Use the fillna() method and set a constant value in it for all the missing values using the parameter value. At first, let us import the required libraries with their respective aliases −
import pandas as pd import numpy as np
Create a DataFrame with 2 columns. We have set the NaN values using the Numpy np.NaN −
dataFrame = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Lexus', 'Mustang', 'Bentley', 'Mustang'],"Units": [100, 150, np.NaN, 80, np.NaN, np.NaN] } )
Placing a constant value for the column values with NaN i.e. for Units columns here −
constVal = 200
Replace NaNs with the constant value i.e. 200 −
dataFrame['Units'].fillna(value=constVal, inplace=True)
Example
Following is the code −
import pandas as pd import numpy as np # Create DataFrame dataFrame = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Lexus', 'Mustang', 'Bentley', 'Mustang'],"Units": [100, 150, np.NaN, 80, np.NaN, np.NaN] } ) print"DataFrame ...\n",dataFrame # placing a constant value for the column values with NaN i.e, for Units columns here constVal = 200 # Replace NaNs with the constant value i.e 200 dataFrame['Units'].fillna(value=constVal, inplace=True) print"\nUpdated Dataframe after filling NaN values with constant values...\n",dataFrame
Output
This will produce the following output −
DataFrame ... Car Units 0 BMW 100.0 1 Lexus 150.0 2 Lexus NaN 3 Mustang 80.0 4 Bentley NaN 5 Mustang NaN Updated Dataframe after filling NaN values with constant values... Car Units 0 BMW 100.0 1 Lexus 150.0 2 Lexus 200.0 3 Mustang 80.0 4 Bentley 200.0 5 Mustang 200.0