , σ̂2(k)

m , λ̂
(k)
m )

, (12)

ŝ
(k)
1ij = ẑ

(k)
ij









µ̂(k)
τij

+ σ̂(k)
τi

φ

{

λ̂(k)
(

yj−ξ̂
(k)
i

σ̂
(k)
i

)

}

Φ

{

λ̂
(k)
i

(

yj−ξ̂
(k)
i

σ̂
(k)
i

)

}









, (13)

ŝ
(k)
2ij = ẑ

(k)
ij









µ̂(k)2

τij
+ σ̂(k)2

τi
+

φ

{

λ̂(k)
(

yj−ξ̂
(k)
i

σ̂
(k)
i

)

}

Φ

{

λ̂
(k)
i

(

yj−ξ̂
(k)
i

σ̂
(k)
i

)

} µ̂(k)
τij
σ̂(k)

τi









, (14)

where µ̂
(k)
τij , σ̂

(k)
τi are µτij

and στi
in (10) with ξ, σ and λ replaced by ξ̂(k), σ̂(k)

and λ̂(k), respectively.

The ECM algorithm is as follows.

E-step: Given Θ = Θ̂
(k)

, compute ẑ
(k)
ij , ŝ

(k)
1ij and ŝ

(k)
2ij for i = 1, . . . , g and

j = 1, . . . , n, using (12), (13) and (14).

CM-step 1: Calculate ω̂
(k+1)
i = n−1

∑n
j=1 ẑ

(k)
ij .

CM-step 2: Calculate

ξ̂
(k+1)
i =

∑n
j=1 ẑ

(k)
ij yj − δ(λ̂

(k)
i )

∑n
j=1 ŝ

(k)
1ij

∑n
j=1 ẑ

(k)
ij

.
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CM-step 3: Calculate

σ̂2(k+1)

i =

∑n
j=1 ŝ

(k)
2ij − 2δ(λ̂

(k)
i )

∑n
j=1 ŝ

(k)
1ij(yj − ξ̂

(k+1)
i ) +

∑n
j=1 ẑ

(k)
ij (yj − ξ̂

(k+1)
i )2

2
(

1 − δ2(λ̂
(k)
i )
)
∑n

j=1 ẑ
(k)
ij

.

CM-step 4: Fix ξi = ξ̂
(k+1)
i and σ2

i = σ̂2(k+1)

i , obtain λ̂
(k+1)
i (i = 1, . . . , g) as the

solution of

σ̂2(k+1)

i δ(λi)
(

1 − δ2(λi)
)

n
∑

j=1

ẑ
(k)
ij +

(

1 + δ2(λi)
)

n
∑

j=1

(yj − ξ̂
(k+1)
i )ŝ

(k)
1ij

−δ(λi)

n
∑

j=1

ŝ
(k)
2ij − δ(λi)

n
∑

j=1

ẑ
(k)
ij (yj − ξ̂

(k+1)
i )2 = 0.

ECME is identical to ECM except for the CM-Step 4 of ECM, which can be

modified by the following CML-Step.

CML-step: Let λ = (λ1, . . . , λg), and update λ̂
(k)

to

λ̂
(k+1)

= argmax
λ1,...,λg

n
∑

j=1

log

( g
∑

i=1

ω̂
(k+1)
i ψ(yj | ξ̂(k+1)

i , σ̂2(k+1)

i , λi)

)

.

We remark here that if the skewness parameters λ1, . . . , λg are assumed to

be identical, we use ECME since it is more efficient than ECM. Otherwise, the

CML-step becomes a non-trivial high dimensional optimization problem, while

using the CM-step 4 can avoid the complication.

3.3. Standard errors

We let Io(Θ | y) = −∂2ℓ(Θ | Y )/∂Θ∂ΘT be the observed information ma-

trix for the mixture model (7). Under some regularity conditions, the covariance

matrix of ML estimates Θ̂ can be approximated by the inverse of Io(Θ̂ | y). We

follow Basford, Greenway, McLachlan and Peel (1997) to evaluate

Io(Θ̂ | y) =
n
∑

j=1

ŝj ŝ
T
j , (15)

where ŝj = ∂ log
{

∑g
i=1 ωiψ(yj | ξi, σ2

i , λi)
}

/∂Θ
∣

∣

Θ=Θ̂
.

