
A Parallel Decision Tree Builder for
Mining Very Large Visualization Datasets

Kevin W. Bowyer, Lawrence 0. Hall, Thomas Moore, Nitesh Chawla
University of South Florida / Tampa, Florida 33620-5399

kwb, hall, tmoore4, chawla Qcsee.usf.edu

W. Philip Kegelmeyer
Sandia National Labs / P.O. Box 969, MS 9214 / Livermore, CA / 94551-0969

wpkQca.sandia.gov

Abstract

Simulation problems in the DOE ASCI program gen-
erate visualization datasets more than a terabyte in
size. The practical difficulties in visualizing such
datasets motivate the desire for automati? recogni-
tion of salient events. We have developed a parallel
decision tree classifier for use in this context. Com-
parisons to ScalParC, a previous attempt to build a
fast parallelization of a decision tree classifier, are pro-
vided. Our parallel classifier executes on the “ASCI
Red” supercomputer. Experiments demonstrate that
datasets too large to be processed on a single proces-
sor can be efficiently handled in parallel, and suggest
that there need not be any decrease in accuracy rela-
tive to a monolithic classifier constructed on a single
processor.

1 Purpose

The DOE’S Accelerated Strategic Computing Initia-
tive (ASCI) program [l] currently generates 3D high-
resolution physics data sets in the terascale size range.
These simulations replace important physical experi-
ments, and so must be conducted in exacting detail.
Domain experts manually visualize the data sets to
look for salient events and anomalies. Unfortunately,
due to the size of the data sets, it is essentially impos-
sible to exhaustively browse them to search for salient
events. The purpose of the work described here is to
create a classifier that can learn to recognize salient
events. New visualization datasets would be “pre-
classified,” so that only the most salient regions of
the dataset need to be browsed manually.

2 Method

Our approach requires that at least part of a dataset
be manually labeled with the level of saliency relative
to a particular event. A classifier is learned from this
labeled data. Additional datasets can then be auto-
matically labeled according to saliency. To be able
to handle very large training sets, the classifier is de-
signed to execute on a parallel architecture.
The parallel learning system discussed here works as
follows. The training data is split into N subsets, one
per node in the parallel system. The subsets can be
either disjoint or overlapping; they are all disjoint in
the experiments reported in this paper. A learning
algorithm is applied by each processor to its training
data. The resultant model is saved for later use by
any other processor.
In this paper, the learning algorithm used is a version
of the that embodied in C4.5 release 8 [2, 31. Release
8 of C4.5 has significant1,y improved handling of con-
tinuous attributes, which is important for large-scale
visualization data sets which will only have contin-
uous attributes. We call our variant of C4.5 “V5.”
V5 has been updated from C4.5 in two ways. One,
it has been ported to run on the ASCI Red parallel
supercomputer[l, 131. TWO, it also allows for test re-
sults from a validation set to be stored as weights at
the leaves of the tree.
To determine the class of an unseen example, the ex-
ample is applied to each of the N models, resulting in
N classifications. In the case of unweighted classifica-
tions, a majority vote is taken to determine the class
of the tested example. In the case of weighted classi-
fications, the sum of the weights is obtained for each
class and the example is assigned to the class with the

0-78Q3-6583-6IQ01$1Q.00 0 2000 IEEE 1888

http://Qcsee.usf.edu
http://wpkQca.sandia.gov

greatest weight.
The advantage of our parallel learning algorithm is
that it allows each processor to work entirely indepen-
dently, with no interprocessor communication. Hence
it is fully parallelizable, unlike approaches such as
pasting bites [4] or boosting [5, 61, each of which re-
quires that proceeding classifiers be built on training
sets determined from already built classifiers.
It is possible that a combiner or arbiter [7, 8, 91 could
be utilized with an appropriate training set to pro-
vide improved accuracy. The cost would be one more
sequential step in the training process and a slightly
more time-consuming testing procedure.
We have implemented our parallel decision tree builder
on the ASCI Red supercomputer, and have run initial
experiments using datasets from the UC Irvine reposi-
tory, datasets from the ScaleParC data generator [lo],
and an ASCI simulation dataset.

