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Abstract 

Simulation problems in the DOE ASCI program gen- 
erate visualization datasets more than a terabyte in 
size. The practical difficulties in visualizing such 
datasets motivate the desire for automati? recogni- 
tion of salient events. We have developed a parallel 
decision tree classifier for use in this context. Com- 
parisons to ScalParC, a previous attempt to build a 
fast parallelization of a decision tree classifier, are pro- 
vided. Our parallel classifier executes on the “ASCI 
Red” supercomputer. Experiments demonstrate that 
datasets too large to be processed on a single proces- 
sor can be efficiently handled in parallel, and suggest 
that there need not be any decrease in accuracy rela- 
tive to a monolithic classifier constructed on a single 
processor. 

1 Purpose 

The DOE’S Accelerated Strategic Computing Initia- 
tive (ASCI) program [l] currently generates 3D high- 
resolution physics data sets in the terascale size range. 
These simulations replace important physical experi- 
ments, and so must be conducted in exacting detail. 
Domain experts manually visualize the data sets to 
look for salient events and anomalies. Unfortunately, 
due to the size of the data sets, it is essentially impos- 
sible to exhaustively browse them to search for salient 
events. The purpose of the work described here is to 
create a classifier that can learn to recognize salient 
events. New visualization datasets would be “pre- 
classified,” so that only the most salient regions of 
the dataset need to be browsed manually. 

2 Method 

Our approach requires that at least part of a dataset 
be manually labeled with the level of saliency relative 
to a particular event. A classifier is learned from this 
labeled data. Additional datasets can then be auto- 
matically labeled according to  saliency. To be able 
to handle very large training sets, the classifier is de- 
signed to execute on a parallel architecture. 
The parallel learning system discussed here works as 
follows. The training data is split into N subsets, one 
per node in the parallel system. The subsets can be 
either disjoint or overlapping; they are all disjoint in 
the experiments reported in this paper. A learning 
algorithm is applied by each processor to its training 
data. The resultant model is saved for later use by 
any other processor. 
In this paper, the learning algorithm used is a version 
of the that embodied in C4.5 release 8 [2, 31. Release 
8 of C4.5 has significant1,y improved handling of con- 
tinuous attributes, which is important for large-scale 
visualization data sets which will only have contin- 
uous attributes. We call our variant of C4.5 “V5.” 
V5 has been updated from C4.5 in two ways. One, 
it has been ported to run on the ASCI Red parallel 
supercomputer[l, 131. TWO, it also allows for test re- 
sults from a validation set to be stored as weights at 
the leaves of the tree. 
To determine the class of an unseen example, the ex- 
ample is applied to each of the N models, resulting in 
N classifications. In the case of unweighted classifica- 
tions, a majority vote is taken to determine the class 
of the tested example. In the case of weighted classi- 
fications, the sum of the weights is obtained for each 
class and the example is assigned to the class with the 
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greatest weight. 
The advantage of our parallel learning algorithm is 
that it allows each processor to work entirely indepen- 
dently, with no interprocessor communication. Hence 
it is fully parallelizable, unlike approaches such as 
pasting bites [4] or boosting [5, 61, each of which re- 
quires that proceeding classifiers be built on training 
sets determined from already built classifiers. 
It is possible that a combiner or arbiter [7, 8, 91 could 
be utilized with an appropriate training set to pro- 
vide improved accuracy. The cost would be one more 
sequential step in the training process and a slightly 
more time-consuming testing procedure. 
We have implemented our parallel decision tree builder 
on the ASCI Red supercomputer, and have run initial 
experiments using datasets from the UC Irvine reposi- 
tory, datasets from the ScaleParC data generator [lo], 
and an ASCI simulation dataset. 