Corresponding to the vector of all 4g − 1 unknown parameters in Θ, we

partition ŝj (j = 1, . . . , n) as

ŝj = (ŝj,ω1, . . . , ŝj,ωg−1, ŝj,ξ1, . . . , ŝj,ξg
, ŝj,σ1, . . . , ŝj,σg , ŝj,λ1, . . . , ŝj,λg

)T.
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The elements of ŝj are given by

ŝj,ωr =
ψ(yj | ξ̂r, σ̂2

r , λ̂r) − ψ(yj | ξ̂g, σ̂2
g , λ̂g)

∑g
i=1 ω̂iψ(yj | ξ̂i, σ̂2

i , λ̂i)
(r = 1, . . . , g − 1),

ŝj,ξr
=

2ω̂rφ
{yj−ξ̂r

σ̂r

}

σ̂2
r

∑g
i=1 ω̂iψ(yj | ξ̂i, σ̂2

i , λ̂i)

{

(

yj − ξ̂r
σ̂r

)

Φ

(

λ̂r
yj − ξ̂r
σ̂r

)

−λ̂rφ

(

λ̂r
yj − ξ̂r
σ̂r

)

}

(r = 1, . . . , g),

ŝj,σr =
ω̂rψ(yj | ξ̂r, σ̂2

r , λ̂r)
∑g

i=1 ω̂iψ(yj | ξ̂i, σ̂2
i , λ̂i)

{

− 1

σ̂r
+

(yj − ξ̂r)
2

σ̂3
r

}

−
2ω̂rλ̂r(yj − ξ̂r)φ

( yj−ξ̂r

σ̂r

)

φ
( λ̂r(yj−ξ̂r)

σ̂r

)

σ̂3
r

∑g
i=1 ω̂iψ(yj | ξ̂i, σ̂2

i , λ̂i)
(r = 1, . . . , g),

ŝj,λr
=

ω̂rψ(yj | ξ̂r, σ̂2
r , λ̂r)

∑g
i=1 ω̂iψ(yj | ξ̂i, σ̂2

i , λ̂i)

(

yj − ξ̂r
σ̂r

)φ
{

λ̂r(yj−ξ̂r)
σ̂r

}

Φ
{

λ̂r(yj−ξ̂r)
σ̂r

} (r = 1, . . . , g).

The information-based approximation (15) is asymptotically applicable.

However, it may not be reliable unless the sample size is large. It is common

in practice to perform the bootstrap approach (Efron and Tibshirani (1986)) for

obtaining an alternative estimate of the covariance matrix for Θ̂. The bootstrap

method may provide more accurate standard error estimates than (15), but, it

requires enormous computing power.

3.4. Notes on implementation

In the mixture context, the log-likelihood function may have multiple modes.

A convenient way to circumvent such limitations is to try several EM iterations

with a variety of starting values that are representatives of the parameter space.

If there exist several modes, one can find the global mode by comparing their

relative masses and log-likelihood values. In particular, the algorithm running

with different starting values can be used to assess the stability of the resulting

estimates.

Although the EM-type algorithm tends to be robust with respect to the

choice of the starting values, it may not converge when initial values are far from

optimum. The following outlines a simple procedure to achieve a set of reasonable

initial values. (a) Randomly generate a set of B bootstrap resampling samples

y∗
1, . . . ,y

∗
B from the original data y. (b) For each bootstrap sample, partition

them into g components using theK-means clustering algorithm and compute the
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initial values ŵ
(0)
i =

∑n
j=1Z

(0)
ij /n. (c) For each partitioned component, compute

the initial values ξ̂
(0)
i , σ̂2(0)

i and δ̂
(0)
i (λ

(0)
i ) using the method of moments as in (3).