3 Comparison with ScalParC

We have evaluated the ScalParC parallel decision tree
builder [lo] for comparison to our own work. For large
data sets the ScalParC approach promises a single de-
cision tree that is equivalent to the tree that would
be built on a single processor [ll, 121. ScalParC is
claimed to present a scalable approach to building de-
cision trees on a parallel processor - “detailed analysis
of applying this paradigm to the splitting phase shows
that the overall communication overhead of the phase
does not exceed O(N), and the memory required to im-
plement the phase does not exceed O(N/p) per proces-
sor” and “ScalParC could classify 6.4 million records
in just 77 seconds on 128 processors. This demon-
strates that large classification problems can be solved
quickly using ScalParC” [lo]. Here N is the number
of examples in the training set and p is the number of
processors.
We modified the original ScalParC implementation
obtained from the authors so that it would run on
the ASCI Red, print a description of the decision tree
that it constructs, and optionally allow the use of the
information gain metric [3] in order to facilitate com-
parisons with C4.5 release 8. In analyzing the results
of experiments with ScalParC, we discovered that it
constructs incorrect decision trees in some cases. The
problem can be corrected, but it appears that the so-
lution would necessarily have a substantial negative
impact on scalability. We have not pursued develop-
ment of a corrected implementation of ScalParC. As
a result, we currently cannot make useful execution

Table 1: Description of Synthetic Data Set.
example attr. 1 attr. 2 attr. 3 attr. 4 class

1 0.0 1.0 1.0 1.0 0
2 1 .o 1.0 1.0 1.0 1
3 2.0 1.0 1.0 1.0 2
4 3.0 1.0 1.0 1.0 3

4.0 1.0 1.0 1.0 4 5
6 5.0 1.0 1.0 1.0 5

time comparisons to ScalParC.
The problem in the ScalParC implementation reveals
itself as a tree with “impossible splits.” These are
splits that logically cannot occur given the earlier
splits in the tree. This problem is caused by the algo-
rithm not correctly maintaining its parallel hash table.
The problem in the trees created with ScalParC can
be observed in a simple synthetic data set with 6 ex-
amples, distributed in 6 classes, with each example
having 4 attributes. Consider the synthetic data set
described in Table 1, and compare the C4.5-produced
and ScalParC-produced decision trees illustrated in
Figures 1 and 2, respectively.
The C4.5-produced decision tree can readily be ver-
ified to provide a solution to the classification prob-
lem. However, the ScalParC-produced decision tree
contains two impossible splits. These are identified by
the dashed boxes in Figure 2. They are inconsistent
with splits occurring earlier in the tree. They are also
incorrect attribute splits for the labels of the associ-
ated leaves, where only 1 example exists and it cannot
correctly contain the label given. For example, the
first impossible split labels its leaf as class 1 with a
split of Attribute 1 < 1.00. The class 1 example has
Attribute 1 2 1, so it would not exist at this leaf. If
the information gain metric is used instead of the Gini
metric, then on this example data set the program ef-
fectively hits an infinite loop. All of these symptoms
trace to the same underlying problem - the mainte-
nance of the parallel hash table during the computa-
tion. Effectively, a child node does not get the set of
data items that the parent node intends to pass on as
a result of the split. The correct number of examples
are received, but not the intended set of examples.
The correct set of examples must be indexed at tree
nodes as splitting proceeds. This appears to require
changes to the data structures used to keep track of
the tree. One possible approach is used in Sprint [12].
This solution produces trees which match those gener-
ated sequentially, but has been shown to be unscalable
[lo]. For any possible solution, more inter-processor

1889

attr 1
class 5 class 4

I example I example
class 2 class I

I example I examplc

< = 0

1

~~ ~~

Figure 1: Depiction of the C4.5 tree resulting from the synthetic data set.