3 Comparison with ScalParC 

We have evaluated the ScalParC parallel decision tree 
builder [lo] for comparison to our own work. For large 
data sets the ScalParC approach promises a single de- 
cision tree that is equivalent to the tree that would 
be built on a single processor [ll, 121. ScalParC is 
claimed to present a scalable approach to building de- 
cision trees on a parallel processor - “detailed analysis 
of applying this paradigm to the splitting phase shows 
that the overall communication overhead of the phase 
does not exceed O(N), and the memory required to im- 
plement the phase does not exceed O(N/p) per proces- 
sor” and “ScalParC could classify 6.4 million records 
in just 77 seconds on 128 processors. This demon- 
strates that large classification problems can be solved 
quickly using ScalParC” [lo]. Here N is the number 
of examples in the training set and p is the number of 
processors. 
We modified the original ScalParC implementation 
obtained from the authors so that it would run on 
the ASCI Red, print a description of the decision tree 
that it constructs, and optionally allow the use of the 
information gain metric [3] in order to facilitate com- 
parisons with C4.5 release 8. In analyzing the results 
of experiments with ScalParC, we discovered that it 
constructs incorrect decision trees in some cases. The 
problem can be corrected, but it appears that the so- 
lution would necessarily have a substantial negative 
impact on scalability. We have not pursued develop- 
ment of a corrected implementation of ScalParC. As 
a result, we currently cannot make useful execution 

Table 1: Description of Synthetic Data Set. 
example attr. 1 attr. 2 attr. 3 attr. 4 class 

1 0.0 1.0 1.0 1.0 0 
2 1 .o 1.0 1.0 1.0 1 
3 2.0 1.0 1.0 1.0 2 
4 3.0 1.0 1.0 1.0 3 

4.0 1.0 1.0 1.0 4 5 
6 5.0 1.0 1.0 1.0 5 

time comparisons to ScalParC. 
The problem in the ScalParC implementation reveals 
itself as a tree with “impossible splits.” These are 
splits that logically cannot occur given the earlier 
splits in the tree. This problem is caused by the algo- 
rithm not correctly maintaining its parallel hash table. 
The problem in the trees created with ScalParC can 
be observed in a simple synthetic data set with 6 ex- 
amples, distributed in 6 classes, with each example 
having 4 attributes. Consider the synthetic data set 
described in Table 1, and compare the C4.5-produced 
and ScalParC-produced decision trees illustrated in 
Figures 1 and 2, respectively. 
The C4.5-produced decision tree can readily be ver- 
ified to provide a solution to the classification prob- 
lem. However, the ScalParC-produced decision tree 
contains two impossible splits. These are identified by 
the dashed boxes in Figure 2. They are inconsistent 
with splits occurring earlier in the tree. They are also 
incorrect attribute splits for the labels of the associ- 
ated leaves, where only 1 example exists and it cannot 
correctly contain the label given. For example, the 
first impossible split labels its leaf as class 1 with a 
split of Attribute 1 < 1.00. The class 1 example has 
Attribute 1 2 1, so it would not exist at this leaf. If 
the information gain metric is used instead of the Gini 
metric, then on this example data set the program ef- 
fectively hits an infinite loop. All of these symptoms 
trace to the same underlying problem - the mainte- 
nance of the parallel hash table during the computa- 
tion. Effectively, a child node does not get the set of 
data items that the parent node intends to pass on as 
a result of the split. The correct number of examples 
are received, but not the intended set of examples. 
The correct set of examples must be indexed at tree 
nodes as splitting proceeds. This appears to require 
changes to the data structures used to keep track of 
the tree. One possible approach is used in Sprint [12]. 
This solution produces trees which match those gener- 
ated sequentially, but has been shown to be unscalable 
[lo]. For any possible solution, more inter-processor 
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Figure 1: Depiction of the C4.5 tree resulting from the synthetic data set. 
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Figure 2: Depiction of the ScalParC tree resulting from the synthetic data set. 

communication will be required and so scalability will 
be adversely affected. 

4 Results 

Results of this project to date fall into four areas: 

We have modified the C4.5 release 8 implementa- 
tion to run on the ASCI Red parallel computer, 
and to maintain data for use in weighted voting 
among classifiers. 