4. Bayesian Modelling For Skew Normal Mixtures

4.1. The prior distributions and posterior MCMC sampling

We consider a Bayesian approach to (7) in which Θ is regarded as random
with a prior distribution that reflects our degree of belief in different values of
these quantities. Since fully non-informative prior distributions are not permissi-
ble in the mixture context, the prior distributions chosen are weakly informative
subject to vague prior knowledge and this avoids nonintegrable posterior distri-
butions. The prior distributions for model (7) takes

ξi ∼ N(η, κ−1) (i = 1, . . . , g),

σ−2
i | β ∼ Γ(α, β) (i = 1, . . . , g),

β ∼ Γ(ν1, ν2),

δ(λi) ∼ U(−1, 1) (i = 1, . . . , g),

ω ∼D(h, . . . , h),

where β is an unknown hyperparameter, (η, κ, α, ν1, ν2, h) are known (data-

dependent) constants, Γ(α, β) denotes the gamma distribution with mean α/β
and variance α/β2, U(−1, 1) denotes the continuous uniform distribution on the
interval [−1, 1], and D(h, . . . , h) stands for the Dirichlet distribution with the
density function

Γ(gh)

Γ(h)g
ωh−1

1 · · ·ωh−1
g−1

(

1 −
g−1
∑

i=1

ωi

)h−1
.

For the values of (η, κ, α, ν1, ν2, h), we follow Richardson and Green (1997)

in letting η equal the midpoint of the observed interval and κ−1 = R2, where R
is the range of the interval, and in setting α = 2, ν1 = 0.2, ν2 = 100α/(αR2) and
h = 2.

Given Θ = Θ(k), the MCMC sampling scheme at the (k + 1)st iteration
consists of the following steps.
Step 1. Sample Z

(k+1)
j (j = 1, . . . , n) from M(1; ω∗

1, . . . , ω
∗
g), where

ω∗
i =

ψ(yj | ξ(k)
i , σ2(k)

i , λ
(k)
i )

∑g
m=1 ω

(k)
m ψ(yj | ξ(k)

m , σ2(k)

m , λ
(k)
m )

(i = 1, . . . , g).

Step 2. Given Zij = 1, sample τ
(k+1)
j (j = 1, . . . , n) from

TN
(

δ(λ
(k)
i )(yj − ξ

(k)
i ), σ2(k)

i

(

1 − δ2(λ
(k)
i )
)

)

I{τj > 0}.
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Step 3. Sample β(k+1) from Γ(ν1 + gα, ν2 +
∑g

i=1 σ
−2(k)

i ).

Step 4. Sample ω(k+1) from D(h + n
(k+1)
1 , . . . , h + n

(k+1)
g ), where n

(k+1)
i =

∑n
j=1 Z

(k+1)
ij .

Step 5. Given Zij = 1, sample ξ
(k+1)
i from

N

(

µ
(k+1)
ξi

,

{

n
(k+1)
i

σ2(k)

i

(

1 − δ2(λ
(k)
i )
)

+ κ

}−1
)

,

where

µ
(k+1)
ξi

=

∑n
j=1 Z

(k+1)
ij yj − δ(λ

(k)
i )

∑n
j=1 Z

(k+1)
ij τ

(k+1)
j + κησ2(k)

i

(

1 − δ2(λ
(k)
i )
)

n
(k+1)
i + κσ2(k)

i

(

1 − δ2(λ
(k)
i )
)

.

Step 6. Given Zij = 1, sample σ−2(k+1)

i from Γ
(

α+ n
(k+1)
i , β(k+1) + b

)

, where

b =
1

2
(

1 − δ2(λ
(k)
i )
)

{

n
∑

j=1

Z
(k+1)
ij τ2(k+1)

j − 2δ(λ
(k)
i )

n
∑

j=1

Z
(k+1)
ij τ

(k+1)

j (yj − ξ
(k+1)
i )

+
n
∑

j=1

Z
(k+1)
ij (yj − ξ

(k+1)
i )2

}

.

