Bar Plot in Seaborn is used to show point estimates and confidence intervals as rectangular bars. The seaborn.barplot() is used. Style the bars using the facecolor, linewidth and edgecolor parameters.
Let’s say the following is our dataset in the form of a CSV file −Cricketers2.csv
At first, import the required libraries −
import seaborn as sb import pandas as pd import matplotlib.pyplot as plt
Load data from a CSV file into a Pandas DataFrame −
dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers2.csv")
Design the bars −
sb.barplot(x=dataFrame["Role"], y=dataFrame["Matches"], facecolor=(1, 1, 0, 0), linewidth=4, edgecolor=sb.color_palette("dark", 2))
Example
Following is the code −
import seaborn as sb import pandas as pd import matplotlib.pyplot as plt # Load data from a CSV file into a Pandas DataFrame dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers2.csv") # plotting bar plot with Role and Matches column # designing the bars sb.barplot(x=dataFrame["Role"], y=dataFrame["Matches"], facecolor=(1, 1, 0, 0), linewidth=4, edgecolor=sb.color_palette("dark", 2)) # display plt.show()
Output
This will produce the following output −