We have modified the MUSTAFA visualization 
tool to allow labeling of selected nodes at selected 
time steps of a simulation with a user-specified 
saliency. MUSTAFA is a visualization tool devel- 
oped by the Department of Energy. It is built on 
top of the commercial AVS Express visualization 
tool. MUSTAFA is used and Sandia labs in the 
visualization of 4-D physics simulation datasets. 

Our modifications to IMUSTAFA are intended to 
allow the user to create labeled training data sets. 

We have conducted empirical experiments to 
compare the accuracy of a classifier built in par- 
allel from subsets of (data with that of a classi- 
fier built on one processor from all of the data. 
Using 15 different data sets from the UC Irvine 
repository, results sug,gest that on data sets small 
enough to also be processed on a single ma- 
chine, our parallel decision tree approach is able 
to achieve essentially the same accuracy as a tree 
grown on all the data.. See [14] for more details. 

We have conducted experiments to evaluate the 
speedup possible from creating classifiers on large 
learning sets in parallel on the ASCI Red super- 
computer. The remainder of this section gives an 
overview of selected results of learning a classifier 
on large data sets using the ASCI Red. 
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Figure 3: Learning from 1,600,000 examples split 
across 2, 4, ... 64 ASCI Red processors. 

The ASCI Red is a supercomputer belonging to the 
US. Department of Energy [l]. It has a total of 4,640 
“compute nodes,’’ each of which contains two 333- 
MHz Pentium 111 processors sharing 256MB of mem- 
ory. The processors run a version of the UNIX oper- 
ating system. The system is based on a distributed- 
memory mesh architecture, and is capable of 3.15 Ter- 
aFLOPS . 
To get a feel for the tradeoffs involved in creating a 
classifier in parallel, consider an experiment that looks 
at  speedup versus number of processors for a fixed-size 
dataset. The data set used in this experiment was 
created using the same synthetic data generator used 
in the ScalParC project [lo]. Using a synthetic data 
generator allows us to easily generate arbitrarily large 
training data sets. The synthetic data represents a 
two-class, seven-attribute problem, with each of the 
attributes being continuous-valued. 
Figure 3 summarizes the speedup results for a 1.6 mil- 
lion example training set, broken across from 2 to 64 
processors. The execution time for one processor does 
not appear in this Figure because the problem was 
too large to run successfully on a single processor (1.6 
million examples, with seven real values and one dis- 
crete value each). The maximum speedup is approx- 
imately 14, obtained using 16 processors. The 1/0 
time (time to read data into the compute nodes and 
write resultant trees to disk), tree-building time (on 
the compute nodes), and the total time axe shown. 
The tree-building time is the time required for the 
slowest of the N processors to finish building and prun- 
ing its tree on its subset of the training data. Despite 
the fact that loading the data is a one-time cost, and 
that there is no subsequent interprocess communica- 
tion, the 1/0 time steadily increases and becomes the 
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Figure 4: Learning from 800,000 examples split across 
2, 4, ... 64 ASCI Red processors. 

dominant time. This reflects the fact that the initial 
loading of data into the processors is a complex task on 
this parallel system. The individual compute nodes do 
not each have their own independent channel to the 
disk storage. Once the four channels shared by the 
compute nodes are all being used, the communication 
to the compute nodes becomes contentious. When a 
program is run on a subset of the ASCI Red compute 
nodes while other programs run on other nodes, the 
observed 1/0 time is often affected by the 1/0 activity 
of the other programs. For this reason, the compute 
times plotted in Figures 3 and 4 are an average over 
10 runs of the same computation, and those plotted 
in Figure 5 are an average over 4 runs. 
If we use a data set one half the size, that is, 800,000 
examples, then we observe a similar pattern of results, 
but the problem is small enough to also run on a single 
processor. Results of this experiment appear in Figure 
4. The overall time decreases up to 16 processors, 
which results in a speedup of 14.5 times over sequential 
learning on one ASCI Red processor. 
Another way of looking at the effectiveness of the par- 
allel system is in terms of how well a larger data set 
can be handled by simply using more processors. Fig- 
ure 5 shows timings on the ASCI Red using between 1 
and 64 processors, always with 800,000 examples per 
processor. Thus at 64 processors, it takes only about 
2.5 hrs to train on 51,2000,000 examples! The total 
time is affected mostly by 1/0 time, which increases 
approximately linearly way with the number of pro- 
cessors. 