Step 7. Sample δ(k+1) =
(

δ(λ
(k+1)
1 ), . . . , δ(λ

(k+1)
g )

)

via the Metropolis Hastings

(M-H) algorithm (Hastings (1970)) from

f
(

δ
)

∝
g
∏

i=1

n
∏

j=1

[

(

1 − δ2(λi)
)− 1

2

× exp

{

τ
(k+1)2

j − 2δ(λi)τ
(k+1)
j (yj − ξ

(k+1)
i ) + (yj − ξ

(k+1)
i )2

2σ2(k+1)

i

(

1 − δ2(λi)
)

}

]Z
(k+1)
ij

.

To elaborate on Step 7 of the above algorithm, we transform δ(λi) to δ∗(λi) =

log
{(

1 + δ(λi)
)

/
(

1 − δ(λi)
)}

and then apply the M-H algorithm to g
(

δ∗
)

=

f
(

δ(δ∗)
)
∏g

i=1 Jδ∗(λi), where δ∗ =
(

δ∗(λ1), . . . , δ
∗(λg)

)

, and Jδ∗(λi) =2eδ
∗(λi)/

(

1+

eδ
∗(λi)

)2
is the Jacobian of transformation from δ(λi) to δ∗(λi). A g-dimensional

multivariate normal distribution with mean δ∗(k)
and covariance matrix c2Σ

(k)

δ
∗

is chosen as the proposal distribution, where the scale c ≈ 2.4/
√
g, as sug-

gested in Gelman, Robert and Gilks (1996). The value of Σ
(k)

δ
∗ can be estimated

by the inverted sample information matrix given y and Θ = Θ(k). Having

obtained δ∗ from the M-H algorithm, we transform it back to δ by δ(λi) =
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(eδ
∗(λi) − 1)/(eδ

∗(λi) + 1) (i = 1, . . . , g), and then transform δ(λi) back to λi by

δ(λi)/
√

1 − δ2(λi). To avoid the label-switching problem and slow stabilization

of the Markov chain, our initial values Θ(0) are chosen to be dispersed around

the ML estimates with the restriction ξ
(0)
1 < · · · < ξ

(0)
g .

4.2. Convergence assessment using multiple chains

Before conducting inference using MCMC samples, the output should be

analyzed to determine the required run length of MCMC sequences. Gelman and

Rubin (1992) proposed a convergence diagnostic R̂, the potential scale reduction

factor (PSRF), obtained by running multiple chains with overdispersed starting

values. However, the approach is essentially univariate. Recently, Brooks and

Gelman (1998) provided a generalization of Gelman and Rubin’s method that

consider several parameters simultaneously.

Suppose there are I independent parallel chains and the length of each chain

is 2n. Let θ denote a p × 1 vector of parameters and θi = (θ
(1)
i , . . . ,θ

(n)
i )

denote the simulation sample of the ith chain (i = 1, . . . , I), after discarding the

first n iterations. Brooks and Gelman (1998) stated that the posterior variance-

covariance matrix of θ can be estimated by

V̂ =
n− 1

n
W +

(

1 +
1

I

)B

n
,

where W and B/n denote the within and between-sequence sample covariance

matrix estimates of (θ1, . . . ,θI), respectively.

They then proposed the multivariate potential scale reduction factor (MP-

SRF), R̂p = (n− 1)/n + (1 + 1/I)λ1, where λ1 is the largest eigenvalue of

W−1B/n. Note that the multivariate measure R̂p bounds above the univari-

ate R̂ values over all p variables.

Suppose the I parallel chains are mixing well within the model, R̂p will

decline to 1 for reasonably large n. Meanwhile, if the I parallel chains are essen-

tially overlapping, then the determinants of V̂ and W should stabilize over the

iterations and be sufficiently close.