class3 i
1 example i r - Dashed boxes show decisions

that are inconsistent with
preceding splits in the tree. class 5

I example
j class4
i lexample :.-___. ~ :

<1’=4

attF\ attr 1 > = 4

- ~~~~~ ~

Figure 2: Depiction of the ScalParC tree resulting from the synthetic data set.

communication will be required and so scalability will
be adversely affected.

4 Results

Results of this project to date fall into four areas:

We have modified the C4.5 release 8 implementa-
tion to run on the ASCI Red parallel computer,
and to maintain data for use in weighted voting
among classifiers.

We have modified the MUSTAFA visualization
tool to allow labeling of selected nodes at selected
time steps of a simulation with a user-specified
saliency. MUSTAFA is a visualization tool devel-
oped by the Department of Energy. It is built on
top of the commercial AVS Express visualization
tool. MUSTAFA is used and Sandia labs in the
visualization of 4-D physics simulation datasets.

Our modifications to IMUSTAFA are intended to
allow the user to create labeled training data sets.

We have conducted empirical experiments to
compare the accuracy of a classifier built in par-
allel from subsets of (data with that of a classi-
fier built on one processor from all of the data.
Using 15 different data sets from the UC Irvine
repository, results sug,gest that on data sets small
enough to also be processed on a single ma-
chine, our parallel decision tree approach is able
to achieve essentially the same accuracy as a tree
grown on all the data.. See [14] for more details.

We have conducted experiments to evaluate the
speedup possible from creating classifiers on large
learning sets in parallel on the ASCI Red super-
computer. The remainder of this section gives an
overview of selected results of learning a classifier
on large data sets using the ASCI Red.

1890

1.8 Million Examples Across Variable Processors
I

p q j
-0- Total

“0 10 20 30 40 . 50 60 70
Number of Processors

Figure 3: Learning from 1,600,000 examples split
across 2, 4, ... 64 ASCI Red processors.

The ASCI Red is a supercomputer belonging to the
US. Department of Energy [l]. It has a total of 4,640
“compute nodes,’’ each of which contains two 333-
MHz Pentium 111 processors sharing 256MB of mem-
ory. The processors run a version of the UNIX oper-
ating system. The system is based on a distributed-
memory mesh architecture, and is capable of 3.15 Ter-
aFLOPS .
To get a feel for the tradeoffs involved in creating a
classifier in parallel, consider an experiment that looks
at speedup versus number of processors for a fixed-size
dataset. The data set used in this experiment was
created using the same synthetic data generator used
in the ScalParC project [lo]. Using a synthetic data
generator allows us to easily generate arbitrarily large
training data sets. The synthetic data represents a
two-class, seven-attribute problem, with each of the
attributes being continuous-valued.
Figure 3 summarizes the speedup results for a 1.6 mil-
lion example training set, broken across from 2 to 64
processors. The execution time for one processor does
not appear in this Figure because the problem was
too large to run successfully on a single processor (1.6
million examples, with seven real values and one dis-
crete value each). The maximum speedup is approx-
imately 14, obtained using 16 processors. The 1/0
time (time to read data into the compute nodes and
write resultant trees to disk), tree-building time (on
the compute nodes), and the total time axe shown.
The tree-building time is the time required for the
slowest of the N processors to finish building and prun-
ing its tree on its subset of the training data. Despite
the fact that loading the data is a one-time cost, and
that there is no subsequent interprocess communica-
tion, the 1/0 time steadily increases and becomes the

800 Thousand Examples Across Variable Processors

t Tree
-o- Total

- 300
_ _ - - - - -200 *;

loo IT,, /
. P

. , ,
*...-.- - -

OO 10 20 30 40 50 60
Number of Processors

I

Figure 4: Learning from 800,000 examples split across
2, 4, ... 64 ASCI Red processors.

dominant time. This reflects the fact that the initial