1891 



BOO.WO Examplea Per Pnxaasor 

"0 l O 2 0 3 0 4 0 M W 7 0  
Number ol Pr0cBSLy)o 

Figure 5: Experimental results from learning on 
800,000 generated examples per processor on a varying 
number of ASCI Red processors from 1 to 64. There 
are 51,200,000 training examples with 64 processors. 

5 Conclusions and Future Work 

We are able to effectively create a classifier in paral- 
lel on the ASCI Red supercomputer. The accuracy 
to be expected from the classifier created in paral- 
lel is roughly equivalent to that of a single classifier 
that could in principle be created from the complete 
dataset on a single machine [14]. This work is novel 
in (a) being aimed at data mining on datasets so large 
that they can only be handled on supercomputers such 
as the ASCI Red, and (b) combining classifiers created 
in parallel on distinct subsets of a dataset. 
Several important issues remain to be considered in 
this research project. One important topic of continu- 
ing work involves the creation of labeled training data. 
One issue in this is how to make the process of labeling 
the data as effortless as possible for the domain expert. 
Another issue is the amount of training data actually 
needed to create an accurate classifier. A complete, 
relevant ASCI data set may be a terabyte in size, but 
it seems likely that not all of the data set needs to 
be labeled in order to learn a useful classifier. One 
possibility is to have the learning tool guide the label- 
ing of training data. For example, the learning tool 
might suggest a minimum number of data elements to  
be labeled for each saliency category, then tentatively 
classify the remainder of the data set, and then present 
the least-certain classifications to the user for confir- 
mation. If the user corrects tentative classifications, 
the cycle is repeated. 
Another important topic of continuing work involves 
the design and evaluation of classifiers in the pres- 
ence of highly-unbalanced training sets. The real- 
world datasets of interest in this work are highly un- 
balanced between classes. An extremely large percent- 

age (higher than 99.9%) of the visualization data set is 
relatively uninteresting, and only a very small percent- 
age is highly interesting. Additionally, the cost of mis- 
classifying a highly interesting element is much greater 
than that of mis-classifying an uninteresting element. 
In this situation, it is appropriate to design and eval- 
uate classifiers using tools :such as the area under the 
ROC curve rather than the average accuracy. One 
popular approach to dealing with unbalanced training 
data in classifier design is to under-sample the major- 
ity class in the training data. Under-sampling by var- 
ious factors will effectively sweep out an ROC curve. 
We are exploring methods of combined manipulation 
of both the minority and majority classes to create 
classifiers that achieve a greater area under the ROC 
curve. 
Another topic currently being explored is the use of 
a bagging-like approach to improving classifier perfor- 
mance. Bagging traditional.1~ involves selecting a large 
.fraction (e.g., 80%) of the available data N times, with 
replacement, to generate individual classifiers whose 
decisions are combined with voting [15, 51. Bagging 
can result in improved performance over a single clas- 
sifier constructed with all of the training data. In our 
application, it is not feasible to select a large fraction 
of the training data for use at each processor. There- 
fore, we want to determine if the effect of bagging will 
hold up when the size of the individual bags is a small 
fraction of the training data. 
Lastly, we hope to conduct experiments to evaluate 
the effectiveness of pre-classifying a data set for visual- 
ization. Ideally, we would have two similar manually- 
labeled visualization data sets. They could be used 
as half-half training and best divisions of data. The 
practical question from the standpoint of the visual- 
ization domain expert is how accurately the classifier 
built on one data set can predict the saliency labels 
for the other data set. Assuming that acceptable ac- 
curacy can be achieved using the whole training set, 
then the relevant question is how little of the data set 
is actually required to achieve this level of accuracy. 
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