5. Examples

5.1. The enzyme data

We first carry out our methodology for the enzyme data set with n = 245

observations. The data were first analyzed by Bechtel, Bonaita-Pellieé, Poisson,

Magnette and Bechtel (1993), who identified a mixture of skew distributions by

the maximum likelihood techniques of Maclean, Morton, Elston and Yee (1976).

Richardson and Green (1997) provided the reversible jump MCMC approach for
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the univariate normal mixture models with an unknown number of components
and identified the most possible values of g to be between 3 and 5.

Table 1. Estimated parameter values and the corresponding standard errors
(SE) for model (16) with the enzyme data.

ω ξ1 ξ2 σ1 σ2 λ1 λ2

Estimate 0.6240 0.0949 0.7802 0.1331 0.7150 3.2780 6.6684
SE 0.0310 0.0107 0.0516 0.0109 0.0607 0.9467 3.9640

We fit the following two-component SNMIX model to the data

f(y) = ωψ(y|ξ1, σ2
1 , λ1) + (1 − ω)ψ(y|ξ2, σ2

2 , λ2). (16)

The ECM algorithm was run with 100 starting values and was checked for con-
vergence. All EM iterations under different stating values converge to the same
stationary point with log-likelihood −41.92. The resulting ML estimates and
the corresponding standard errors are listed in Table 1. In this table, we found
that the standard error for λ2 is relatively large. This is due to the fact that
the log-likelihood function can be fairly flat near the ML estimates of the shape
parameter of the skew normal components. We have shown this by plotting the
profile log-likelihood function of (λ1, λ2) in Figure 1.
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Figure 1. Plot of the profile log-likelihood for λ1 and λ2 for the enzyme data.

For comparison purposes, we also fit a NORMIX model (λ1 = λ2 = 0) with
g = 2 − 5 components. The log-likelihood maximum and two information-based
criteria, AIC (Akaike (1973)) and BIC (Schwarz (1978)), are displayed in the
third to fifth columns of Table 2. Apparently, the fitted two-component SN-
MIX model is superior to the fitted NORMIX model, since it has the largest
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log-likelihood and the smallest AIC and BIC. The last two columns of this table

present the required number of EM iterations and the associated rate of conver-

gence, r, which is assessed in practice as

r = lim
t→∞

‖θ(t+1) − θ(t)‖
‖θ(t) − θ(t−1)‖

.

A relative tolerance of 10−8 for the estimates of all parameters in the model

was used as the convergence criterion. We note that the reported rate of conver-

gence depends on the fraction of missing information and the greater the value of

r implies the slower the convergence, see Meng (1994). In this example, we also

note that the estimating procedure for fitting SNMIX model does not converge

properly for g ≥ 3.

Table 2. Comparison of log-likelihood maximum, AIC and BIC for fitted

SNMIX and NORMIX models using the enzyme data. The number of pa-

rameters and the rate of convergence are denoted by m and r, respectively.

Model g m log-likelihood AIC† BIC‡ Iterations r

SNMIX 2 7 −41.92 97.84 122.35 175 0.82

NORMIX 2 5 −54.64 119.28 136.79 19 0.53

NORMIX 3 8 −47.83 111.66 139.67 170 0.81

NORMIX 4 11 −46.75 115.50 154.01 425 0.89

NORMIX 5 14 −46.26 120.52 169.54 562 0.93
NORMIX ≥ 6 > 123 > 185

†AIC=−2(log-likelihood−m); ‡BIC=−2
{

log-likelihood−0.5m log(n)
}

.

5.2. The faithful data

As another example, we consider the Old Faithful Geyser data taken from

Silverman (1986). It consists of 272 eruption lengths (in minutes) of the Old

Faithful Geyser in Yellowstone National Park, Wyoming, USA. The data appear

to be bimodal with asymmetrical components. We fit a two-component SNMIX

model (16) by analogy with the previous example. The ML estimates and the

corresponding standard errors are reported in the second and third columns of

Table 3, respectively. We carry out an MCMC simulation by running 10,000

iterations of ten independent parallel chains with different starting values for

each chain over-dispersed around ±3 standard deviations of the ML estimates.