loading of data into the processors is a complex task on
this parallel system. The individual compute nodes do
not each have their own independent channel to the
disk storage. Once the four channels shared by the
compute nodes are all being used, the communication
to the compute nodes becomes contentious. When a
program is run on a subset of the ASCI Red compute
nodes while other programs run on other nodes, the
observed 1/0 time is often affected by the 1/0 activity
of the other programs. For this reason, the compute
times plotted in Figures 3 and 4 are an average over
10 runs of the same computation, and those plotted
in Figure 5 are an average over 4 runs.
If we use a data set one half the size, that is, 800,000
examples, then we observe a similar pattern of results,
but the problem is small enough to also run on a single
processor. Results of this experiment appear in Figure
4. The overall time decreases up to 16 processors,
which results in a speedup of 14.5 times over sequential
learning on one ASCI Red processor.
Another way of looking at the effectiveness of the par-
allel system is in terms of how well a larger data set
can be handled by simply using more processors. Fig-
ure 5 shows timings on the ASCI Red using between 1
and 64 processors, always with 800,000 examples per
processor. Thus at 64 processors, it takes only about
2.5 hrs to train on 51,2000,000 examples! The total
time is affected mostly by 1/0 time, which increases
approximately linearly way with the number of pro-
cessors.

1891

BOO.WO Examplea Per Pnxaasor

"0 l O 2 0 3 0 4 0 M W 7 0
Number ol Pr0cBSLy)o

Figure 5: Experimental results from learning on
800,000 generated examples per processor on a varying
number of ASCI Red processors from 1 to 64. There
are 51,200,000 training examples with 64 processors.

5 Conclusions and Future Work

We are able to effectively create a classifier in paral-
lel on the ASCI Red supercomputer. The accuracy
to be expected from the classifier created in paral-
lel is roughly equivalent to that of a single classifier
that could in principle be created from the complete
dataset on a single machine [14]. This work is novel
in (a) being aimed at data mining on datasets so large
that they can only be handled on supercomputers such
as the ASCI Red, and (b) combining classifiers created
in parallel on distinct subsets of a dataset.
Several important issues remain to be considered in
this research project. One important topic of continu-
ing work involves the creation of labeled training data.
One issue in this is how to make the process of labeling
the data as effortless as possible for the domain expert.
Another issue is the amount of training data actually
needed to create an accurate classifier. A complete,
relevant ASCI data set may be a terabyte in size, but
it seems likely that not all of the data set needs to
be labeled in order to learn a useful classifier. One
possibility is to have the learning tool guide the label-
ing of training data. For example, the learning tool
might suggest a minimum number of data elements to
be labeled for each saliency category, then tentatively
classify the remainder of the data set, and then present
the least-certain classifications to the user for confir-
mation. If the user corrects tentative classifications,
the cycle is repeated.
Another important topic of continuing work involves
the design and evaluation of classifiers in the pres-
ence of highly-unbalanced training sets. The real-
world datasets of interest in this work are highly un-
balanced between classes. An extremely large percent-

age (higher than 99.9%) of the visualization data set is
relatively uninteresting, and only a very small percent-
age is highly interesting. Additionally, the cost of mis-
classifying a highly interesting element is much greater
than that of mis-classifying an uninteresting element.
In this situation, it is appropriate to design and eval-
uate classifiers using tools :such as the area under the
ROC curve rather than the average accuracy. One
popular approach to dealing with unbalanced training
data in classifier design is to under-sample the major-
ity class in the training data. Under-sampling by var-
ious factors will effectively sweep out an ROC curve.