The convergence of MCMC samplers is monitored by examining R̂p values as

discussed in Section 4.2. The monitored values of R̂p and the determinants of V̂

and W are plotted in Figures 2(a) and 2(b), respectively. By examining both fig-

ures, convergence occurs around 4,000 iterations. Having obtained the remaining



SKEW NORMAL MIXTURES 923

converged MCMC simulation samples, we computed the posterior mean, stan-

dard deviation, median and 95% posterior interval (2.5% and 97.5% posterior

quantiles), which are listed in the 4th-8th columns of Table 3.
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Figure 2. (a) Plot of MPSRF, R̂p; (b) Plot of the determinants (×1013) of

V̂ (solid) and W (dashed).

Table 3. ML estimation results and MCMC summary statistics for the pa-

rameters of model (16) with the faithful data.

Parameter ML MCMC

Estimate SE Mean SE Median 2.5% 97.5%

ω 0.3487 0.0294 0.3510 0.0294 0.3506 0.2948 0.4114

ξ1 1.7267 0.0291 1.7225 0.0238 1.7232 1.6752 1.7690

ξ2 4.8026 0.0511 4.7847 0.0660 4.7919 4.6427 4.8940
σ1 0.3801 0.0415 0.3959 0.0418 0.3928 0.3211 0.4854

σ2 0.6857 0.0621 0.6712 0.0675 0.6725 0.5381 0.8025

λ1 5.8026 2.1436 6.2316 2.1176 5.8768 3.1025 11.2305

λ2 -3.4951 1.1492 -3.4073 1.1704 -3.2700 -5.9843 -1.5502

Figure 3 displays the histograms of the posterior samples of the model pa-

rameters. It is evident that the shape of the posterior distribution of λ1 is skewed

to the right, while the shape of the posterior distribution of λ2 is skewed to the

left. It is interesting to note that the posterior distributions of the parameters

(λ1, λ2), which regulate the skewness, are skewed as well.
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Figure 3. Histograms of the posterior sample of the SNMIX parameters for

the faithful data.

Finally, it is interesting to compare the density estimation of NORMIX and

SNMIX fitting results. The ML-fitted NORMIX and SNMIX densities, together

with the Bayesian predictive SNMIX density, are superimposed in Figure 4(a).

Subsequently, the fitted cumulative density functions (CDFs) and the empirical

CDF are shown in Figure 4(b). Based on the graphical visualization, the result-

ing ML-fitted SNMIX density, as well as the Bayesian predictive SNMIX density,

are more suitable than the ML-fitted NORMIX density for this data set. Fur-

thermore, the fitted SNMIX CDFs more closely track the empirical CDF than

does the fitted NORMIX CDF.

6. Concluding Remarks

In our examples, it is quite appealing that the skew normal mixtures can

provide a more appropriate density estimation than normal mixtures based on

information-based criteria and graphical visualization. There are a number of

possible extensions of the current work. Mixture modelling using the multivari-

ate skew normal distribution (e.g., Azzalini and Dalla Valle (1996), Shau, Dey

and Branco (2003) and Gupta, González-Faŕıas and Domı́nguez-Monila (2004))
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is the most natural extension and will be reported in a follow-up paper. In addi-

tion, it would be a worthwhile task to model the number of components, g, and

component parameters, Θ, jointly. For modelling both skewness and long tails

in a mixture context, component densities using the skew t distribution (e.g.,

Jones and Faddy (2003), Azzalini and Capitaino (2003) and Lin, Lee and Hsieh

(2007)) is a feasible choice and awaits further investigation.
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Figure 4. (a) Histogram of the faithful data overlaid with densities based
on two fitted two-component SNMIX (ML and Bayesian), and a ML-fitted
two-component NORMIX; (b) Empirical CDF of the faithful data overlaid
with CDFs based on two fitted two-component SNMIX (ML and Bayesian)

and a ML-fitted two-component NORMIX.
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