We are exploring methods of combined manipulation
of both the minority and majority classes to create
classifiers that achieve a greater area under the ROC
curve.
Another topic currently being explored is the use of
a bagging-like approach to improving classifier perfor-
mance. Bagging traditional.1~ involves selecting a large
.fraction (e.g., 80%) of the available data N times, with
replacement, to generate individual classifiers whose
decisions are combined with voting [15, 51. Bagging
can result in improved performance over a single clas-
sifier constructed with all of the training data. In our
application, it is not feasible to select a large fraction
of the training data for use at each processor. There-
fore, we want to determine if the effect of bagging will
hold up when the size of the individual bags is a small
fraction of the training data.
Lastly, we hope to conduct experiments to evaluate
the effectiveness of pre-classifying a data set for visual-
ization. Ideally, we would have two similar manually-
labeled visualization data sets. They could be used
as half-half training and best divisions of data. The
practical question from the standpoint of the visual-
ization domain expert is how accurately the classifier
built on one data set can predict the saliency labels
for the other data set. Assuming that acceptable ac-
curacy can be achieved using the whole training set,
then the relevant question is how little of the data set
is actually required to achieve this level of accuracy.

Acknowledgments

This work was partially ,supported in part by the
United States Department of Energy through the San-
dia National Laboratories LDRD program and ASCI
VIEWS Data Discovery Program, contract number
DE-AC04-76D000789.

1892

References

Sandia National Labs,
http://www .sandia.gov/ASCI/Red/UserGuide.htm,
ASCI Red Users Manual, 1997. ~ 3 1

J. Quinlan, C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann, 1992. San Mateo, CA.

J. Quinlan, “Improved use of continuous at- ~ 4 1
tributes in C4.5,” Journal of Artificial Intelli-
gence Research, vol. 4, pp. 77-90, 1996.

~ 5 1 L. Breiman, “Pasting bites together for prediction
in large data sets,” Machine Learning, vol. 36,
no. 1,2, pp. 85-103, 1999.

E. Bauer and R. Kohavi, “An empirical com-
parison of voting classification algorithms: Bag-
ging, boosting, and variants,” Machine Learning,
vol. 36, no. 1,2, 1999.

Y. Freund and R. Schapire, “Experiments with
a new boosting algorithm,” in Machine Learn-
ing: Proceedings of the Thirteenth National Con-
ference, pp. 148-156, 1996.

P. Chan and S. Stolfo, “Sharing learned mod-
els among remote database partitions by local
meta-learning,” in Proceedings Second Interna-
tional Conference on Knowledge Discove y and
Data Mining, pp. 2-7, 1996.

P. Chan and S. Stolfo, “On the accuracy of meta-
learning for scalable data mining,” Journal of In-
telligent Information Systems, vol. 8, pp. 5-28,
1997.

P. K. Chan and S. J. Stolfo, “Toward scalable
learning with non-uniform class and cost distri-
butions: A case study in credit card fraud detec-
tion,” in Proc. KDD-98, 1998.

M. V. Joshi, G. Karypis, and V. Kumar, “Scal-
parc: A new scalable and efficient parallel classi-
fication algorithm for mining large datasets,” in
Proceedings of the International Parallel Process-
ing Symposium, pp. 573-579,1998.

S. Goil and A. Choudhary, “Efficient parallel clas-
sification using dimensional aggregates,” in Pro-
ceedings of the Workshop on Large-scale Paral-
lel KDD Systems, Tech. Report 99-8, Rennsselaer
Polytechnic Institute, Troy, NY. 1999., 1999

J. Shafer, R. Agrawal, and M. Mehta, “Sprint:
A scalable parallel classifier for data mining,” in
Proceedings of the 22nd VLDB Conference, 1996.

Sandia National Labs,
http://www.sandia.gov/ASCI/Red/main.htm,
ASCI Red - The World’s First TeraOps Super-
Computer, May 25, 2000.

L. Hall, K. Bowyer, W. Kegelmeyer, T. Moore,
and C. Chao, “Distributed learning on very large
data sets,” in ACM SIGKDD Workshop on Dis-
tributed and Parallel Knowledge Discovery, 2000.

L. Breiman, “Bagging predictors,” Machine
Learning, vol. 24, pp. 123-140, 1996.

1893

http://www
http://www.sandia.gov/ASCI/Red/main.htm

